Why Ireland Is Green

Guest Post by Willis Eschenbach

There’s an interesting study over at Climate of the Past entitled A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016) by Conor Murphy et al. Unfortunately, their link to their dataset was broken. So I got in touch with the Copy Editor, Anja Krzykowski, and she was fantastic. Within 24 hours she got back in touch with me to clarify exactly which paper I was referring to; got in touch with the author; got the right link from the author; fixed the link; and finally, she got back to tell me about the new link. All that since yesterday! Gold stars for Ms. Anja, give that woman a pay raise! The data is located here.

I was amused to see that there are no dry months in Ireland. In fact, the dryest month has an average rainfall of 68 mm (2.7″), enough to keep the Isle Emerald …

Now, I like to look at all kinds of datasets to see if I can find any trace of any solar signature. I do that by noting that all of the solar phenomena such as solar wind, solar magnetic field, TSI, and the like all vary in synchrony with the sunspot cycle. So my method has been to look for an approximately eleven-year signal in a variety of surface datasets.

In this case, if Svensmark’s theory about cosmic rays affecting the climate were true, we should see some kind of an eleven-year cycle in the Irish rainfall. Svensmark’s theory is that cloud formation is affected by cosmic ray levels, which in turn are affected by the variations in the sun’s magnetic field that are synchronous with the 11-year sunspot cycle.

With that as prologue, here’s the annually-averaged monthly rainfall in Ireland:

Annually Averaged Irish Rainfall.png

Figure 1: Annual average of monthly rainfall amounts for the island of Ireland.

Not much happening over time, no big changes over the centuries … and what about any solar signature? Here is the Complete Ensemble Empirical Mode Decomposition (CEEMD) analysis showing the various underlying signals that make up the Irish rainfall data:

CEEMD periodogram Irish rainfall 1711 2016.png

Figure 2: Periodograms of the various intrinsic empirically determined signals that when combined add up to the Irish rainfall signal.

I see absolutely no sign of any solar signature in the CEEMD. There is no significant signal at 11 years, which we would see if cosmic rays were affecting the rainfall. So we can add this to the long list of phenomena that per theory should show some solar signature, but in reality they show nothing of the sort. I append a number of them to the bottom of the post, and I note it here in the head post so that Dr. Roy and others don’t bust me because they missed them …

Finally, be clear that I am not saying that the surface climate is not affected by the sunspot cycle. You can’t prove a negative. All I’m saying is that once again, I’ve examined yet another surface dataset that doesn’t contain any indication of any effect of sunspot-related solar variations.

Best regards to all, I’m headed outside to revel in the sunshine. For a conversation on things other than science, you’re all welcome to join me over at my blog or follow me on Twitter @WEschenbach


The Usual Polite Request: When you comment please quote the exact words you are discussing, so that we can all understand what you are referring to. I ask politely. I may not be so polite if you persist in ignoring the polite request.

My Previous Inquiries Into Surface Climate and Solar Variations:

Congenital Cyclomania Redux 2013-07-23

Well, I wasn’t going to mention this paper, but it seems to be getting some play in the blogosphere. Our friend Nicola Scafetta is back again, this time with a paper called “Solar and planetary oscillation control on climate change: hind-cast, forecast and a comparison with the CMIP5 GCMs”. He’s…

Cycles Without The Mania 2013-07-29

Are there cycles in the sun and its associated electromagnetic phenomena? Assuredly. What are the lengths of the cycles? Well, there’s the question. In the process of writing my recent post about cyclomania, I came across a very interesting paper entitled “Correlation Between the Sunspot Number, the Total Solar Irradiance,…

Sunspots and Sea Level 2014-01-21

I came across a curious graph and claim today in a peer-reviewed scientific paper. Here’s the graph relating sunspots and the change in sea level: And here is the claim about the graph: Sea level change and solar activity A stronger effect related to solar cycles is seen in Fig.…

Riding A Mathemagical Solarcycle 2014-01-22

Among the papers in the Copernicus Special Issue of Pattern Recognition in Physics we find a paper from R. J. Salvador in which he says he has developed A mathematical model of the sunspot cycle for the past 1000 yr. Setting aside the difficulties of verification of sunspot numbers for…

Sunny Spots Along the Parana River 2014-01-25

In a comment on a recent post, I was pointed to a study making the following surprising claim: Here, we analyze the stream flow of one of the largest rivers in the world, the Parana ́ in southeastern South America. For the last century, we find a strong correlation with…

Usoskin Et Al. Discover A New Class of Sunspots 2014-02-22

There’s a new post up by Usoskin et al. entitled “Evidence for distinct modes of solar activity”. To their credit, they’ve archived their data, it’s available here. Figure 1 shows their reconstructed decadal averages of sunspot numbers for the last three thousand years, from their paper: Figure 1. The results…

Solar Periodicity 2014-04-10

I was pointed to a 2010 post by Dr. Roy Spencer over at his always interesting blog. In it, he says that he can show a relationship between total solar irradiance (TSI) and the HadCRUT3 global surface temperature anomalies. TSI is the strength of the sun’s energy at a specified distance…

Cosmic Rays, Sunspots, and Beryllium 2014-04-13

In investigations of the past history of cosmic rays, the deposition rates (flux rates) of the beryllium isotope 10Be are often used as a proxy for the amount of cosmic rays. This is because 10Be is produced, inter alia, by cosmic rays in the atmosphere. Being a congenitally inquisitive type…

The Tip of the Gleissberg 2014-05-17

A look at Gleissberg’s famous solar cycle reveals that it is constructed from some dubious signal analysis methods. This purported 80-year “Gleissberg cycle” in the sunspot numbers has excited much interest since Gleissberg’s original work. However, the claimed length of the cycle has varied widely.

