Why Ireland Is Green

Guest Post by Willis Eschenbach

There’s an interesting study over at Climate of the Past entitled A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016) by Conor Murphy et al. Unfortunately, their link to their dataset was broken. So I got in touch with the Copy Editor, Anja Krzykowski, and she was fantastic. Within 24 hours she got back in touch with me to clarify exactly which paper I was referring to; got in touch with the author; got the right link from the author; fixed the link; and finally, she got back to tell me about the new link. All that since yesterday! Gold stars for Ms. Anja, give that woman a pay raise! The data is located here.

I was amused to see that there are no dry months in Ireland. In fact, the dryest month has an average rainfall of 68 mm (2.7″), enough to keep the Isle Emerald …

Now, I like to look at all kinds of datasets to see if I can find any trace of any solar signature. I do that by noting that all of the solar phenomena such as solar wind, solar magnetic field, TSI, and the like all vary in synchrony with the sunspot cycle. So my method has been to look for an approximately eleven-year signal in a variety of surface datasets.

In this case, if Svensmark’s theory about cosmic rays affecting the climate were true, we should see some kind of an eleven-year cycle in the Irish rainfall. Svensmark’s theory is that cloud formation is affected by cosmic ray levels, which in turn are affected by the variations in the sun’s magnetic field that are synchronous with the 11-year sunspot cycle.

With that as prologue, here’s the annually-averaged monthly rainfall in Ireland:

Annually Averaged Irish Rainfall.png

Figure 1: Annual average of monthly rainfall amounts for the island of Ireland.

Not much happening over time, no big changes over the centuries … and what about any solar signature? Here is the Complete Ensemble Empirical Mode Decomposition (CEEMD) analysis showing the various underlying signals that make up the Irish rainfall data:

CEEMD periodogram Irish rainfall 1711 2016.png

Figure 2: Periodograms of the various intrinsic empirically determined signals that when combined add up to the Irish rainfall signal.

I see absolutely no sign of any solar signature in the CEEMD. There is no significant signal at 11 years, which we would see if cosmic rays were affecting the rainfall. So we can add this to the long list of phenomena that per theory should show some solar signature, but in reality they show nothing of the sort. I append a number of them to the bottom of the post, and I note it here in the head post so that Dr. Roy and others don’t bust me because they missed them …

Finally, be clear that I am not saying that the surface climate is not affected by the sunspot cycle. You can’t prove a negative. All I’m saying is that once again, I’ve examined yet another surface dataset that doesn’t contain any indication of any effect of sunspot-related solar variations.

Best regards to all, I’m headed outside to revel in the sunshine. For a conversation on things other than science, you’re all welcome to join me over at my blog or follow me on Twitter @WEschenbach

w.

The Usual Polite Request: When you comment please quote the exact words you are discussing, so that we can all understand what you are referring to. I ask politely. I may not be so polite if you persist in ignoring the polite request.

My Previous Inquiries Into Surface Climate and Solar Variations:

Congenital Cyclomania Redux 2013-07-23

Well, I wasn’t going to mention this paper, but it seems to be getting some play in the blogosphere. Our friend Nicola Scafetta is back again, this time with a paper called “Solar and planetary oscillation control on climate change: hind-cast, forecast and a comparison with the CMIP5 GCMs”. He’s…

Cycles Without The Mania 2013-07-29

Are there cycles in the sun and its associated electromagnetic phenomena? Assuredly. What are the lengths of the cycles? Well, there’s the question. In the process of writing my recent post about cyclomania, I came across a very interesting paper entitled “Correlation Between the Sunspot Number, the Total Solar Irradiance,…

Sunspots and Sea Level 2014-01-21

I came across a curious graph and claim today in a peer-reviewed scientific paper. Here’s the graph relating sunspots and the change in sea level: And here is the claim about the graph: Sea level change and solar activity A stronger effect related to solar cycles is seen in Fig.…

Riding A Mathemagical Solarcycle 2014-01-22

Among the papers in the Copernicus Special Issue of Pattern Recognition in Physics we find a paper from R. J. Salvador in which he says he has developed A mathematical model of the sunspot cycle for the past 1000 yr. Setting aside the difficulties of verification of sunspot numbers for…

