Early Sunspots and Volcanoes

Guest Post by Willis Eschenbach

Well, as often happens I started out in one direction and then I got sidetractored … I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a VEI greater or equal to 5 are affected by sunspots. Based on my previous analysis I figured “No way!”, but I thought I should take a look … and as is often the case, I ended up studying something entirely different.

Now, the SIDC monthly sunspot record that I used in my last analysis starts in 1700. Prior to that the only sunspot numbers available are a “reconstruction” by Hoyt and Schatten called the “Group Sunspot Number”, which is the dataset used by Michele. The Hoyt/Schatten Group sunspot data is available here. Now, as Leif Svalgaard has discussed here on WUWT, the SIDC sunspot numbers are in the process of being revised to remove an incorrect offset due to a change in the procedures in 1947. The result will be that the pre-1947 sunspot numbers will be increased by 20%. Figure 1 shows both the unrevised and revised SIDC annual average sunspot numbers, along with the annual average Group Sunspot numbers.

annual ssns sidc adjusted groupFigure 1. SIDC unrevised (black), revised (dotted blue), and Group (red) annual average sunspot numbers.

Several things are apparent. First, in the Group sunspot numbers (red) you can see what is called the “Maunder Minimum”, the period where there are no or few sunspots from about 1645 to about 1715 or so.

Next, although the Group sunspot numbers are a very good fit to the SIDC unrevised numbers since about 1880, prior to that the Group sunspot numbers are consistently lower, and sometimes much lower, than the SIDC unrevised numbers.

Next, the early sunspot data in the Group number dataset looks … well … odd …

Seeking to understand what made the early part of the Group sunspot number so odd, I decided to look at the most detailed underlying data. These are the individual daily observations of sunspots. When I did so, there were various strange and interesting aspects. Figure 2 shows the daily data, along with an indication of which days have missing data.

daily group sunspot numbersFigure 2. Group daily sunspot numbers, 1610-1995. The vertical light blue lines each represent a missing day.

There are some quite bizarre things about this dataset. First, the amount and the location of the missing data. A number of months have no data at all, and many are missing data. Prior to 1643, and also between 1720 and 1800, about two-thirds of the data is missing (65% and 66% missing respectively). During the “Maunder Medium” period between the two light blue areas above, however, only 3% of the data is missing … three percent?

And does anyone but me find it strange that there is very little data prior to 1635 or so, but what data there is shows normal sized sunspot cycles. Then we have a period that exactly coincides with the Maunder Minimum, where we have almost no days of missing data. Finally, from about 1720 on, we again have very little data … but what data there is shows normal sized solar cycles.

Say what? Why is there great data that exactly coincides with the Maunder Minimum?  Does anyone find that even vaguely unusual?

Well, I found it very unusual. So I went to take a look at the underlying records. It just kept getting stranger. The numbers of sunspot groups observed is given here on an observer-by-observer basis. Looking through the entries for peculiarosities, I got to 1632, and I found the records of J. Zahn of his observations of sunspot groups made in Nuremberg, Germany. Figure 3 shows the observations of Herr Zahn in 1632:

Sunspot Groups 1632Figure 3 Individual observer’s record used in the calculation of the Group sunspot number. A day when no observations were made is given the value of -99, and a day with observations made but no sunspots observed is given the value of zero.

I’m sorry, but given the reality of clouds and the fact that Germany is a ways north of the Equator, I’m not believing the idea that in the year 1632 in Germany the sun could possibly be observed in enough detail to count sunspots on every single day of the year. That’s simply not on. Never happened.

And sadly, the 1632 record is far, far from an isolated example. It’s just the first one I came across. Once I looked further I found that there are no less than FORTY-FIVE such observer’s reports claiming valid observations of zero sunspots every single day of the year … and I’m absolutely not buying a single one of them, even if they’re selling at a deep discount.