The Effect of Gleissberg’s “Secular Smoothing” 2014-05-19

ABSTRACT: Slow Fourier Transform (SFT) periodograms reveal the strength of the cycles in the full sunspot dataset (n=314), in the sunspot cycle maxima data alone (n=28), and the sunspot cycle maxima after they have been “secularly smoothed” using the method of Gleissberg (n = 24). In all three datasets, there…

It’s The Evidence, Stupid! 2014-05-24

I hear a lot of folks give the following explanation for the vagaries of the climate, viz: It’s the sun, stupid. And in fact, when I first started looking at the climate I thought the very same thing. How could it not be the sun, I reasoned, since obviously that’s…

Sunspots and Sea Surface Temperature 2014-06-06

I thought I was done with sunspots … but as the well-known climate scientist Michael Corleone once remarked, “Just when I thought I was out … they pull me back in”. In this case Marcel Crok, the well-known Dutch climate writer, asked me if I’d seen the paper from Nir…

Maunder and Dalton Sunspot Minima 2014-06-23

In a recent interchange over at Joanne Nova’s always interesting blog, I’d said that the slow changes in the sun have little effect on temperature. Someone asked me, well, what about the cold temperatures during the Maunder and Dalton sunspot minima? And I thought … hey, what about them? I…

Changes in Total Solar Irradiance 2014-10-25

Total solar irradiance, also called “TSI”, is the total amount of energy coming from the sun at all frequencies. It is measured in watts per square metre (W/m2). Lots of folks claim that the small ~ 11-year variations in TSI are amplified by some unspecified mechanism, and thus these small changes in TSI make an…

Splicing Clouds 2014-11-01

So once again, I have donned my Don Quijote armor and continued my quest for a ~11-year sunspot-related solar signal in some surface weather dataset. My plan for the quest has been simple. It is based on the fact that all of the phenomena commonly credited with affecting the temperature,…

Volcanoes and Sunspots 2015-02-09

I keep reading how sunspots are supposed to affect volcanoes. In the comments to my last post, Tides, Earthquakes, and Volcanoes, someone approvingly quoted a volcano researcher who had looked at eleven eruptions of a particular type and stated: …. Nine of the 11 events occurred during the solar inactive phase…

Early Sunspots and Volcanoes 2015-02-10

Well, as often happens I started out in one direction and then I got sidetractored … I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a…

Sunspots and Norwegian Child Mortality 2015-03-07

In January there was a study published by The Royal Society entitled “Solar activity at birth predicted infant survival and women’s fertility in historical Norway”, available here. It claimed that in Norway in the 1700s and 1800s the solar activity at birth affected a child’s survival chances. As you might imagine, this…

The New Sunspot Data And Satellite Sea Levels 2015-08-13

[UPDATE:”Upon reading Dr. Shaviv’s reply to this post, I have withdrawn any mention of “deceptive” from this post. This term was over the top, as it ascribed motive to the authors. I have replaced the term with “misleading”. This is more accurate…

My Thanks Apologies And Reply To Dr. Nir Shaviv 2015-08-17

Dr. Nir Shaviv has kindly replied in the comments to my previous post. There, he says: Nir Shaviv” August 15, 2015 at 2:51 pm There is very little truth about any of the points raised by Eschenbach in this article. In particular, his analysis excludes the fact that the o…

Is The Signal Detectable 2015-08-19

[UPDATE] In the comments, Nick Stokes pointed out that although I thought that Dr. Shaviv’s harmonic solar component was a 12.6 year sine wave with a standard deviation of 1.7 centimetres, it is actually a 12.6 year sine wave with a standard deviation of 1.7 millime…

The Missing 11 Year Signal 2015-08-19

Dr. Nir Shaviv and others strongly believe that there is an ~ 11-year solar signal visible in the sea level height data. I don’t think such a signal is visible. So I decided to look for it another way, one I’d not seen used before. One of the more sensitive …

23 New Papers 2015-09-22

Over at Pierre Gosselin’s site, NoTricksZone, he’s trumpeting the fact that there are a bunch of new papers showing a solar effect on the climate. The headline is Already 23 Papers Supporting Sun As Major Climate Factor In 2015 “Burgeoning Evidence No Longer Dismissible!…

The Cosmic Problem With Rays 2016-10-17

Normal carbon has six neutrons and six protons, for an atomic weight of twelve. However, there is a slightly different form of carbon which has two extra neutrons. That form of carbon, called carbon-14 or ’14C’, has an atomic weight of fourteen. It is known to be formed by the …



newest oldest most voted
Notify of
Tom Halla

When the lowest average monthly rainfall average is 70mm, it is rather wet.


With thousands of miles of open ocean to the west of Ireland and prevailing winds from that direction, I would find it hard to recognize any short term signal in temps or precipitation. Why don’t you run it against the NAO which would make more sense I would think.


The Central England Temperature record as both monthly and annually correlates well to Northern Hemisphere teleconnections such as the AO, NAO, EA etc, as well as the AMO. It also correlates to annual CO2 levels, at a rate of 0.006C per extra ppm of CO2 in the atmosphere.
I would be surprised if the Irish monthly rainfall didn’t do the same, given the relative proximity to the CET stations.


What is surprising from this data is the difference between Octobercomment image
which has shown a rising signal since 1897, compared to Junecomment image
which is essentially unchanged since 1850.
It would be interesting to see the rainfall data month by month, as seasonal weather patterns must underlie the pattern.
The CET datasets in the link above are more or less normally distributed, suggesting a degree of stochastic behaviour, year to year.

Farmer Ch E retired

Also, Ireland lies between ~51-56 degrees north latitude. According to a recent Svensmark presentation, the cloud effect may be most observable between 40 N and 40 S. He theorizes ionization of air circulating up and away from equator. Ireland may not be the best place to observe the 11-yr cloud cycle.

JJM Gommers

Svensmark is about cloud formation, not necessarily incremental rainfall.


Best subsets regression against a cluster of teleconnections since 1950, CO2 and AMO gives the following
Irish Rainfall = 96.5 + 14.7 EA + 5.15 SCA – 2.50 NAO
S = 36.32 R-Sq = 17.9% R-Sq(adj) = 17.4%
With no other teleconnection, CO2 or AMO significant.
The trend with the East Atlantic pattern is herecomment image
which is the most important of the three variables. The relationship to the NAO is the weakest.

Clyde Spencer

You remarked, “Not much happening over time, no big changes over the centuries…” It seems to me that there is at least a hint of an increase starting in the last quarter of the 20th C. But, nothing to get excited about.

Ian Magness

Well, yes, a short term hint but it only gets you back to where it’s been several times before, right back to the early 1700s.
So the point is – no long term climate trend and, in particular, no CO2 concentration or warming correlation.
Looks like NOAA and friends need to work their magic on this graph ‘cos it ain’t following the narrative.