Sunny Spots Along the Parana River 2014-01-25

In a comment on a recent post, I was pointed to a study making the following surprising claim: Here, we analyze the stream flow of one of the largest rivers in the world, the Parana ́ in southeastern South America. For the last century, we find a strong correlation with…

Usoskin Et Al. Discover A New Class of Sunspots 2014-02-22

There’s a new post up by Usoskin et al. entitled “Evidence for distinct modes of solar activity”. To their credit, they’ve archived their data, it’s available here. Figure 1 shows their reconstructed decadal averages of sunspot numbers for the last three thousand years, from their paper: Figure 1. The results…

Solar Periodicity 2014-04-10

I was pointed to a 2010 post by Dr. Roy Spencer over at his always interesting blog. In it, he says that he can show a relationship between total solar irradiance (TSI) and the HadCRUT3 global surface temperature anomalies. TSI is the strength of the sun’s energy at a specified distance…

Cosmic Rays, Sunspots, and Beryllium 2014-04-13

In investigations of the past history of cosmic rays, the deposition rates (flux rates) of the beryllium isotope 10Be are often used as a proxy for the amount of cosmic rays. This is because 10Be is produced, inter alia, by cosmic rays in the atmosphere. Being a congenitally inquisitive type…

The Tip of the Gleissberg 2014-05-17

A look at Gleissberg’s famous solar cycle reveals that it is constructed from some dubious signal analysis methods. This purported 80-year “Gleissberg cycle” in the sunspot numbers has excited much interest since Gleissberg’s original work. However, the claimed length of the cycle has varied widely.

The Effect of Gleissberg’s “Secular Smoothing” 2014-05-19

ABSTRACT: Slow Fourier Transform (SFT) periodograms reveal the strength of the cycles in the full sunspot dataset (n=314), in the sunspot cycle maxima data alone (n=28), and the sunspot cycle maxima after they have been “secularly smoothed” using the method of Gleissberg (n = 24). In all three datasets, there…

It’s The Evidence, Stupid! 2014-05-24

I hear a lot of folks give the following explanation for the vagaries of the climate, viz: It’s the sun, stupid. And in fact, when I first started looking at the climate I thought the very same thing. How could it not be the sun, I reasoned, since obviously that’s…

Sunspots and Sea Surface Temperature 2014-06-06

I thought I was done with sunspots … but as the well-known climate scientist Michael Corleone once remarked, “Just when I thought I was out … they pull me back in”. In this case Marcel Crok, the well-known Dutch climate writer, asked me if I’d seen the paper from Nir…

Maunder and Dalton Sunspot Minima 2014-06-23

In a recent interchange over at Joanne Nova’s always interesting blog, I’d said that the slow changes in the sun have little effect on temperature. Someone asked me, well, what about the cold temperatures during the Maunder and Dalton sunspot minima? And I thought … hey, what about them? I…

Changes in Total Solar Irradiance 2014-10-25

Total solar irradiance, also called “TSI”, is the total amount of energy coming from the sun at all frequencies. It is measured in watts per square metre (W/m2). Lots of folks claim that the small ~ 11-year variations in TSI are amplified by some unspecified mechanism, and thus these small changes in TSI make an…

Splicing Clouds 2014-11-01

So once again, I have donned my Don Quijote armor and continued my quest for a ~11-year sunspot-related solar signal in some surface weather dataset. My plan for the quest has been simple. It is based on the fact that all of the phenomena commonly credited with affecting the temperature,…

Volcanoes and Sunspots 2015-02-09

I keep reading how sunspots are supposed to affect volcanoes. In the comments to my last post, Tides, Earthquakes, and Volcanoes, someone approvingly quoted a volcano researcher who had looked at eleven eruptions of a particular type and stated: …. Nine of the 11 events occurred during the solar inactive phase…

Early Sunspots and Volcanoes 2015-02-10

Well, as often happens I started out in one direction and then I got sidetractored … I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a…

