Earth's Climate System Is Ridiculously Complex – With Draft Link Tutorial

By WUWT regular “Just The Facts”

I am often amused by claims that we understand Earth’s climate system, are able to accurately measure its behavior, eliminate all potential variables except CO2 as the primary driver of Earth’s temperature and make predictions of Earth’s temperature decades into the future, all with a high degree of confidence. I have been studying Earth’s climate system for several years and have found it to be a ridiculously complex, continually evolving and sometimes chaotic beast. Furthermore, our understanding of Earth’s climate system is currently rudimentary at best, our measurement capabilities are limited and our historical record is laughably brief. To help demonstrate the complexity of Earth’s climate system I have been compiling a list of all of the variables potentially involved in Earth’s climate system. This is a work in progress so additions, recommendations, corrections, questions etc. are most welcome. Once I develop this further and polish it up a bit I plan to convert it into a new WUWT Reference Page.

UPDATED: This list has undergone significant revisions and improvements based upon crowdsourcing the input of an array of very intelligent and knowledgeable contributors below. Additionally, this list was posted in comments in WUWT a few times previously, receiving input from a number of other very intelligent and knowledgeable contributors. This thread, along with links to the precursor threads below, will thus serve as the bibliography for the forthcoming WUWT Potential Climatic Variables reference page (unless someone can up with a better name for it…:)

1. Earth’s Rotational Energy;

http://en.wikipedia.org/wiki/Rotational_energy

http://en.wikipedia.org/wiki/Earth%27s_rotation

http://www.physicalgeography.net/fundamentals/6h.html

results in day and night;

http://wiki.answers.com/Q/Why_does_rotation_cause_day_and_night

causes the Coriolis Effect;

http://en.wikipedia.org/wiki/Coriolis_effect

imparts Planetary Vorticity on the oceans;

http://oceanworld.tamu.edu/resources/ocng_textbook/chapter12/chapter12_01.htm

and manifests as Ocean Gyres;

http://en.wikipedia.org/wiki/Ocean_gyre

the Antarctic Circumpolar Current;

http://en.wikipedia.org/wiki/Antarctic_Circumpolar_Current

http://en.wikipedia.org/wiki/File:Conveyor_belt.svg

Arctic Ocean Circulation;

http://www.whoi.edu/page.do?pid=12455&tid=441&cid=47170&ct=61&article=20727

http://www.john-daly.com/polar/flows.jpg

can result in the formation of Polynya;

http://en.wikipedia.org/wiki/Polynya

and causes the Equatorial Bulge:

http://en.wikipedia.org/wiki/Equatorial_bulge

Earth’s Rotational Energy influences Atmospheric Circulation;

http://en.wikipedia.org/wiki/Atmospheric_circulation

including the Jet Stream;

http://en.wikipedia.org/wiki/Jet_stream

Westerlies;

http://en.wikipedia.org/wiki/Westerlies

Tradewinds;

http://en.wikipedia.org/wiki/Trade_wind

Geostrophic Wind;

http://en.wikipedia.org/wiki/Geostrophic_wind

Surface Currents;

http://www.windows2universe.org/earth/Water/ocean_currents.html h

http://en.wikipedia.org/wiki/Ocean_current

through Ekman Transport;

http://en.wikipedia.org/wiki/Ekman_transport

http://oceanmotion.org/html/background/ocean-in-motion.htm

Tropical Cyclones;

http://en.wikipedia.org/wiki/Tropical_cyclone

Tornadoes:

http://en.wikipedia.org/wiki/Tornado

and Polar Vortices;

http://en.wikipedia.org/wiki/Polar_vortex

which “are caused when an area of low pressure sits at the rotation pole of a planet. This causes air to spiral down from higher in the atmosphere, like water going down a drain.”

http://www.universetoday.com/973/what-venus-and-saturn-have-in-common/

Here’s an animation of the Arctic Polar Vortex in Winter 2008 – 09:

When a Polar Vortex breaks down it causes a Sudden Stratospheric Warming:

http://en.wikipedia.org/wiki/Sudden_stratospheric_warming

Earth’s Rotational Energy influences Plate Tectonics;

http://en.wikipedia.org/wiki/Plate_tectonics

“By analyzing the minute changes in travel times and wave shapes for each doublet, the researchers concluded that the Earth’s inner core is rotating faster than its surface by about 0.3-0.5 degrees per year.