And when do these bogus records occur? Well, guess what? Forty-four of the forty-five such strange yearly records occur during or just prior to the “Maunder Minimum”, with one final lonesome yearly record  of all zeroes in 1810.

I would suspect that what’s happened here is that Herr Zahn used the same symbol for “no observations attempted” and “no sunspots observed”, However, that’s just a guess. More importantly, whatever the reality might be, I’d say that including those impossible records is a major reason for the claims that the Maunder Minimum is so deficient in sunspots.

The next oddity in Figure 1, once I’d wrapped my head around the claim of being able to count sunspots on every day of the year, was the fact that the early data from about 1610 to about 1720 almost all occurs in even intervals of 15 sunspots, at e.g. 15,30, 45 sunspots and so on.  Then after that, there is evenly spread data from about 1720-1750.

And then, after 1720, there is a section where once again the data almost all occurs in even intervals … but in that case the intervals appear to be 24 sunspots.

I suspected that this reflected the fact that each group of sunspots is counted as a certain number of individual spots. And upon checking records of the group counts against the Group sunspot number, I find this is the case, and there’s no problem with that … but bizarrely, the number keeps changing. In 1610, each group was counted as 18 sunspots. Then for a number of succeeding years each group was counted as 15 sunspots … until around 1720 when it was changed again, and after that, one sunspot group is counted as 12 individual sunspots. Not 24 sunspots as appears to be the case from Figure 2, but 12 … odd all around.

But wait … there’s more. Here’s the same data in Figure 1, but this time showing the annual Group sunspot numbers (red) and the annual SIDC sunspot numbers.

daily and annual group sunspot numbers plus sidc annualFigure 4. Daily (gray) and annual (red) Group sunspot numbers, along with the annual SIDC sunspot numbers (blue). Vertical light blue lines mark every day that has no data.

Now, take a look at the first three sunspot cycles just after 1700 … as you can see, the Group sunspot numbers greatly underestimate the apparent size of the actual cycle. How did this happen?

Well, it’s a curious answer that can be understood by an early year of the data, 1614. In 1614, the annual average is given as 121 sunspots. This can be seen in the red line above in Figure 4.

But when you look at the data for 1614, care to guess how many days of data there are for the entire year?

Well … um … er … not to put too fine a point on it, but there is exactly one day of the year [1614] that has data.

One day’s worth of data , and the sunspot count for that day? Well … 121 sunspots.

Now, to me, that’s bull goose loony. Including a yearly average when there is only one day’s data for the whole year? Sorry, but that’s meaningless.

But wait, it gets stranger. According to the daily data, there’s exactly one day’s worth of data in 1610, with a value of 72 sunspots. That day is in December. But according to the monthly data files, there are TWO months with data in 1610. December [1610] has an average of 72 from the one data point, but the monthly data for February also has an average, in this case zero. So the average for the year is the average of two months, which is 36, and which can be seen as the first data point in the red line in Figure 3 above …

That’s not all. In many years, despite there being no daily data of any kind, we still have both monthly and yearly averages. Here’s a graphic that shows the difference.

yearly and average of daily group sunspot numbersFigure 5. Annual and average-of-daily Group sunspot numbers.

You can see the data for 1610 I discussed above, one day’s observation of 72 sunspots and the annual average of 36 sunspots. But the hole keeps getting deeper and deeper. Look, for example, at 1636. According to the daily data, there’s not one single observation for the whole year. But according to the monthly data, EVERY SINGLE MONTH has an average of zero sunspots. And the same is true for 1637, 1641, 1744, 1745, and 1747 as well. In each case there are no observations in the daily data, but there are 12 months of zeros in the monthly data. And this is backed up by the raw observer data files. There are no observers at all listed for [1636] and [1637], no observers and no data … but despite that the monthly and yearly averages claim zero.