Sunspots and Norwegian Child Mortality 2015-03-07

In January there was a study published by The Royal Society entitled “Solar activity at birth predicted infant survival and women’s fertility in historical Norway”, available here. It claimed that in Norway in the 1700s and 1800s the solar activity at birth affected a child’s survival chances. As you might imagine, this…

The New Sunspot Data And Satellite Sea Levels 2015-08-13

[UPDATE:”Upon reading Dr. Shaviv’s reply to this post, I have withdrawn any mention of “deceptive” from this post. This term was over the top, as it ascribed motive to the authors. I have replaced the term with “misleading”. This is more accurate…

My Thanks Apologies And Reply To Dr. Nir Shaviv 2015-08-17

Dr. Nir Shaviv has kindly replied in the comments to my previous post. There, he says: Nir Shaviv” August 15, 2015 at 2:51 pm There is very little truth about any of the points raised by Eschenbach in this article. In particular, his analysis excludes the fact that the o…

Is The Signal Detectable 2015-08-19

[UPDATE] In the comments, Nick Stokes pointed out that although I thought that Dr. Shaviv’s harmonic solar component was a 12.6 year sine wave with a standard deviation of 1.7 centimetres, it is actually a 12.6 year sine wave with a standard deviation of 1.7 millime…

The Missing 11 Year Signal 2015-08-19

Dr. Nir Shaviv and others strongly believe that there is an ~ 11-year solar signal visible in the sea level height data. I don’t think such a signal is visible. So I decided to look for it another way, one I’d not seen used before. One of the more sensitive …

23 New Papers 2015-09-22

Over at Pierre Gosselin’s site, NoTricksZone, he’s trumpeting the fact that there are a bunch of new papers showing a solar effect on the climate. The headline is Already 23 Papers Supporting Sun As Major Climate Factor In 2015 “Burgeoning Evidence No Longer Dismissible!…

The Cosmic Problem With Rays 2016-10-17

Normal carbon has six neutrons and six protons, for an atomic weight of twelve. However, there is a slightly different form of carbon which has two extra neutrons. That form of carbon, called carbon-14 or ’14C’, has an atomic weight of fourteen. It is known to be formed by the …

 

Get notified when a new post is published.
Subscribe today!
0 0 votes
Article Rating
161 Comments
Inline Feedbacks
View all comments
March 28, 2018 4:53 pm

willis . you quit too early.
look only at rainfall on tuesdays
or weekends
or summer rainfall..
slice and dice until you find it.

Reply to  Steven Mosher
March 28, 2018 7:52 pm

Mosher writes

slice and dice until you find it.

Not unlike proxy selection, really.

Reply to  Steven Mosher
March 28, 2018 7:59 pm

Oh, and then there’s this
https://www.nature.com/news/2007/071207/full/news.2007.345.html
Step 1. Find a correlation.
Step 2. Find a plausible explanation.
Step 3. Enter it into Scientific Lore

Yogi Bear
Reply to  Steven Mosher
March 29, 2018 8:31 am

“or summer rainfall..”
That’s where to find the AMO signal.

Toto
March 28, 2018 8:54 pm

“I was amused to see that there are no dry months in Ireland.”
Yes, you could almost say there are never any dry months in Ireland. Wikipedia says
“The longest drought in Ireland occurred in Limerick between 3 April 1938 and 10 May 1938 (37 days).”
Which means that once upon a time, there was an April which almost didn’t get any rain.
It’s amazing that the locals find it amusing too. Link copied from a previous comment here:
http://www.dailyedge.ie/irish-rain-scale-1275040-Jan2014/
But seriously, Ireland is at the target end of the Gulf Stream. Good news, bad news. It rains a lot, but it’s 20°C warmer than it would be without the Gulf Stream. I wouldn’t expect to see a solar influence here because it’s pretty well saturated already. (By that logic, the most likely place would be some place always on the edge between rain and drought. But most likely the effect is insignificant there too).

ThinkingScientist
Reply to  Toto
March 29, 2018 7:07 am

Toto – April 1938 is indeed the lowest value in the Irish Monthly Rainfall dataset discussed in this post, with just 5.3 mm recorded.