That may not seem like much, but it’s very fast compared to the movement of the Earth’s crust, which generally slips around only a few centimeters per year compared to the mantle below, said Xiaodong Song, a geologist at the University of Illinois at Urbana-Champaign and an author on the study.

http://www.livescience.com/9313-earth-core-rotates-faster-surface-study-confirms.html

The surface movement is called plate tectonics. It involves the shifting of about a dozen major plates and is what causes most earthquakes”:

http://en.wikipedia.org/wiki/Earthquake

Volcanoes;

http://en.wikipedia.org/wiki/Volcano

and Mountain Formation;

http://en.wikipedia.org/wiki/Mountain_formation

which can influence the creation of Atmospheric Waves:

http://en.wikipedia.org/wiki/Atmospheric_wave

Lastly, Rotational Energy is the primary driver of Earth’s Dynamo;

http://en.wikipedia.org/wiki/Dynamo_theory

which generates Earth’s Magnetic Field;

http://en.wikipedia.org/wiki/Earth%27s_magnetic_field

and is primarily responsible for the Earthy behaviors of the Magnetosphere;

http://en.wikipedia.org/wiki/Magnetosphere

with certain secular variations in Earth’s magnetic field originating from ocean flow/circulation;

http://news.nationalgeographic.com/news/2009/06/090622-earths-core-dynamo.html

http://iopscience.iop.org/1367-2630/11/6/063015/fulltext

though Leif Svalgaard notes that these are minor variations, as the magnetic field originating from ocean flow/circulation “is 1000 times smaller than the main field generated in the core.”

http://wattsupwiththat.com/2011/06/30/earths-climate-system-is-ridiculously-complex-with-draft-link-tutorial/#comment-707971

Also of note, “Over millions of years, [Earth’s] rotation is significantly slowed by gravitational interactions with the Moon: see tidal acceleration.

http://en.wikipedia.org/wiki/Tidal_acceleration

“The presence of the moon (which has about 1/81 the mass of the Earth), is slowing Earth’s rotation and lengthening the day by about 2 ms every one hundred years.”

“However some large scale events, such as the 2004 Indian Ocean earthquake, have caused the rotation to speed up by around 3 microseconds.[21] Post-glacial rebound, ongoing since the last Ice age, is changing the distribution of the Earth’s mass thus affecting the Moment of Inertia of the Earth and, by the Conservation of Angular Momentum, the Earth’s rotation period.”

http://en.wikipedia.org/wiki/Earth%27s_rotation

2. Orbital Energy, Orbital Period, Elliptical Orbits (Eccentricity), Tilt (Obliquity) and Wobble (Axial precession):

http://en.wikipedia.org/wiki/Specific_orbital_energy

http://en.wikipedia.org/wiki/Synodic

http://www.physicalgeography.net/fundamentals/6h.html

creates Earth’s seasons;

http://en.wikipedia.org/wiki/Season

which drives annual changes in Arctic Sea Ice;

and Antarctic Sea Ice;

the freezing and melting of which helps to drive the Thermohaline Circulation;

http://en.wikipedia.org/wiki/Thermohaline_circulation

and can result in the formation of Polynyas:

http://en.wikipedia.org/wiki/Polynya

Earth’s orbit around the Sun, Earth’s tilt, Earth’s wobble and the Moon’s orbit around Earth, Earth’s Rotation, and the gravity of the Moon, Sun and Earth, act in concert to determine the constantly evolving Tidal Force on Earth:

http://en.wikipedia.org/wiki/Tidal_force

This Tidal Force is influenced by variations in Lunar Orbit;

http://en.wikipedia.org/wiki/Orbit_of_the_Moon

as seen in the Lunar Phases;

http://en.wikipedia.org/wiki/Lunar_phase

Lunar Precession;

http://en.wikipedia.org/wiki/Lunar_precession

Lunar Node;

http://en.wikipedia.org/wiki/Lunar_node

Saros cycles;

http://en.wikipedia.org/wiki/Saros_cycle

and Inex cycles:

http://en.wikipedia.org/wiki/Inex

The combined cycles of the Saros and Inex Cycles can be visualized here:

http://eclipse.gsfc.nasa.gov/SEsaros/image/SEpanoramaGvdB-big.JPG

Over longer time frames changes to Earth’s orbit, tilt and wobble called Milankovitch cycles;

http://en.wikipedia.org/wiki/Milankovitch_cycles

may be responsible for the periods of Glaciation (Ice Ages);

http://www.homepage.montana.edu/~geol445/hyperglac/time1/milankov.htm

that Earth has experienced for the last several million years of its climatic record:

http://en.wikipedia.org/wiki/Ice_age

Also of note, over very long time frames, “the Moon is spiraling away from Earth at an average rate of 3.8 cm per year”;

http://en.wikipedia.org/wiki/Lunar_distance_%28astronomy%29

http://curious.astro.cornell.edu/question.php?number=124

3. Gravitation:

http://en.wikipedia.org/wiki/Gravitation

The gravity of the Moon, Sun and Earth, Earth’s rotation, Earth’s orbit around the Sun, Earth’s tilt, Earth’s wobble and the Moon’s orbit around Earth act in concert to determine the constantly evolving Tidal Force on Earth:

http://en.wikipedia.org/wiki/Tidal_force

This tidal force results in that result in Earth’s Ocean Tide;

http://en.wikipedia.org/wiki/Tide

http://www.themcdonalds.net/richard/astro/papers/602-tides-web.pdf

Atmospheric Tide;

http://en.wikipedia.org/wiki/Atmospheric_tide

and Magma Tide:

http://www.springerlink.com/content/h7005r0273703250/

Earth’s Gravity;

http://en.wikipedia.org/wiki/Convection#Gravitational_or_buoyant_convection

http://visibleearth.nasa.gov/view_rec.php?id=205

in concert with Tidal Forces, influence Earth’s Ocean Circulation;

http://www.eoearth.org/article/Ocean_circulation

which influences Oceanic Oscillations including El Niño/La Niña;

http://en.wikipedia.org/wiki/El_Ni%C3%B1o-Southern_Oscillation

the Pacific Decadal Oscillation (PDO);

http://en.wikipedia.org/wiki/Pacific_Decadal_Oscillation

the Atlantic Multi-Decadal Oscillation (AMO);

http://en.wikipedia.org/wiki/Atlantic_Multidecadal_Oscillation

the Indian_Ocean_Dipole (IOD)/Indian Ocean Oscillation (IOO) and;

http://en.wikipedia.org/wiki/Indian_Ocean_Dipole

can result in the formation of Polynyas:

http://en.wikipedia.org/wiki/Polynya

Gravity Waves;

http://en.wikipedia.org/wiki/Gravity_wave

which may be partially responsible for the Quasi-Biennial Oscillation (QBO);

http://en.wikipedia.org/wiki/Quasi-biennial_oscillation

“on an air–sea interface are called surface gravity waves or Surface Waves”;

http://en.wikipedia.org/wiki/Surface_wave

“while internal gravity waves are called Inertial Waves”:

http://en.wikipedia.org/wiki/Inertial_waves

“Rosby Waves;

http://en.wikipedia.org/wiki/Rossby_waves

Geostrophic Currents

http://en.wikipedia.org/wiki/Geostrophic

and Geostrophic Wind

http://en.wikipedia.org/wiki/Geostrophic_wind

are examples of inertial waves. Inertial waves are also likely to exist in the core of the Earth”