A final math note. Rather than average all of the days in the year, their “yearly average” is actual an average of the monthly averages. In some cases this leads to strange results. For example, in some years there are a dozen or so observations in a single month, and only one observation during the entire rest of the year. Obviously, an average of the monthly averages will give a very different answer than averaging the individual data.

I gotta say … these numerous shenanigans with the data make me very suspicious about the whole Group Sunspot Number dataset. When I find entire years where there isn’t a single daily observation, but despite a total lack of data the monthly averages for that year are all zero and the yearly average is also zero … well, that makes me wonder about the entire idea that the “Maunder Minimum” is as extreme as is depicted by the Group Sunspot numbers.

In any case, as I said, I started out to look at Michele’s claim about eruptions in the Maunder and I got blind-slided off the path by the oddities of the Group sunspot number. I couldn’t use either the daily or the monthly Group sunspot numbers to compare with the eruptions, because a number of them didn’t have any sunspot data for either the day or the month. So I used the annual average Group sunspot number to compare to the eruptions. I didn’t splice the Group dataset like Michele did, I dislike spliced datasets, so I figured I’d see things as if the Group dataset were real. To start with, Figure 6 shows the dates of the eruptions overlaid by the daily Group sunspot number …

daily group sunspot and 37 eruptions vei 5 plusFigure 6. Large eruptions (VEI >= 5) and daily Group sunspot numbers.

Looking at just the vertical red lines showing the eruption dates, you can see the “clumpiness” of nature that I’ve remarked on before. However, there doesn’t seem to be any obvious correlation between sunspots and eruptions. So I turned to the histograms showing the distribution of the annual Group sunspot numbers on the dates of the eruptions, and I compared that eruption distribution to the distribution of all of the Group sunspot numbers over the entire period. Figure 7 shows that relationship:

histograms annual group ssn 37 eruptions vei 5 plusFigure 7. Comparison of the distributions of the sunspot level during the eruptions (gold) and the distribution of all of the Group sunspot levels. Numbers at the top of the gold bins show the count of eruptions in each bin.

Now, Michele’s claim was that most of the eruptions occurred during periods of low Group sunspot numbers … and he’s right. Of the 37 eruptions, about seventy percent of them occur when Group sunspot number is below forty.

But the part he didn’t take into account was that most of the Group sunspot record is made up of periods of low Group sunspot numbers. And of course, with a small dataset of only 37 eruptions, the 98% confidence intervals are very wide. As a result, none of the results are even slightly significant.

So no, I’m afraid that the Group sunspot number, as terrible as it is, still doesn’t show any relationship between sunspots and big eruptions …

Conclusions? Well … my main conclusion is that whenever you see the word “sunspots” in a scientific study, hold tight to your wallet and check the datasets very, very closely. There may indeed have been a Maunder Minimum … but the Group sunspot number dataset is so bad that we can’t conclude anything from it regarding the Maunder or anything else.

My best wishes to everyone,

w.

AS ALWAYS: If you disagree with someone, please quote the exact words you disagree with, so that we can all understand what you are objecting to.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

204 Comments
Inline Feedbacks
View all comments
February 10, 2015 10:54 pm

Well … um … er … not to put too fine a point on it, but there is exactly one day of the year 1914 that has data.
Should be 1614, neighbor.
[Done. .mod]

lee
Reply to  Michael Combs
February 10, 2015 10:56 pm

Damn. Missed by that much.:)

lee
February 10, 2015 10:55 pm

Small nitpick
‘Well … um … er … not to put too fine a point on it, but there is exactly one day of the year 1914 that has data.’
1614?

Craig Lattig
Reply to  lee
February 10, 2015 11:19 pm

also 1910, 1936,1937….cdl
[Done. .mod]

RockyRoad
February 10, 2015 11:13 pm

Small nitpick: I see four instances of “19” that probably should be “16”.
Otherwise, an amazing investigation into sunspot ummm…”numerology”? I hadn’t realized how bad that data was, but it reminds me of the homogenization “climate scientists” are applying to current temperature sets.
[Good eye! Though you did not say where. .mod]

February 10, 2015 11:16 pm

Wonderful job of scientific journalism and falsification. Hats off to you!

