
Image Credit: Monterey Marine Meteorology Division – HYbrid Coordinate Ocean Model (HYCOM)
By WUWT regular “Just The Facts”
In making several updates to the WUWT Ocean Reference Page I observed something in the Sea Surface Temperature animation above, that I’ve seen a few times before. More about that below, but first the reason for the updates. The Naval Research Laboratory Navy Coastal Ocean Model (NCOM) was “scheduled to be retired on 5 April 2013 and replaced by operational 1/12° HYbrid Coordinate Ocean Model or HYCOM.” The “HYCOM consortium is a multi-institutional effort sponsored by the National Ocean Partnership Program (NOPP), as part of the U. S. Global Ocean Data Assimilation Experiment (GODAE), to develop and evaluate a data-assimilative hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model (called HYbrid Coordinate Ocean Model or HYCOM).” Here is HYCOM’s home page of and here is the system background information on the “Real-time 1/12° Global HYCOM Nowcast/Forecast System”.
The new HYCOM Global Sea Surface Temperature 30 Day Animation Including 7 Day Forecast at the head of this article has been added to the WUWT Ocean Reference Page, along with the 1 Day graphics for Sea Surface Height and Sea Surface Salinity. In addition to the new Global imagery from HYCOM, there are also a wide array of regional images and animation available from HYCOM including various sections of the Atlantic, Indian, Pacific, and Polar Oceans. The HYCOM regional imagery and animations include not only Sea Surface Temperature, Sea Surface Height and Sea Surface Salinity, but also offer Speed/Currents images and animations, such as this Equatorial Pacific Speed/Currents 30 Day Animation Including 7 Day Forecast:

In terms of the observation that gave me a sense of Déjà vu, if you look at this Equatorial Pacific Sea Surface Temperature – 30 Day Animation Including 7 Day Forecast;

you’ll see a tongue of cold water begin to extend across the Equatorial Pacific. The last time I saw a similar feature was August of last year;

i.e. the last time ENSO (El Niño/La Niña Southern Oscillation) swung towards a neutral/colder phase:

It also reminds me of when Phil Salmon argued in his article Is the ENSO a nonlinear oscillator of the Belousov-Zhabotinsky reaction type? here on WUWT, that ENSO may be a Non-Equilibrium Pattern System, i.e.:
“Of the class of known attractors of nonlinear oscillatory systems, the Lorenz and possibly Roessler attractors bear similarities to the attractor likely responsible for the alternating phases of La Nina and el Nino dominance that characterise the ENSO and constitute the PDO.”
A Non-Equilibrium Pattern System, aka “nonlinear pattern formation in far-from-equilibrium dissipative system” and “pattern formation in dissipative system” refers to;
“the spontaneous formation of spatio-temporal patterns” that “can occur when a stationary state far from thermodynamic equilibrium is maintained through the dissipation of energy that is continuously fed into the system. While for closed systems the second law of thermodynamics requires relaxation to a state of maximal entropy, open systems are able to interchange matter and energy with their environment. By taking up energy of higher value (low entropy) and delivering energy of lower value (high entropy) they are able to export entropy, and thus to spontaneously develop structures characterized by a higher degree of order than present in the environment.” PhD thesis – “Controlling turbulence and pattern formation in chemical reaction” by Matthias Bertram
Here are a couple videos of Non-equilibrium Pattern Systems these being examples of Belousov-Zhabotinsky (BZ) reactions:
and for comparison here is another animation and visualization of Equatorial Pacific Ocean Temperatures. Furthermore, another interesting observation from the WUWT Ocean Reference Page are the BoM Monthly Subsurface Pacific Ocean Equatorial Temperature Anomalies down to 400 Meters;