Earth’s gravity is the primary driver of Plate Tectonics;

http://en.wikipedia.org/wiki/Plate_tectonics

“The Slab Pull;

http://en.wikipedia.org/wiki/Slab_pull

force is a tectonic plate force due to subduction. Plate motion is partly driven by the weight of cold, dense plates sinking into the mantle at trenches. This force and the slab suction force account for most of the overall force acting on plate tectonics, and the Ridge Push;

http://en.wikipedia.org

force accounts for 5 to 10% of the overall force.”

Plate Tectonics drive “cycles of ocean basin growth and destruction, known as Wilson cycles;

http://csmres.jmu.edu/geollab/fichter/Wilson/Wilson.html

involving continental rifting;

http://en.wikipedia.org/wiki/Rift

seafloor-spreading;

http://en.wikipedia.org/wiki/Seafloor_spreading

subduction;

http://en.wikipedia.org/wiki/Subduction

and collision.”:

http://en.wikipedia.org/wiki/Continental_collision

“Climate change on ultra-long time scales (tens of millions of years) are more than likely connected to plate tectonics.”

“Through the course of a Wilson cycle continents collide and split apart, mountains are uplifted and eroded, and ocean basins open and close. The re-distribution and changing size and elevation of continental land masses may have caused climate change on long time scales”;

http://www.pbs.org/wgbh/nova/ice/chill.html

a process called the Supercontinent Cycle:

http://en.wikipedia.org/wiki/Supercontinent_cycle

Earth’s gravity is responsible for Katabatic Wind:

http://en.wikipedia.org/wiki/Katabatic_wind

4. Solar Energy;

http://en.wikipedia.org/wiki/Solar_energy

results is Solar Radiation/Sunlight;

http://en.wikipedia.org/wiki/Solar_radiation

which varies based upon 11 and 22 year cycles:

http://en.wikipedia.org/wiki/Solar_cycle

Total Solar Irradiance (TSI);

http://www.ngdc.noaa.gov/stp/solar/solarirrad.html

appears to fluctuate “by approximately 0.1% or about 1.3 Watts per square meter (W/m2) peak-to-trough during the 11-year sunspot cycle”:

http://en.wikipedia.org/wiki/Solar_variation

Solar Energy also drives the Hydrological/Water Cycle;

http://en.wikipedia.org/wiki/Hydrological_cycle

within the Hydrosphere;

http://en.wikipedia.org/wiki/Hydrosphere

as Total Solar Irradiance (TSI) causes evaporation;

http://en.wikipedia.org/wiki/Evaporation

that drives cloud formation;

http://en.wikipedia.org/wiki/Cloud

results in precipitation;

http://en.wikipedia.org/wiki/Precipitation_%28meteorology%29

that results in the Water Distribution on Earth;

http://en.wikipedia.org/wiki/Water_distribution_on_Earth

creates surface runoff;

http://en.wikipedia.org/wiki/Runoff_%28water%29

which result in rivers;

http://en.wikipedia.org/wiki/River

and drives erosion:

http://en.wikipedia.org/wiki/Erosion

Solar energy is also “The driving force behind atmospheric circulation is solar energy, which heats the atmosphere with different intensities at the equator, the middle latitudes, and the poles.”