Their main problem is that “narrative” doesn’t contain the letters CO2. Yes, I’m being facetious.

Stephen Richards

Ireland is smack in the middle of the temperate belt where any small variation is likely to swamped by the normal distribution of rainfall in the temperate zone. Would it be more obvious at the outer edges of the temperate zone, do you think?

paul courtney

Conor Murphy in Ireland I understand, but how did Anja Krzykowski get to Ireland? Bloody Vikings!


That sounds like a Polish name, we have about 50-70,000 poles in Ireland right now.
So many that you’re more likely to hear Polish spoken than Irish.


And Ireland also has this:
UN Agenda 21 – Ireland
‘Economic Aspects Of Sustainable Development In Ireland’
Webpages with Ireland information on this topic and other Ireland topics at:

It’s actually more than 130,000 in the Republic and 35,000 in Northern Ireland. Might I add that they are a model for successful immigration and have been a great addition to the country – in stark contrast to some other immigrant groups!


United Nations Climate Change
Submitted National Communications For Annex I Parties
Nothing posted for 2018
Use Right Sidebar: Annex I NC/BR Submissions, for earlier posts of information submitted.
Ireland has a submission back to 29 Jun 1995
Can also select any county for their submissions.

I am not always sure I understand your logic at the end of your post. It is always as if you want to say: please don’t argue with me?
So, I am asking: Do you want to argue or not? I thought that was the point of doing a post, i.e. making an argument and hearing the counter proposals.
The way you work out things, is wrong, because you have been trained to look at it wrongly. There is no [complete] 11 year solar cycle. You must look at it in terms of the Hale cycle. 4 Hale cycles in succession make one complete GB cycle. Each Hale cycle is like one quadrant of the sinewave for incoming energy.
[in itself, that sine wave might not be going absolutely straight, strictly speaking, it might be going a bit up or down, depending on the more longer SC’s]
I looked at rainfall here at a place in South Africa and indeed, just looking at the initial data, the amount of rainfall does not make sense. However, if you class the results into the relevant Hale cycles, it starts to make a lot of sense:comment image
Now, I can understand that you might find this evidence not convincing. However, I did check same rainfall patterns at two other places on earth and I found similar results [although in the case of Wellington, I think the curve was parabolic, not hyperbolic]
How about it, if you classed the Ireland results into the Hale cycles as I specified, and report back to me what you find?

“The Usual Polite Request: When you comment please quote the exact words you are discussing, so that we can all understand what you are referring to.”
If such a simple request is beyond your grasp, why should anyone have any faith in anything you might post regarding science?

richard verney

The point Henry is making is that he asserts that Willis is looking at the wrong cycle, and a more pertinent cycle would be that based upon the Hale cycle.
Let us assume for one moment (merely for the sake of argument) that Henry is correct that the Hale cycle is pertinent, and the so called 11 year cycle is not. How could Henry quote Willis and make his correct point?
Henry is obviously correct that sometimes, one may have a relevant point to throw into the climate mix, and it is not possible to quote Willis verbatum since you are not per se disagreeing with anything said, merely that there is something amiss through omission.
As Henry says, either one wishes to debate the issue raised ie., do variations in solar irradiance, if there be any at all, impact on climate, or climate factors, or one does not wish to debate that issue.
As I see it, when one seeks to define the limit and scope of arguments, then one is acting as a politician not a scientist.
What i find outrageous in this is Willis’ response of March 28, 2018 at 12:46 pm. Willis states:

Henryp, start by quoting what you meant when you claimed I’d said “please don’t argue with me”. (my emphasis)

This is a typical strawman response, where someone deliberately misstates what was actually said so as to frame the debate. Henry never said that Willis said “please don’t argue with me”
Henry said It is always as if you want to say: please don’t argue with me? So, I am asking: Do you want to argue or not? I thought that was the point of doing a post, i.e. making an argument and hearing the counter proposals. The use of conditional phraseology makes Henry’s statement rather different.
And then Willis goes on talking about bovine waste which is akin to an ad hom accusation. Completely unnecessary and adds nothing of substance to the exchanges.
Now I understand that Willis gets frustrated that his posts are often under attack. But that is the point of debate, and one has to step up to the plate with a thick skin. Willis is sticking his head up above the parapet. that takes courage and is to be applauded, but one must also expect that coming with the territory is that slings and arrows will inevitably be thrown his way. He should be man enough to take it on the chin, and confine his response to the science. I know that that is expecting more of him than is expected of various commentators on this site,
Finally, I would point out that Henry appears to be raising an interesting issue which issue is as relevant to this debate as are the comments about the latitude of Ireland, and the possibility that the Atlantic and prevailing winds dominate or at any rate obscure response etc, Of course, I did not like his comment The way you work out things, is wrong, because you have been trained to look at it wrongly... That comment ought not to have been made, but it is one that Willis ought to have been man enough to ignore.

Thanks for your interest.
I looked at the rainfall in Ireland now, as reported by Conor Murphy et al, and analyzed the data the same way as I did it in several previous cases, as per the last GB cycle, which, as you know, consists of 4 Hale cycles. Based on various parameters that I looked at, I know the exact length of each of the last 4 Hale cycles.
From the observed pendulum equation which applies to the last GB cycle, I was able to hind cast the rainfall for the period 1907 – 1926 to 1135, in actual fact it was 1129. I think that error of 6/1130 is acceptable? Likewise, I can predict that rainfall will come down, to close to an average of 1152 mm/year for the next period.

I wonder why the picture did not come up

paul courtney

henryp: Please let me add to Mr. E’s answer. NO, he does not want to argue; and no, that’s not the point of doing a post. As he says, the word “argue” isn’t there, perhaps you saw that the post was about Ireland and assumed an argument was bound to happen. Maybe you enjoyed your little potshot, but your approach didn’t get you an answer. Try a different approach and see how that works.