Santa Baby
Reply to  wickedwenchfan
February 11, 2015 12:38 am

Another cruel moment where a beautiful theory is destroyed by a gang of simple facts?

Tom Harley
February 10, 2015 11:19 pm

What will Leif Say? It’s all been for nothing?

Alan Robertson
Reply to  Tom Harley
February 11, 2015 7:16 am

Tom, Slightly OT to your statement, overall, Leif has always said “it’s not the Sun”.

Katherine
February 10, 2015 11:25 pm

And the same is true for 1637, 1641, 1744, 1745, and 1747 as well. In each case there are no observations in the daily data, but there are 12 months of zeros in the monthly data. And this is backed up by the raw observer data files. There are no observers at all listed for 1936 and 1937, no observers and no data … but despite that the monthly and yearly averages claim zero.
I think the emboldened should be “1636 and 1637.”
[Done. Thank you. .mod]

dp
February 11, 2015 12:01 am

Sunspotters are probably like Seattle Seahawks fans. There are more or fewer of them depending on what there is to see. If you tell the world there are no sunspots there’s about a million people who will try to prove the equivalent that someone is wrong on the internet by counting sunspots just to prove you are really wrong. People can be crazy.

asybot
February 11, 2015 12:18 am

not nitpicking I could wrong, from the article ‘Well, it’s a curious answer that can be understood by an early year of the data, 1614. In 1614, the annual average is given as 121 sunspots. This can be seen in the red line above in Figure 3.” Should that not be Fig 4? just asking otherwise another can of worms to be added to the other cans.

February 11, 2015 12:36 am

It would help to remind readers that in 1600s sunspot observation wasn’t exactly top priority of science as it was, not to mention availability of telescopes, even if one had a knowledge of its existence. One made for Galileo in 1608 or 1609 was among first, if not the first ever made, it had magnification of about 3x. Some of the early versions can be seen in museum in Florence, well worth visiting.

Twobob
Reply to  vukcevic
February 11, 2015 5:18 am

Just a thought.
But do you need a telescope to observe sun spots?
A small hole maybe.

Reply to  Twobob
February 11, 2015 9:29 am

Camera obscure was used by Leonardo da Vinci with surprisingly good results more then 100 years earlier, but for close objects. I did attempt .something similar 2 or 3 years ago when there was a large spot (large pin hole in a room window, projected on wall 3.5m away, the spot was faint but clearly visible.

milodonharlani
Reply to  vukcevic
February 11, 2015 6:58 am

The first telescopes were made in the Netherlands. German-Dutch spectacle maker Hans Lippershey is often credited as the first, according to legend after his kids held up concave & convex lenses in a line with their eyes. Galileo heard about the invention and made one himself.
In reply to some other comments, yes there are Chinese records of sunspot observation. It´s never safe to look directly at the sun, but when low on the horizon or obscured by mist or light cloud it is less dangerous.
The 17th century observers could have counted sunspots through clouds much of the time.
Unfortunately this study of the subject is still paywalled after all these years:
Sunspot Observation Through Water Clouds
D. Deirmendjian
Applied Optics, Vol. 8, Issue 4, pp. 833-833 (1969)
http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-8-4-833

Reply to  milodonharlani
February 11, 2015 2:35 pm

Dr. Joan Feynman (JPL) wrote a paper with evidence that the Gleissberg solar cycle is ‘embedded’ in the ancient river Nile flood records. Nile floods were of vital importance for planting seasons. If there was such cycle it is likely that centuries of records would have been known to the ancient Egyptians themselves.
We also know that they worshiped sun god (Amun Ra), it was likely that they found way, perhaps using coloured piece of glass (glass was invented by ancient Phoenicians) to look at the sun directly.
I would dare to suggest that the ancient Egyptians regularly observed sun for the sunspots, as shown in the illustration, were it can be clearly seen that the sphinx is holding an object while looking directly at the spotty sun’s S. Hemisphere . There are also two tablets directly in the eye line, possible related either to records or method of observation.
http://www.vukcevic.talktalk.net/Egypt.jpg
If not, what else ?