http://www.scienceclarified.com/As-Bi/Atmospheric-Circulation.html

Atmospheric Circulation;

http://en.wikipedia.org/wiki/Atmospheric_circulation

includes Hadley Cells;

http://en.wikipedia.org/wiki/Hadley_cell

Ferrel Cells;

http://en.wikipedia.org/wiki/Atmospheric_circulation#Ferrel_cell

Polar Cells;

http://en.wikipedia.org/wiki/Polar_cells

and Polar Vortexes:

http://en.wikipedia.org/wiki/Polar_cells

all of which help to create Wind;

http://en.wikipedia.org/wiki/Wind

that influence Surface Currents;

http://www.windows2universe.org/earth/Water/ocean_currents.html

http://en.wikipedia.org/wiki/Ocean_current

through Ekman Transport;

http://en.wikipedia.org/wiki/Ekman_transport

http://oceanmotion.org/html/background/ocean-in-motion.htm

and also cause Langmuir circulations

http://en.wikipedia.org/wiki/Langmuir_circulation

Solar energy is also a driver of the Brewer-Dobson Circulation

http://en.wikipedia.org/wiki/Brewer-Dobson_circulation

Atmospheric Waves;

http://en.wikipedia.org/wiki/Atmospheric_wave

including Atmospheric Tides

http://en.wikipedia.org/wiki/Atmospheric_tide

as well as evaporation and condensation may help to drive changes in Atmospheric Pressure:

http://en.wikipedia.org/wiki/Atmospheric_pressure

http://www.atmos-chem-phys-discuss.net/10/24015/2010/acpd-10-24015-2010.pdf

Solar Ultraviolet (UV) radiation;

http://en.wikipedia.org/wiki/Ultraviolet

appears to vary by approximately 10% during the solar cycle;

http://www.nasa.gov/topics/solarsystem/features/solarcycle-sorce.html

has been hypothesized to influence Earth’s climate;

http://wattsupwiththat.com/2011/04/05/courtillot-on-the-solar-uv-climate-connection/

however Leif Svalgaard argues that,

This is well-trodden ground. Nothing new to add, just the same old, tired arguments. Perhaps a note on EUV: as you can see here (slide 13)

http://lasp.colorado.edu/sorce/news/2008ScienceMeeting/doc/Session1/S1_03_Kopp.pdf the energy in the EUV band [and other UV bands] is very tiny; many orders of magnitude less than what shines down on our heads each day. So a larger solar cycle variation of EUV does not make any significant difference in the energy budget.

http://wattsupwiththat.com/2011/04/05/courtillot-on-the-solar-uv-climate-connection/#comment-636477

Additionally variations in Ultraviolet (UV) radiation may influence the break down of Methane;

(Source TBD)

Infrared Radiation;

http://en.wikipedia.org/wiki/Infrared

Solar – Wind;

http://science.nasa.gov/science-news/science-at-nasa/1999/ast13dec99_1/

Solar – Coronal Holes;

http://helios.gsfc.nasa.gov/chole.html

Solar – Solar Energetic Particles (SEP);

http://helios.gsfc.nasa.gov/sep.html

Solar – Coronal Mass Ejection;

http://www.esa.int/esaSC/SEMF75BNJTF_index_0.html

http://www.ratedesi.com/video/v/8AuCE_NNEaM/Sun-Erupts-to-Life-Unleashes-a-Huge-CME-on-13-April-2010

Solar Magnetosphere Breach;

Solar Polar Field Reversal;

http://science.nasa.gov/science-news/science-at-nasa/2001/ast15feb_1/

Solar Sector Boundary;

http://science.nasa.gov/heliophysics/focus-areas/magnetosphere-ionosphere/

Grand Minimum;

Leif Svalgaard says: February 6, 2011 at 8:26 pm

If L&P are correct and sunspots become effectively] invisible [not gone] it might mean another Grand Minimum lasting perhaps 50 years. During this time the solar cycle is still operating, cosmic rays are still modulated, and the solar wind is still buffeting the Earth.”

“It will lead to a cooling of a couple of tenths of a degree.”