which show that cold water has recently begun to well up from depth in the Equatorial Pacific. For reference:
In a “normal,” or ENSO-neutral year, a low atmospheric pressure center forms over northern Australia and Indonesia and a high pressure center forms on the other side of the Pacific over Peru. At the same time, the trade winds blow steadily east to west along both sides of the equator to move warm surface waters from the eastern to the western Pacific and cause cold, nutrient-rich bottom water to well up off the coast of South America. Woods Hole Oceanographic Institution
El Niño is the name given to the occasional development of warm ocean surface waters along the coast of Ecuador and Peru. When this warming occurs the usual upwelling of cold, nutrient rich deep ocean water is significantly reduced. El Niño normally occurs around Christmas and usually lasts for a few weeks to a few months. Sometimes an extremely warm event can develop that lasts for much longer time periods. In the 1990s, strong El Niños developed in 1991 and lasted until 1995, and from fall 1997 to spring 1998.
The formation of an El Niño is linked with the cycling of a Pacific Ocean circulation pattern known as the southern oscillation. In a normal year, a surface low pressure develops in the region of northern Australia and Indonesia and a high pressure system over the coast of Peru (see Figure 7z-1 below). As a result, the trade winds over the Pacific Ocean move strongly from east to west. The easterly flow of the trade winds carries warm surface waters westward, bringing convective storms to Indonesia and coastal Australia. Along the coast of Peru, cold bottom water wells up to the surface to replace the warm water that is pulled to the west. PhysicalGeography.net
This is not to say with certainty that ENSO (El Niño/La Niña Southern Oscillation) is in fact a Non-Equilibrium Pattern System, nor that ENSO has begun to swing towards a neutral or cold phase, rather these are just observations of interesting patterns within the Equatorial Pacific.
In addition to the WUWT Ocean Reference Page if you have not had the opportunity to look through some of our other Reference Pages, it is highly recommended:
- Atmosphere Page
- Atmospheric Oscillation Page
- ENSO (El Niño/La Niña Southern Oscillation) Page
- “Extreme Weather” Page
- Geomagnetism Page
- Global Climatic History Page
- Global Temperature Page
- Ocean Page
- Oceanic Oscillation Page
- Polar Vortex Page
- Potential Climatic Variables Page
- Scafetta’s Solar-Lunar Cycle Forecast -vs- Global Temperature
- Sea Ice Page
- Solar Page
- Spencer and Braswell Papers
- Tropical Cyclone Page
- US Climatic History Page
- US Weather Page
Please note that WUWT cannot vouch for the accuracy of the data within the Reference Pages, as WUWT is simply an aggregator. All of the data is linked from third party sources. If you have doubts about the accuracy of any of the graphs on the WUWT Reference Pages, or have any suggested additions or improvements to any of the pages, please let us know in comments below.
phlogiston says: April 28, 2013 at 8:58 am
What do Wang et al. mean by “stochastic forcing”? Periodic forcing I can understand, from orbital, tidal etc rhythms, but what would provide stochastic forcing?
Per Wang et al.:
This paper, “Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing” by Jin et al., 2007;
http://www.academia.edu/2780504/Ensemble-mean_dynamics_of_the_ENSO_recharge_oscillator_under_state-dependent_stochastic_forcing
states that:
The chemical reaction idea is very intriguing, but it would be very unlikely. There would need to be a unlimiting amount of reagents to drive the reaction and some mechanism to stop or limit the reaction at less than 30 C, so that there would be the potential to reduce the temp (by the reaction(s)). Also if it were the case then there would be much evidence of the reaction in the Indian Ocean, around Saudi Arabia, and the Dead Sea, as well as other regions on the globe.
A physical process is much more likely.
I am guessing that by a maximum of 30 C, you mean open ocean water, since the Persian Gulf can get as hot as 36 C.
http://www.windows2universe.org/earth/Water/temp.html
ooops, the evidence of the reaction would be a surplus of the product(s) in the regions.
Kajajuk says: April 28, 2013 at 6:51 pm
Your Comment on stopping or limiting the reaction at less than 30C is interesting. I hadn’t considered that. The reaction is the production of calcium carbonate. The Ocean is saturated with calcium hydroxide and there is plentiful carbon dioxide in the ocean; however the reaction seems to be held in check by magnesium. I think I read that the Persian Gulf is very salty due to all the desalting plants that dump their waste water back into the Gulf. This would change the PH of the water.Do you know how high the level of calcium hydroxide is in the Gulf? Without the calcium hydroxide, you could not get the reaction and the temperature would exceed 30C. The 30C number shows up in a number of places when you look at carbon dioxide properties.
“This hypothesis proposes that disturbances external to the coupled system are the source of random forcing that drives ENSO.”
There it is, clear as a bell. “Stochastic forcing” is any forcing that is random and external to the system. Details at 11:00. Why they did not choose the obvious name is a mystery.
I do not know, and could not find out through web searches, about calcium hydroxide levels in the Persian Gulf. I did find an interesting review about how “curiosity science” lead to the understanding of ‘whitings’ of calcium carbonate in the Gulf.
And that the desalination plants around the Gulf produce around 8 million cubic meters of fresh water per day (likely more at present since the study was dated 2007). At first i was skeptical of this activity affecting the pH, but now think it is likely and suspect the salinity of the Gulf could be impacted as well.
Anyways, another problem i see with chemical reactions buffering ocean temp is that carbon dioxide is much less soluble in sea water at higher temps and this would also limit the reaction to remove energy from the ocean as it was ‘needed’ during increasing temps.
It is an interesting idea. Considering how vast the oceans are and that brine is such a soup of ions as well as dispersed solids it is likely that chemistry contributes to ocean heat content +/-. But i still have trouble expecting it to rule.
Thanks Kajajuk, the Persian Gulf is a special case. I’ll try to find out more information about it to see if it helps my general knowledge.
The link to Scaffeta’s forecast page seems to be broken. Thanks
Danny says: April 30, 2013 at 1:43 am
The link to Scaffeta’s forecast page seems to be broken.
Corrected, thanks.