J Hope

Henry, Willis is like his buddy Lief. They resort to insults when they’re contradicted, or proven wrong. Bad sports. 🙂


In 1987, Labitzke showed that solar cycle influences emerge more strongly when data are grouped properly. In 2006 she and her colleague added more recent data and the signal in the Quasi-Biennial Oscillation was reconfirmed.
Sunspots, the QBO, and the Stratosphere in the North Polar Region – 20 Years later
“We have shown in earlier studies the size of the changes in the lower
stratosphere which can be attributed to the 11-year sunspot cycle (SSC).
We showed further that in order to detect the solar signal it is necessary
to group the data according to the phase of the Quasi-Biennial Oscillation
(QBO). Although this is valid throughout the year it was always obvious
that the effect of the SSC and the QBO on the stratosphere was largest
during the northern winters (January/February).
“Here we extend our first study (Labitzke 1987) by using additional data.
Instead of 30 years of data, we now have 65 years. Results for the entire
data set fully confirm the early findings and suggest a significant effect of
the SSC on the strength of the stratospheric polar vortex and the mean
meridional circulation.”


As I asked below, what do you find wrong with the reanalysis?
As you know, the stratosphere expands and contracts and in other ways affects climate in the troposphere and at the surface. Among the solar effects is the production or destruction of ozone by higher-energy UV, the flux of which varies much more greatly than does TSI.


No reanalysis data whatsoever. The authors find solar cycles in paleoclimatological data from the Arabian Sea:
Decadal resolution record of Oman upwelling indicates solar forcing of the Indian summer monsoon (9–6 ka)
Abstract. The Indian summer monsoon (ISM) is an important
conveyor in the ocean–atmosphere coupled system on a
trans-regional scale. Here we present a study of a sediment
core from the northern Oman margin, revealing early to midHolocene
ISM conditions on a near-20-year resolution. We
assess multiple independent proxies indicative of sea surface
temperatures (SSTs) during the upwelling season together
with bottom-water conditions. We use geochemical parameters,
transfer functions of planktic foraminiferal assemblages
and Mg / Ca palaeothermometry, and find evidence corroborating
previous studies showing that upwelling intensity
varies significantly in coherence with solar sunspot cycles.
The dominant ∼ 80–90-year Gleissberg cycle apparently also
affected bottom-water oxygen conditions. Although the interval
from 8.4 to 5.8 ka BP is relatively short, the gradually
decreasing trend in summer monsoon conditions was interrupted
by short events of intensified ISM conditions. Results
from both independent SST proxies are linked to phases
of weaker oxygen minimum zone (OMZ) conditions and
enhanced carbonate preservation. This indicates that atmospheric
forcing was intimately linked to bottom-water properties
and state of the OMZ on decadal timescales.
Just one of the many papers finding solar influence on the ISM, other Asian monsoons and still more on other continents.


I didn’t mind asking again.
IMO not all reanalysis is unreliable.
But the solar cycle effect on climatic phenomena was observed long before there was such a thing as reanalysis, back when there was only data. The effect (and lunar effects) was discovered simply in the record books of the Raj in India and in basic meteorological data around the world in the 19th and 20th centuries.


As I said the last time you posted that graph, the apparent divergence is easily explained.
First off, HadCRU “data” are thoroughly cooked to a crisp and totally unfit for any scientific purpose, only politics. Secondly, the solar effect on temperature naturally lags, as it takes time for our water planet to gain and shed heat.
And in any case, I was on about the solar cycle and rainfall, not temperature. Although there is abundant evidence to that effect, too.


Nor should 14C data be dismissed out of hand. The manner in which weather and climate affect the data is well understood and compensated for in using the data.
Archaeologists and paleoclimatologists have been at pains to calibrate the data.


You’re more impressed with the correlation between HadCRU and UAH than I am. Have you analyzed its statistical significance?
OTOH, to me the lag in air temperature response to the time integral of solar output is obvious and statistically significant.


Here’s an example of why reanalysis can be so useful:
A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions
The whole paper can be downloaded.

Pat Frank

Chimp, I think all reanalysis is indeed unreliable. The reason is that no climate model deploys a valid theory of climate.
Even where reanalysis is of the known climate, for which the model has been parameterized to reproduce certain observables, the uncertainty remains in the reanalysis because the parameters merely are tuned to have offsetting errors. Other sets of parameters, reflecting different physical relationships, will reproduce the same set of observables.
That is, the underlying physical theory is incomplete or wrong or both, no matter whether the tuned parameters reproduce known observables, or not. Therefore large uncertainties remain in the calculational product. The uncertainties are merely hidden because of the parameter tuning.
No one in the modeling community seems to pay attention to these absolutely critical details of scientific rigor. By excluding proper physical error analysis, climate modelers are claiming to know what they manifestly do not.

Pat Frank

By the way, extrapolating Christopher Essex’ demonstration that a global temperature does not exist, physical analogy supports that neither does a global precipitation.


Quite right for climate models.
But the instance I cited was an attempt, with scientific rigor IMO, to merge “objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions”.
Maybe it would be better just to analyze the rain gauge observations and/or satellite estimates, without adding numerical predictions to the mix.

Pat Frank

Hi Chimp, from the paper at your link, “The NCEP–NCAR reanalysis (hereafter, NCEP) (Kalnay et al., 1996) precipitation data included short-range forecast accumulations from the model based on physics and parameterizations,…
Here’s what Kalnay, 1996 say about the climate model they used for the reanalysis: “T62 model (equivalent to a horizontal resolution of about 210 km) with 28 vertical levels. The model is identical to the NCEP global operational model implemented on 10 January 1995, except for the horizontal resolution, which is T126 (105 km) for the operational model (Kanamitsu 1989; Kanamitsu et al. 1991).
The numerical simulations/predictions in the paper were climate model runs. All reanalysis products involve climate model projections and/or infills using observations to constrain the model. They all have large hidden uncertainties.

Pat Frank

Hi Willis, I agree with your discussion and the distinction you make between intensive and extensive variables.
I think Chris’ point, though, is that a global average temperature is not a temperature in any thermodynamic sense. It’s a statistic.
In the same way, a global average precipitation is not precipitation in a physical sense. It is a statistic. Average precipitation here plus average precipitation there does not add like the volumes of glasses of water.
As with temperature, a wide variety of precipitation states and distributions can produce the same global average; necessarily all very uninformative.
Let me return your thanks in spades. You’ve done enormous good in the debate about climate and CO2. If I might add, moral good as well as scientific good. Just recently, by the way, I downloaded the fine paper you wrote on extinction with Craig Lohle.