March 28, 2018 9:51 pm

Willis,
Immediate thought was “Are the numbers too good?”
Have they all gone into a saturation zone where effects are all maximised and can show no contrast?
E.g. If people found elsewhere a signal in the ratio of browned grass to green grass, the analysis would fail in Ireland because all the grass is always green.
Nonetheless, I continue to be fascinated by your findings, time after time, that there is no correlation with various observations proposed by others. Geoff.

Old Woman of the North
March 29, 2018 12:12 am

Hi Willis,
We went through an 18 month period – 1969/1970 – without a drop of rain which caused me to study the local rainfall charts. Springsure in Central Qld has records from 1863, and is only one small spot on the earth, but believe me we studied this record.and did find the roughly 11 year cycles – one drier and one wetter that followed each other. Some wet ones were really wet – 1950s and 1970s especially – and it was the arbitrary choice of the”Global Warming” crowd starting with the 1950s to state it was getting drier that caused me to doubt their claims.

DWR54
March 29, 2018 1:36 am

As an Irishman myself, thanks to you and Anja for getting this data posted Willis. Very interesting.

DWR54
March 29, 2018 5:52 am

Looking at the data itself, the most distinctive trend I can find is in winter rainfall, which has increased at a rate of 7.8 mm/dec over the course of the data set. Three of the four most recent decades have been the wettest on record, with the latest decade (2007-2016) the wettest to date.comment image
Anyone who lives in Ireland won’t find that hard to believe.

March 29, 2018 6:10 am

In this case, if Svensmark’s theory about cosmic rays affecting the climate were true, we should see some kind of an eleven-year cycle in the Irish rainfall. Svensmark’s theory is that cloud formation is affected by cosmic ray levels, which in turn are affected by the variations in the sun’s magnetic field that are synchronous with the 11-year sunspot cycle.

Willis, I have no dog in this and I do agree with your various and rigorous observations that there is no data to support the 11-year sunspot cycle.
However strictly speaking, “rays affecting the climate” isn’t the same thing as rays affecting rainfall – of course! 😉
Nucleation is a “potential” for cloud formation, it isn’t the same thing as humidity nor is cloudiness necessarily correlated to changes in precipitation*.
As I understand it, the Earth’s magnetic field deflects particles best from equatorial regions but provides little to no protection above 55 degrees magnetic latitude. And even the choice of hemisphere has an influence on observed measurements of total flux; apparently.
Given that most of Ireland is above 50 degrees geographic and the North magnetic pole is around 80 degrees, it would be right in the zone of increased flux.
Perhaps “rays” do explain all that rain 😉
*Precipitation might be correlated to cloud formation but the causation isn’t direct.

ThinkingScientist
March 29, 2018 6:45 am

I note Svensmark & Calder’s book “The Chilling Stars” states (p78):

“Large patches of the Pacific and Indian Oceans, and a region of the North Atlantic between Greenland and Scandinavia, show the strongest links between low cloud cover and cosmic rays. A more obvious geographical pattern emerged when Marsh and Svensmark’s exhaustive analysis looked at the cloud-top temperatures. In this case, a belt encircles the globe, centred on the tropics, where the cloud behaviour follows the cosmic rays closely. The effect is emphatic over 30 per cent of the globe.”

Bear in mind the prevailing wind direction for Ireland and the SW of Britain is from the SW. There doesn’t seem any particular reason to suppose that cloud in Ireland would be diagnostic or otherwise of anything in Svensmark’ theory.
I note the C4 component in Willis’ analysis in the article has the most prominent amplitude at a period just over 13 years (with what look like corresponding harmonics evident in the subsequent components C5 and C6). What could this periodicity be?
A quick correlation of the annual rainfall for this Irish dataset and the CET precipitation set reveals a correlation of 0.51 (note the two datasets are contemporaneous only from 1873). I find that surprisingly low considering the geographical proximity of the two areas. (The correlation to CET temperature is effectively zero, as is the correlation in CET between annual temperature and annual rainfall). What we can say though is that Ireland is wetter than Central England. For the period 1873 – 2016 mean rainfall in Ireland is nearly 70% higher than for Central England – a difference of +443mm!
It may just be me, but it seems the purpose of this article is to specifically criticise Svensmark and Scafetta even though there is no obvious reason to connect Irish rainfall with anything in particular. This quote:

Finally, be clear that I am not saying that the surface climate is not affected by the sunspot cycle. You can’t prove a negative.