ren
Reply to  milodonharlani
February 12, 2015 10:12 am

Bravo Vukcevic !

milodonharlani
Reply to  milodonharlani
February 15, 2015 5:46 am

Thanks, Vuc. Great comment.
Here´s a photo of sunspots shot through clouds & fog:
http://www.wunderground.com/wximage/Ralfo/7307
But now of course we can get a rough idea of prior solar magnetic flux from C & Be isotopes.

February 11, 2015 12:36 am

The big eruptions do occur unrelated to ss cycle. At cycle minimum things get very quiet for 6 months or more. Then after the ss numbers ramp up the lesser honkers start to respond. Same thing happens in ramp down. That’s what I’ve observed in years of following them and looking at the history of them. But the big honkers blast any time they’re darn well ready and that can be anywhere in the cycles.

Reply to  uıʇɹɐɯ pɹɐʍpE
February 11, 2015 1:33 am

Distribution of the coronal mass ejections shows that the CMEs are predominant on the decaying slope of the sunspot cycles.

Reply to  vukcevic
February 11, 2015 9:10 am

My take… There are more volcano eruptions on the down slope than the ramp up as well.

Reply to  vukcevic
February 11, 2015 9:36 am
February 11, 2015 1:16 am

I seem to remember reading somewhere that there were records in China showing sunspot observations from much earlier. Sorry I can’t remember where I saw this. It might even have been in a conversation with a Chinaman.

rtj1211
Reply to  Oldseadog
February 11, 2015 1:45 am

I”ve read that somewhere on the internet, but I didn’t note it down as I was just reading, not doing a study. So you’re probably right that China claims it has data going back a few thousand years. How good it is, maybe the author should find out??

Reply to  Oldseadog
February 11, 2015 1:45 am

I read that too, so I think it was on a popular climate blog.

Jay Hope
Reply to  Oldseadog
February 11, 2015 2:07 am

Yes, I think the first sunspot observations in China go back to about 700 BC. Don’t know about volcanoes, but I do think we’re heading for another LIA, as solar activity is declining. Don’t think anyone can argue that point.

Speed
Reply to  Oldseadog
February 11, 2015 4:13 am
Doonman
Reply to  Oldseadog
February 11, 2015 2:40 pm

I took a Asian art history class one time. The professor was born in China and was quite knowledgeable about Asian art and culture.
It turns out that the Chinese culture associated sunspots with crows flying across the suns disk. Now since the Chinese had been very bureaucratic ever since Confucius and the crows were thought of as omens, their numbers and positions were recorded to help determine forthcoming events.
That was in his lecture. The reason we were even told about it was that the Chinese also adopted that imagery into their art for thousands of years. The red and black colors used so often in their art culture is directly tied to the red sun disk and the black crows. Everyone has seen that symbolism in Asian art, but those were the reasons for it according to him.

February 11, 2015 1:25 am

Great illuminating yet rather stupefying analysis Willis! My patience would have ended right around the time of finding only one day of observations with a yearly average based on it…
All the more reason to consider that science should be studying the sun in detail for future posterity and science.
Maybe in 400 years they’ll finally understand what they’re looking for when watching the sun.