Pat Frank

Hi Willis, thanks. 🙂
I don’t see the additivity in your chart, but will let it go.


This study is being promoted as evidence of climate change.
“Past 10 years have been Ireland’s wettest in 300, say climate researchers
Rise in rainfall ‘attributable to human-driven climate change’


Given that cosmic rays can get deflected by solar processes (as I understand it), is the cosmic ray flux homogeneous across all latitudes?


A sampling of recent instances of the thousands of scientific papers finding robust correlation between the basic solar cycle and climatic and meteorological phenomena:
Solar cycle modulation of the ENSO impact on the winter climate of East Asia
Robust Response of the East Asian Monsoon Rainband to Solar Variability
Amplification of the Solar Signal in the Summer Monsoon Rainband in China by Synergistic Actions of Different Dynamical Responses
Solar cycle effects on Indian summer monsoon dynamics
28 New Papers: Solar, Ocean Cycles Modulate Rainfall Trends
Some of the papers in this survey deal with ENSO without factoring in the sun, while others do deal with the effect of the solar cycle. All show rainfall of the past century to be well within normal limits of natural variability. IOW, no anthropogenic signal in trends.


Strong, statistically significant correlations between the solar cycle and monsoons around the world have been observed for over a century.
What do you have against reanalysis products in general, such as to reject them out of hand?
From this site, you can download the full text .pdf for this paper, which uses both unreanalyzed and reanalyzed (GPCC) data sets, comparing the results, both of which are highly statistically significant. The unreanalyzed data are from the UEA’s CRU, but rainfall is less likely to be fudged than temperature. The authors describe in detail their statistical treatment of the data.
Amplification of the Solar Signal in the Summer Monsoon Rainband in China by Synergistic Actions of Different Dynamical Responses
Links to the rainfall and sunspot data are included in the paper.
“The CRU and GPCC products are freely available from http://www.cru.uea.ac.uk/ and http://gpcc.dwd.de, respectively. Both of these two independent datasets are produced based on
long-term in-situ rain-gauge observations and are long enough to study decadal and interdecadal precipitation variations during the past 100 years.
“The relative sunspot number (SSN) data in this paper are from the Sunspot Index and Long-term Solar Observations (SILSO) data/images, Royal Observatory of Belgium, Brussels (http://sidc.oma.be/silso/datafiles).”
You won’t like the other data sources, but they weren’t critical to the rainfall analysis:
“Wind and temperature data are from the US National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES) 20th century reanalysis, version 2, from 1871 to 2012, with a 2.0° spatial resolution for 1000 to
10 hPa (Compo et al., 2011).
“The ozone data are from the ERA 20th century (ERA-20C) product of the ECMWF (Poli et al., 2013). ERA-20C is a 10-member reanalysis of the 20th century (1899–2010), only assimilating surface pressure, mean sea level pressure, and marine wind observations from the International Surface Pressure Databank and the International Comprehensive Ocean–Atmosphere Dataset.
Its atmospheric data are available on the native 91 model levels and 37 pressure levels (as in ERA-Interim).”
The same conclusion has been repeatedly reached using a variety of precipitation data sets around the world.


I am no expert in climatology. But why would you ex ante expect that you would find more clouds in a place where you have 100% cloud coverage at all times? As I said, I have no expertise whatsoever, but reading that someone looks for a variation in clouds in a place where cloud coverage is dense all the time is surprising. For similar reasons I would not expect to detect much of a “Svensmark signal” in the driest parts of the Sahara desert.

Are you suggesting one should not bother to check?


So when I write that I don’t see much sense in either looking in the places that are always 100% wet or in the places that are always 100% dry, then you interpret that to mean that I am saying that one should not look anywhere?
Of course, you can check also in Ireland. But then I would expect a comment of the kind “Well, its probably not the best place to look for the Svensmark signal, but hey let’s try anyway given that we have the data. If we find something then that would really be a hit for my position. But if we don’t find anything then that would probably not mean much.”
That is how I would proceed in my field and how I would expect my colleagues to proceed. But then again, I am no expert in climatology and I have no clue how they deal with such issues.

Bill Treuren

Cloud height is still important despite the nominal 100% cloud cover. The nucleation may impact this.
The region does enjoy a level of sunshine, that being 1200 plus hours or so and we all know that 100 hours up or down would be transformational in the surface climate outcome.
But do get the point.
One other thing is that a dry region will often achieve 100% humidity as the temperature drops at night and should nucleation actually be enhanced then this could be where it happens. I seem to remember that the bulk of warming has been a function of low temperature increases.
Could it be that the cosmic ray hypothesis may be that the temperature actually lifts on average in arid regions.


Willis writes

In this case, if Svensmark’s theory about cosmic rays affecting the climate were true, we should see some kind of an eleven-year cycle in the Irish rainfall.

Actually I would have thought Svensmark’s signal, if it exists, would be low in Ireland. The effect enables cloud formation where it otherwise wouldn’t have occurred due to low nucleation site count. Ireland is always raining so nucleation and cloud coverage is never a problem pretty much by definition.


Yes. The solar cycle effect on rainfall is most pronounced in regions of the world with definite wet and dry seasons and years.
Ireland has a wet season and less wet season. Even in July, it rains significantly there, unlike most other Western Maritime Climate regions.
The Eleven Levels of Irish Rain:

John harmsworth

Ireland is like the opposite of CAGW. The climate stayed the same and everything else was a disaster!


When humans first arrived in Ireland around 9000 years ago (or earlier), the entire island was predominantly covered by thick oak and pine forests. It didn’t take the newcomers long to deforest this primeval woodland.
Same thing happened millennia later when the Norse colonized Iceland, which was then forested by birch, rowan and willow trees and shrubs.

Brett Keane

March 28, 2018 at 12:57 pm: IIRC, it has cooled since then, and bogs replaced trees, as elsewhere in this biome. The ‘holocene thermal optimum’ has long gone, I fear. Trees are less-easily disappeared by farmers than some think (obviously not farmers, are they?). And generally they are too useful not to encourage as part of the system, where they will grow usefully. Bogs. Lowland and Highland, are more about reduced evaporative drying on level land. The bogs themselves, came to be useful for fuel, luckily…..Brett

paul courtney

John, that’s a great line!