Quite. So what’s the point of this article then? Looks remarkably like trying to prove a negative to me.
[The mods recommend double checking that your email address has been correctly entered upon login to WP to help avoid comments being shunted to the moderation queue. -mod]

ThinkingScientist
Reply to  ThinkingScientist
March 29, 2018 6:52 am

Minor correction – I should have written the word rainfall rather than cloud as follows:
There doesn’t seem any particular reason to suppose that rainfall in Ireland would be diagnostic or otherwise of anything in Svensmark’ theory

Reply to  ThinkingScientist
March 29, 2018 7:35 am

[Mods – thanks, there was a typo in the email box, fixed now.]

Les
March 29, 2018 10:35 am

I’m late to the stream and I hope you see this Willis. Thanks for taking it not only on the chin but in the nethers from those who do not adhere to formal boxing rules.
Now the real point of this comment: the data of this dataset as you have presented it seems to me to be a prime case for re-evaluation of the definition of “standard deviation’ and how it is functions in climate analysis – both in terms of error and in terms of the reliability of results.
Some day I would appreciate your musings on such if only a goat trail in one of your articles.
keep up the good work.

Les
March 29, 2018 8:59 pm

I am not attempting to re-defne standard deviation. The data you analyse above is a very broadly distributed set of data, it certainly does not fit any kind of bell curve, yet standard deviation has significance within the ‘bell’ curve form of data distribution.
Standard deviation as I understand it is a measure of deviation from a/the norm. It assigns signifigance to the amount of deviation from the norm. It seems to me that in a broadly distributed set of data, the data near the normalized average has less significance than data in a narrowly distributed set.
In addition there is a whole body of data analysis that ‘ignores’ data points more than 3 standard deviations from the norm and assigns them a spurious meaning. This in turn affects the reliability of the consequent associations and predictions derived from the data. (I am not at all suggesting you filtered the data in this way).
When averaging an extensive property, does the breadth of the distribution of the data affect the reliability and accuracy of the analysis, especially when it comes to determining ‘P’ values? Might it also affect the CMEED analysis – masking or exaggerating the results?
I do not have the skill set or statistiacal training to think that one through. Thank you for your time.

March 30, 2018 12:36 am

Willis, I’m glad you wrote “You can’t prove a negative.” Questions have been raised upthread on whether a wet place like Ireland would show any response to a Svensmark-like effect.
But anyway, I have a different point, which is that clouds don’t always cause rain. Let me tell you a story. It was late August in 2008 or 2009 I think, so around solar minimum, and the British Met Office was forecasting a heatwave. I looked at the satellite photos, and saw a really large area of what looked like a marine layer and I wondered “Would that layer (which seemed unusual for that time of year) be present if sunspots were high, and, will it get as hot in England as they are forecasting? The answer to the second was a definite “no”, several degrees down, and not as sunny as they expected.
That’s just an anecdote of course, and no proper data for you to chew on. Sorry about that, but perhaps soon you’ll see some from me…
Rich.

April 6, 2018 9:42 pm

Willis, above you wrote, “With that as prologue, here’s the annually-averaged monthly rainfall in Ireland:”
but at https://wattsupwiththat.com/2015/12/10/noise-assisted-data-analysis/ you wrote,
“Next, in Antico2015, the authors use the annual average data. To me, this is a poor choice. If you wish to remove the annual fluctuations, that’s fine … but using annual average data cuts your number of data points by a factor of 12. And this can lead to spurious results by inflating the apparent significance. But let us set that aside as well.”
I’m wondering why you used the annually-averaged data for Ireland? It seems an odd choice, unless the full monthly data would produce a lot of high frequency fuzz in the CEEMD analysis?