February 11, 2015 1:36 am

VEI5+ are not 30, but 37.
http://www.volcano.si.edu/

Reply to  Michele
February 11, 2015 4:10 am

http://i6.minus.com/jbjZp8sV21ZNfc.jpg
(*1) Jihong Cole-Dai, David Ferris, Alyson Lanciki, Joël Savarino, Mélanie Baroni, Mark H. Thiemens Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption Geophysical Research Letters Volume 36, Issue 22, November 2009 doi: 10.1029/2009GL040882

richard verney
Reply to  Michele
February 11, 2015 4:32 am

Don’t forget that what has triggered this review is that (undersea) volcanoes tend to take place in the first 5 months (January to June)m of the callendar year.
If you look at your list it suggests (whether by coincidence or otherwise0 that volcano eruptions occur predominantly when there is either low sunspot numbers or in the first half of the year.
Of your list, only Hudson Cerro and Shikotsu eruptions occured in the Second half of the year (July to December) and when sunspot numbers were high.
Personally, I cannot think of why forces should be at work which tend to cause eruptions to occur when sunspot numbers are low and/or during the first part of the year (January to June), but 35 out of 37 listed eruptions seem to meet one and/or other of those criteria.

chris moffatt
Reply to  Michele
February 11, 2015 5:23 am

and a high correlation would mean what precisely?
see: http://www.tylervigen.com/ for many examples of high but spurious correlations. We need to remember what we should have been told in school that correlation does not mean causation. At best it means that there may be something to investigate. However, what does lack of correlation, as here, mean?
Climate science these days seems to consist of finding nothing but speculative correlations with no explanatory mechanisms to support the speculations.

richard verney
Reply to  Michele
February 11, 2015 7:40 am

chris moffatt February 11, 2015 at 5:23 am
and a high correlation would mean what precisely?
//////////////////////
i am not suggesting that it means anything (as is apparent from my final para).
Whilst you are right that correlation does not in itself mean that there is causation, correlation is a useful tool since it identifies issues that should be investigated to see whether causation may lie at their heart. And one should not overlook that the absence of correlation is usually fatal to causation.

chris moffatt
Reply to  Michele
February 11, 2015 5:18 pm

Precisely – what I wrote.

Reply to  Willis Eschenbach
February 12, 2015 5:22 am

Where is Tambora and other ? data missing

Neville
February 11, 2015 1:43 am

Very interesting Willis and I think everyone will be waiting for Leif’s response. But why don’t you have a look at the temp data bases and all the adjustments, homogenization and UHIE etc? There seems to be a lot of heat building up in the MSM all around the world at the moment. So what do you think and would you learn anything for your efforts?

Neville
Reply to  Neville
February 11, 2015 2:07 am

Here’s Paul Homewood’s beef about Arctic temps and backed up by the Iceland MET office.
https://notalotofpeopleknowthat.wordpress.com/2015/02/04/temperature-adjustments-transform-arctic-climate-history/#more-13039
He has been quoted by the MSM around the world over the last few days. But does he have a case or not?

richard verney
Reply to  Neville
February 11, 2015 4:23 am

There is a debate going on on Judith Curry’s site, where BEST suggests that its alterations have minimal impact on GLOBAL temperature anomally records.
If you are interested check it out. It is quite interesting and you can draw your own conclussions.

February 11, 2015 1:44 am

Wow. The Maunder really WAS minimum. Minimum data… Yikes!
I would love to know what was used to look at the sun safely and whether or how the device or devices varied over the centuries – I was thinking that a pricy 1600s telescope might not be the best choice and probably a much less expensive setup could do as well or better, but then I really have no clue how the sun was studied in the 1600s and 1700s…

Mike the Morlock
Reply to  cartoonasaur
February 11, 2015 2:35 am

https://books.google.com/books?hl=en&lr=&id=EBTZ4LdSfhwC&oi=fnd&pg=PA3&dq=J.+Zahn++sunspot+records+Nuremberg+Germany+1632&ots=g4pUA38Agv&sig=KRvcuxadqIkj9PPPY9Ou0uDhFSw#v=onepage&q&f=false
My first love as a kid/ teenager was astronomy. I read everything I could on the early astronomers .Had/have my own telescope.
The above is a good start on who’s who, the debates on sunspots and the prevalence of record keeping at the time. Much was lost during all the wars. Also remember the people of the time corresponded with one another. As I said its a start for these who are interested in the maunder minimum. I don’t know where authors stand on agw was not interested in that part. Oh you have to scroll a few blank pages.
michael