Looking at the graphs I am not convinced that there is no evidence for the effect of solar cycles on
the rainfall data. Firstly there is a non-zero component of the Fourier transforms at 11 years. It is
not strong but again why should it be strong? Secondly the fact that the climate is likely to respond in
a nonlinear fashion to any forcing means that it will respond at a different frequency to the input one and
so again the lack of a 11 year signal can be thought of as showing that the climate is nonlinear.
Of course if it is nonlinear then you might expect the the solar cycle to show up as a difference frequency
and looking at the graphs there is a strong peak in c4 at 13.5 years which can be explained as the difference
frequency between a solar period of 11 years and the 59 year period present in c6. And you can then explain
the 59 year cycle as a signal from the atlantic ocean multidecadal oscillation. And all of a sudden you can
see “evidence” that the 11 year solar cycle combines with the atlantic ocean cycle to produce the 13.4 year signal that is clearly present in the data.
Alternatively there is sufficient noise in the system to allow any amount of bullshit cycle mania none of
which should be taken seriously.


i there some source code to CEEMD, preferably in c, python or excel? none of the links for source in “https://wattsupwiththat.com/2015/12/10/noise-assisted-data-analysis/” is working.
thanks in advance
(Googling found it) MOD


i can’t open that page. is there any source code available?

Ian Cooper

Hi Willis, thanks for a look at this study. It seems that the Emerald Isle and my home province of Manawatu here in New Zealand, have more in common than just the green & white of our representative rugby football teams (the current Irish coach, Joe Schmidt is from here BTW). The Manawatu is renowned in New Zealand for it’s lush, verdant pasture land, not that we don’t often endure droughts. We do but they are short lived affairs (much cherished by us non-farmers BTW) and we recover quickly from them. Our driest month from records that go back just 90 years is March at 66.7mm. Very close to the Irish ‘dry’ month! Our wettest month is June with a long term mean of 96.8mm. The long term annual mean is 986mm.
With 90 years of data available, and only looking at the decadal aggregates we see a climb from the late 1920’s to a peak wet decade in the 1940’s, followed by a slow decline to the driest decade of the 1980’s. The 90’s saw increased levels of rain with a dip in the first decade of this century. The current decade, despite a lengthy wet period recently, is vying for the driest on record total with the 80’s. There appears to be very little correlation at all with the sunspot cycles over that period.
I think the answer is closer to home in the form of a connection with ENSO and other long term phenomena such as the PDO and our SAM. The 70’s & 80’s were a period of strengthening El Nino events that saw an increase in the strength of the prevailing westerly wind, an increase in cloud cover on our side of the divide, but not for us an increase in rainfall as one might suspect with all of that moisture laden cloud rolling in off the sea!
Trying to make sense of a chaotic system, a fascinating journey.


What about the area under the curve?

Richard A. O'Keefe

Where is your Slow Fourier Transform code these days?


“You can’t prove a negative”.
Anyone care to explain what this means ?, especially the “negative” part.
Sounds like semantics to me.
Thanks in advance.

“You cannot prove a negative” is itself a negative. So, if it were true, it would itself be unprovable.


I’m still trying to wrap my head around a single negative, and you bring on a double negative.
Care to explain it, all ears here.

Pat Frank

It’s simple, uk(us): positive negatives do not exist.
Of course, neither do negative positives.
Therefore nothing exists. End of every difficulty.

Coeur de Lion

As a sometimes yacht person I love Valentia in remote SW Ireland. Long temp record, no UHI, 0.43 degs C a century.

Brett Keane

Pat Frank
March 28, 2018 at 6:29 pm: luckily, negative -ves are positive, so we are saved! Perhaps an Easter message. So Happy Easter from the Antipodes.

John F. Hultquist

Always interesting. Thanks Willis.
My grandmother said Ireland was green because angels sprinkled it with stardust. It is said to make shamrocks grow.
Stardust may be GCRs and if angels were involved it would only have to have been once.
I’m only sure of this: My grandmother never heard of Svensmark.

Pat Swords

The Influence of the North Atlantic Ocean on the Mean Temperature of Ireland
The Atlantic multidecadal oscillation (AMO) (http://www.cgd.ucar.edu/cas/catalog/climind/AMO.html) which relates to the North Atlantic sea surface temperatures, explains over 90% of the pronounced decadal variation in annual land temperatures and summer precipitation. The correlation between the 20-year running mean of the AMO anomaly (i.e. AMO differences relative to the mean AMO) and 20-year running mean of annual average land temperature anomalies (temperature differences relative to the mean temperature) over Ireland is shown in figure 1(a). This clearly shows that the AMO and mean annual land temperatures over Ireland are in phase i.e. when decadal averages are considered mean temperatures over Ireland are warmer when the North Atlantic ocean is warmer than average. Mean summer rainfall over Ireland is also correlated to the AMO, with drier summers on average when the AMO is in a negative phase.
As a child of the 1970s in Ireland I can remember some great summers, which I haven’t seen since. Awaiting the AMO cold phase now returning to see if we get a repeat.

Yogi Bear

“Mean summer rainfall over Ireland is also correlated to the AMO, with drier summers on average when the AMO is in a negative phase.”
Same for England.


I hesitate to make /any/ speculations about causes of changes is the pattern of monthly rain for Ireland. However, I have downloaded the numbers (many thanks for the link, Willis) – found two mistakes – missing values – in my download by the way – and done a bit of processing using my own methods.
I ask whether you or anyone has noticed two very abrupt and enduring changes in the numbers. I have found that at September 1976 an abrupt change occurred, to a first approximation of about 13 mm per month, which is way smaller than regression or related methods could establish. This is the exact date of the great Pacific change, as most of you will recognise. The other step change took place at September 1859, approx size 37 mm per month, and had stable regimes both before and after the step. What could this be associated with?
Robin (Bromsgrove)


The end of the Little Ice Age is associated by some with the Carrington Event of 1859, the first documented solar flare impacting Earth. It occurred at 11:18 a.m. EDT on Sept. 1. Solar astronomer Richard Carrington witnessed the event through his private observatory telescope and sketched sunspots at the time.


NASA rates the 1859 solar flare as the most powerful of the past 500 years.

Bruce of Newcastle

The ~55 year mode may be linked to the quasicycle in the AMO, which would make sense since the AMO is derived from SSTs in the northern Atlantic.
The AMO though does have a clear solar cycle linked signal, although there’s an interesting lag/lead variation of a few years in the peaks. But the solar cycle temperature variation is only ~0.1 C, compared with ~0.5 C in the ~60 year AMO cycle.
The quasicycle in the AMO isn’t a short term artefact as Mann in his 2005 paper showed it to be persistent in the paleodata. (He doesn’t like to talk about that paper these days. 🙂 )
So what that says about the rainfall data in Ireland I don’t know. Maybe the lag/lead variation in the solar cycle peaks in the AMO relates to variations in latitude of weather systems. Ireland is a small place, so it would be easy to have weather systems tend to miss it one cycle and hit during it another, just because of relatively minor variations in their geographical tracks. That might prevent a ~11 year mode appearing in the rainfall data.


As I comment above, oceanic cycles naturally lag the solar cycles which affect them, and hence air temperatures.
It should be obvious that solar heating is in large part what drives oceanic oscillations, wind, water and eventually air temperatures.


And maybe a little less obvious, but repeatedly demonstrated, that fairly small changes in TSI can be amplified to affect the climate system. And that the much bigger changes in UV affect specific components of the system, like ozone.

Yogi Bear

“The AMO though does have a clear solar cycle linked signal, although there’s an interesting lag/lead variation of a few years in the peaks.”
It’s a phase reversal.comment image

Yogi Bear

Of course there is a reason, it wouldn’t happen without a reason. And you have been presented with the reason previously.

Bruce of Newcastle

Yogi – If you look at my original WFT link I’ve taken a 48 month average for both datasets – which are monthly data. You have averaged the AMO data over 23 months and used raw SSN. That shifts the AMO dataset by a couple years compared to the SSN dataset, which moves away from a direct apples-to-apples comparison. Also in my experience the 48 month lagging average seems to bring out the ~11 year spikes in the AMO data more clearly.
Here’s the graph again to save you looking for it.

Yogi Bear

“A boxcar filter is about the worst filter you could apply, because it will actually invert signals. ”
Except it hasn’t.

Yogi Bear

“Next, there is no power at the 11-year band in the AMO data. Here’s the CEEMD analysis of the same AMO data:”
There can’t be because of the phase change. You could of excluded that possibility just by understanding this…comment image

Yogi Bear

“Actually, it has”
It has not inverted the signal.
“Finally, notice that as I pointed out above, there is a 9-year signal in both the filtered and unfiltered data, although it is weak (~ 10% of the range of the data). And when you post that up against an ~ 11-year signal as you’ve done above, guess what you get?”
A wild goose chase, as the whole AMO signal goes in and out of phase with the fairly regular sunspot cycle. So it’s irrational to be even looking for any regular signal in the AMO. Yawn.

Michael in Dublin

I have a good laugh when I see the Irish Dulux paint advert for Weatherguard – the one where they say “Irish weather has always been unpredictable.” It seems that this is no laughing matter for the Irish climate alarmists.

Robert from oz

Wish I could find the clip from Mrs Browns boys where Mrs Brown gives some door knocking bible bashers in their place about the 40 days and 40 nights of rain in the good book but she says we call it summer !

I read an anecdote somewhere that proves you wrong.


If I heard only the whisper of an anti-anecdote, should I proclaim it, or charge money to hear my wisdom.
Talk to Al Gore.

Greatest and most beautifulest greenest place I ever been… and the Guinness actually tastes good there too.

willis . you quit too early.
look only at rainfall on tuesdays
or weekends
or summer rainfall..
slice and dice until you find it.


Mosher writes

slice and dice until you find it.

Not unlike proxy selection, really.


Oh, and then there’s this
Step 1. Find a correlation.
Step 2. Find a plausible explanation.
Step 3. Enter it into Scientific Lore

Yogi Bear

“or summer rainfall..”
That’s where to find the AMO signal.


“I was amused to see that there are no dry months in Ireland.”
Yes, you could almost say there are never any dry months in Ireland. Wikipedia says
“The longest drought in Ireland occurred in Limerick between 3 April 1938 and 10 May 1938 (37 days).”
Which means that once upon a time, there was an April which almost didn’t get any rain.
It’s amazing that the locals find it amusing too. Link copied from a previous comment here:
But seriously, Ireland is at the target end of the Gulf Stream. Good news, bad news. It rains a lot, but it’s 20°C warmer than it would be without the Gulf Stream. I wouldn’t expect to see a solar influence here because it’s pretty well saturated already. (By that logic, the most likely place would be some place always on the edge between rain and drought. But most likely the effect is insignificant there too).


Toto – April 1938 is indeed the lowest value in the Irish Monthly Rainfall dataset discussed in this post, with just 5.3 mm recorded.

Geoff Sherrington

Immediate thought was “Are the numbers too good?”
Have they all gone into a saturation zone where effects are all maximised and can show no contrast?
E.g. If people found elsewhere a signal in the ratio of browned grass to green grass, the analysis would fail in Ireland because all the grass is always green.
Nonetheless, I continue to be fascinated by your findings, time after time, that there is no correlation with various observations proposed by others. Geoff.

Old Woman of the North

Hi Willis,
We went through an 18 month period – 1969/1970 – without a drop of rain which caused me to study the local rainfall charts. Springsure in Central Qld has records from 1863, and is only one small spot on the earth, but believe me we studied this record.and did find the roughly 11 year cycles – one drier and one wetter that followed each other. Some wet ones were really wet – 1950s and 1970s especially – and it was the arbitrary choice of the”Global Warming” crowd starting with the 1950s to state it was getting drier that caused me to doubt their claims.


As an Irishman myself, thanks to you and Anja for getting this data posted Willis. Very interesting.


Looking at the data itself, the most distinctive trend I can find is in winter rainfall, which has increased at a rate of 7.8 mm/dec over the course of the data set. Three of the four most recent decades have been the wettest on record, with the latest decade (2007-2016) the wettest to date.comment image
Anyone who lives in Ireland won’t find that hard to believe.