Duster
Reply to  cartoonasaur
February 12, 2015 10:00 am

The simplest way is a pinhole in an opaque sheet of material that is used to project an image of the sun on a wall or other surface in a darkened room. The room doesn’t even have to be really dark, just dimly lit. Same thing can be done with eclipses, though I preferred to show my kids how an eclipse affected the light dapples under trees.

February 11, 2015 2:19 am

This post is a perfect example of why I read WUWT: Citizen science. Thank you, Willis.
By the way, NASA has an interesting article on the early history of sunspot research.
http://www.nasa.gov/mission_pages/sunearth/news/400yrs-spots.html

February 11, 2015 2:21 am

Scenario.
They’re watching the sun, sunspots decrease and eventually disappear…they check every day but no sunspots, being practical people the reduce their checks to monthly, then occasionally, but every time they check still no sunspots.. In 1634, just to be sure there are still no sunspots they check one time…no sunspots.
There’s your Maunder Minimum.

Mark
Reply to  Charles Nelson
February 11, 2015 2:47 am

Entirely plausible. After all, they didn’t think sunspots could ever be important enought that people would want to check their records hundreds of years later.

Paul Coppin
Reply to  Charles Nelson
February 11, 2015 6:52 am

There is another thing to think about when dredging for truth about measurements 4 or 5 hundred years ago – if the Maunder minimum was truly as significant a minimum as believed, with a corresponding climatic impact, the climatic impact itself may materially affect data collection back in a day. The priorities of survival and politics and religion during such stress periods very likely would impact day to day matters.

D. Cohen
Reply to  Charles Nelson
February 11, 2015 3:00 pm

Exactly what I was thinking. Remember, this data was taken long before the invention of statistics, so they’d be quite happy — and thinking they were on top of things — just checking the sun every now and then to see if the spots had come back. Their real ambition might have been to be the first person to note the return of the sunspots. Reconstructing this sort of observational data into a “best estimate” of what the true sunspot time series was back then is an interesting and probably very difficult statistical problem.

February 11, 2015 2:40 am

Wonderful piece of historical research.
Hats off to the author.

Jasperb
February 11, 2015 2:47 am

Are you saying the record is spotty?

Bloke down the pub
February 11, 2015 3:39 am

Just a guess but, if your job was to check the number of sun spots every day, and day after day the count was zero, I’d bet the temptation to ‘infill’ data would get pretty strong.

chris moffatt
Reply to  Bloke down the pub
February 11, 2015 5:27 am

or to extrapolate from observations of other suns in close proximity?

Jay Hope
Reply to  chris moffatt
February 11, 2015 7:03 am

Which suns would that be?

RH
February 11, 2015 4:00 am

Only a relatively small number of earthquakes show a small affect correlated to the sunspot cycle, so wouldn’t the same be true for volcanoes? Then, like earthquakes, wouldn’t the correlation be masked by analyzing all volcanoes?

richard verney
February 11, 2015 4:20 am

dp February 11, 2015 at 12:01 am suggests:
“Sunspotters are probably like Seattle Seahawks fans. There are more or fewer of them depending on what there is to see. If you tell the world there are no sunspots there’s about a million people who will try to prove the equivalent that someone is wrong on the internet by counting sunspots just to prove you are really wrong. People can be crazy.”
////////////////////////
But also, it is less time consuming and laborious to carry out observations when there is little to report. One should not forget that way back in time, there was no photography and people had to draw the sun with its spots. It is easy to compile such a record when one has to draw few spots on a disc, rather than many.
But if this is the state of the sunspot record, what is the true state of the thermometer record? What was the record like at every observatory in the 19th and early 20th century? What about the impact of war? Lets face it, unfortunately, there were many wars, how did this impact upon record keeping?
I suspect that if one were to carry out a similar review of the thermometer record, one would quickly realise that little confidence can be placed in it prior to the end of WW2.