In this case, if Svensmark’s theory about cosmic rays affecting the climate were true, we should see some kind of an eleven-year cycle in the Irish rainfall. Svensmark’s theory is that cloud formation is affected by cosmic ray levels, which in turn are affected by the variations in the sun’s magnetic field that are synchronous with the 11-year sunspot cycle.

Willis, I have no dog in this and I do agree with your various and rigorous observations that there is no data to support the 11-year sunspot cycle.
However strictly speaking, “rays affecting the climate” isn’t the same thing as rays affecting rainfall – of course! 😉
Nucleation is a “potential” for cloud formation, it isn’t the same thing as humidity nor is cloudiness necessarily correlated to changes in precipitation*.
As I understand it, the Earth’s magnetic field deflects particles best from equatorial regions but provides little to no protection above 55 degrees magnetic latitude. And even the choice of hemisphere has an influence on observed measurements of total flux; apparently.
Given that most of Ireland is above 50 degrees geographic and the North magnetic pole is around 80 degrees, it would be right in the zone of increased flux.
Perhaps “rays” do explain all that rain 😉
*Precipitation might be correlated to cloud formation but the causation isn’t direct.


I note Svensmark & Calder’s book “The Chilling Stars” states (p78):

“Large patches of the Pacific and Indian Oceans, and a region of the North Atlantic between Greenland and Scandinavia, show the strongest links between low cloud cover and cosmic rays. A more obvious geographical pattern emerged when Marsh and Svensmark’s exhaustive analysis looked at the cloud-top temperatures. In this case, a belt encircles the globe, centred on the tropics, where the cloud behaviour follows the cosmic rays closely. The effect is emphatic over 30 per cent of the globe.”

Bear in mind the prevailing wind direction for Ireland and the SW of Britain is from the SW. There doesn’t seem any particular reason to suppose that cloud in Ireland would be diagnostic or otherwise of anything in Svensmark’ theory.
I note the C4 component in Willis’ analysis in the article has the most prominent amplitude at a period just over 13 years (with what look like corresponding harmonics evident in the subsequent components C5 and C6). What could this periodicity be?
A quick correlation of the annual rainfall for this Irish dataset and the CET precipitation set reveals a correlation of 0.51 (note the two datasets are contemporaneous only from 1873). I find that surprisingly low considering the geographical proximity of the two areas. (The correlation to CET temperature is effectively zero, as is the correlation in CET between annual temperature and annual rainfall). What we can say though is that Ireland is wetter than Central England. For the period 1873 – 2016 mean rainfall in Ireland is nearly 70% higher than for Central England – a difference of +443mm!
It may just be me, but it seems the purpose of this article is to specifically criticise Svensmark and Scafetta even though there is no obvious reason to connect Irish rainfall with anything in particular. This quote:

Finally, be clear that I am not saying that the surface climate is not affected by the sunspot cycle. You can’t prove a negative.

Quite. So what’s the point of this article then? Looks remarkably like trying to prove a negative to me.
[The mods recommend double checking that your email address has been correctly entered upon login to WP to help avoid comments being shunted to the moderation queue. -mod]


Minor correction – I should have written the word rainfall rather than cloud as follows:
There doesn’t seem any particular reason to suppose that rainfall in Ireland would be diagnostic or otherwise of anything in Svensmark’ theory


[Mods – thanks, there was a typo in the email box, fixed now.]


I’m late to the stream and I hope you see this Willis. Thanks for taking it not only on the chin but in the nethers from those who do not adhere to formal boxing rules.
Now the real point of this comment: the data of this dataset as you have presented it seems to me to be a prime case for re-evaluation of the definition of “standard deviation’ and how it is functions in climate analysis – both in terms of error and in terms of the reliability of results.
Some day I would appreciate your musings on such if only a goat trail in one of your articles.
keep up the good work.


I am not attempting to re-defne standard deviation. The data you analyse above is a very broadly distributed set of data, it certainly does not fit any kind of bell curve, yet standard deviation has significance within the ‘bell’ curve form of data distribution.
Standard deviation as I understand it is a measure of deviation from a/the norm. It assigns signifigance to the amount of deviation from the norm. It seems to me that in a broadly distributed set of data, the data near the normalized average has less significance than data in a narrowly distributed set.
In addition there is a whole body of data analysis that ‘ignores’ data points more than 3 standard deviations from the norm and assigns them a spurious meaning. This in turn affects the reliability of the consequent associations and predictions derived from the data. (I am not at all suggesting you filtered the data in this way).
When averaging an extensive property, does the breadth of the distribution of the data affect the reliability and accuracy of the analysis, especially when it comes to determining ‘P’ values? Might it also affect the CMEED analysis – masking or exaggerating the results?
I do not have the skill set or statistiacal training to think that one through. Thank you for your time.

See - owe to Rich

Willis, I’m glad you wrote “You can’t prove a negative.” Questions have been raised upthread on whether a wet place like Ireland would show any response to a Svensmark-like effect.
But anyway, I have a different point, which is that clouds don’t always cause rain. Let me tell you a story. It was late August in 2008 or 2009 I think, so around solar minimum, and the British Met Office was forecasting a heatwave. I looked at the satellite photos, and saw a really large area of what looked like a marine layer and I wondered “Would that layer (which seemed unusual for that time of year) be present if sunspots were high, and, will it get as hot in England as they are forecasting? The answer to the second was a definite “no”, several degrees down, and not as sunny as they expected.
That’s just an anecdote of course, and no proper data for you to chew on. Sorry about that, but perhaps soon you’ll see some from me…

Willis, above you wrote, “With that as prologue, here’s the annually-averaged monthly rainfall in Ireland:”
but at https://wattsupwiththat.com/2015/12/10/noise-assisted-data-analysis/ you wrote,
“Next, in Antico2015, the authors use the annual average data. To me, this is a poor choice. If you wish to remove the annual fluctuations, that’s fine … but using annual average data cuts your number of data points by a factor of 12. And this can lead to spurious results by inflating the apparent significance. But let us set that aside as well.”
I’m wondering why you used the annually-averaged data for Ireland? It seems an odd choice, unless the full monthly data would produce a lot of high frequency fuzz in the CEEMD analysis?