Dario from Turin
February 11, 2015 4:21 am

The book “Canicules et glacieres. Histoire humaine et comparee du climat” by the French historian Emmanuel LeRoi Ladurie has a whole chapter devoted to the Maunder minimum, with many details on the search for sunspots.
Remember that the first telescopes were very expensive, and no much people could use them for observations… Only in the second half of the XVII century, having a “national” observatory was a matter of national pride, and this lead many Governments of the time to fund, build and operate a “speculum” (astronomic observatory).
According to the book by Ladurie (a REALLY interesting and recommended reading for all those interested in the history of climate), the sunspots really almost disappared not so many years after their discovery by Galilei in 1610 (remember that this discovery lead him to a LOT of troubles with the Roman Chirch and Inquisition…), and in the second half of the century there was really a quest for sunspots.
Another interesting thing in the book is that, according to the daily “logbooks” of the observatories (owing to the high cost of the instruments, only very few and selected people were allowed to use them, and they had to make daily reports about the use and the subject of their observations), in most of Europe only 1/3 of days (or nights) had a sky clear enough of clouds to allow for observations; 2/3 of days/nights, the sky was simply too covered with clouds to observe something.
Maybe this is and indirect proof of the theory from prof. Svensmark…..
Just my 2 cents
Dario

Reply to  Dario from Turin
February 11, 2015 7:20 am

” in most of Europe only 1/3 of days (or nights) had a sky clear enough of clouds to allow for observations; 2/3 of days/nights, the sky was simply too covered with clouds to observe something.Maybe this is and indirect proof of the theory from prof. Svensmark…..”
Tie this in with increased volcano eruptions causing haze/clouds, the clouds/haze caused by the increased cosmic bombardment of the atmosphere, and the laziness/compliancy use of shortcuts of observers when recording data over days, months, years of the same “none observable” with the fact that different observers can/will conflate 0 (zero) with NO (none observed) or whatever other symbols they used and a comment below about the myriad of different ways of observing/counting/measuring “data” and all data before about 1990 is just garbage. As a senior enlisted officer in the US Navy I frequently had to remind those taking logs to adhere to the requirements of log keeping, even on critically important parameters.

Reply to  Dario from Turin
February 11, 2015 10:35 am

“the sunspots really almost disappared not so many years after their discovery by Galilei in 1610 (remember that this discovery lead him to a LOT of troubles with the Roman Chirch and Inquisition…)”
Simply untrue. Galilei Galileo get in trouble with the Church for refusing to call his theories theories, but rather calling them facts. Turns out his theories were generaly correct (excluding his beliefe in the perfect circle theory, with lead him to reject comets as celestial bodies), but at the time they were just theories

Reply to  Jeff in Calgary
February 12, 2015 5:40 am

His friend was the Pope and he was given a great deal of latitude in his studies and publications, the reason he got into trouble was when he published ‘Dialogues’. This was a three way conversation and the character who gave the church view came over as an idiot. This was seen as insulting to the Pope which is why the Inquisition was able to try him. Even afterwards under house arrest he was treated favorably and even published in France and Holland without punishment. Basically he got into trouble for publicly embarrassing the Pope, not because of his theories.

mpainter
Reply to  Jeff in Calgary
February 13, 2015 9:40 am

Phil.
First time that I have seen this particular account. This makes Galileo seem as an indiscreet sort of fellow.

Frederik Michiels
February 11, 2015 4:21 am

now this was a very interesting read about something i never really “thought about”. Very nice work and a good eye opener! Thumbs up for this effort and research!

1 2 3 4
Verified by MonsterInsights