Solar Influences on Climate:

http://www.leif.org/EOS/2009RG000282.pdf

Statistical issues about solar–climate relations

http://www.leif.org/EOS/Yiou-565-2010.pdf

5. Geothermal Energy;

http://en.wikipedia.org/wiki/Geothermal_energy

influences Earth’s climate especially when released by Volcanoes;

http://en.wikipedia.org/wiki/Volcano

“which are generally found where tectonic plates are diverging;

http://en.wikipedia.org/wiki/Divergent_boundary

or converging”;

http://en.wikipedia.org/wiki/Convergent_boundary

however, “intraplate volcanism has also been postulated to be caused by mantle plumes”:

http://en.wikipedia.org/wiki/Mantle_plume

“These so-called “hotspots”;

http://en.wikipedia.org/wiki/Hotspot_%28geology%29

for example Hawaii, are postulated to arise from upwelling diapirs;

http://en.wikipedia.org/wiki/Diapir

from the core-mantle boundary, 3,000 km deep in the Earth.”

Volcanoes have been shown to influence Earth’s climate;

http://www.geology.sdsu.edu/how_volcanoes_work/climate_effects.html

http://www.longrangeweather.com/global_temperatures.htm

including in the infamous Year Without a Summer;

http://en.wikipedia.org/wiki/Year_Without_a_Summer

which was partially caused by the 1815 eruption of Mount Tambora;

http://en.wikipedia.org/wiki/1815_eruption_of_Mount_Tambora

and is called a Volcanic Winter:

http://en.wikipedia.org/wiki/Volcanic_winter

“Volcanic Ash;

http://en.wikipedia.org/wiki/Volcanic_ash

particles have a maximum residence time in the troposphere of a few weeks.

The finest Tephera;

http://en.wikipedia.org/wiki/Tephra

remain in the stratosphere for only a few months, they have only minor climatic effects, and they can be spread around the world by high-altitude winds. This suspended material contributes to spectacular sunsets.

“The greatest volcanic impact upon the earth’s short term weather patterns is caused by sulfur dioxide gas;”

http://en.wikipedia.org/wiki/Sulfur_dioxide

“In the cold lower atmosphere, it is converted to Sulfuric Acid;

http://en.wikipedia.org/wiki/Sulfuric_acid

sulfuric acid by the sun’s rays reacting with stratospheric water vapor to form sulfuric acid aerosol layers. The aerosol remains in suspension long after solid ash particles have fallen to earth and forms a layer of sulfuric acid droplets between 15 to 25 kilometers up. Fine ash particles from an eruption column fall out too quickly to significantly cool the atmosphere over an extended period of time, no matter how large the eruption.

Sulfur aerosols last many years, and several historic eruptions show a good correlation of sulfur dioxide layers in the atmosphere with a decrease in average temperature decrease of subsequent years. The close correlation was first established after the 1963 eruption of Agung volcano in Indonesia when it was found that sulfur dioxide reached the stratosphere and stayed as a sulfuric acid aerosol.

Without replenishment, the sulfuric acid aerosol layer around the earth is gradually depleted, but it is renewed by each eruption rich in sulfur dioxide. This was confirmed by data collected after the eruptions of El Chichon, Mexico (1982) and Pinatubo, Philippines (1991), both of which were high-sulfur compound carriers like Agung, Indonesia.”

http://volcanology.geol.ucsb.edu/gas.htm

There is also some evidence that if “volcanic activity was high enough, then a water vapor anomaly would be introduced into the lower stratosphere before the anomaly due to the previous eruption had disappeared. The result would be threefold in the long term: stratospheric cooling, stratospheric humidification, and surface warming due to the positive radiative forcing associated with the water vapor.”

See: http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2003)016%3C3525%3AAGSOVE%3E2.0.CO%3B2#h1

Geothermic Energy can also warm the atmosphere through Hot Springs;

http://en.wikipedia.org/wiki/Hot_springs

Or warm the ocean through Hydrothermal Vents:

http://en.wikipedia.org/wiki/Hydrothermal_vent

Which can be a factor in Hydrothermal Circulations:

http://en.wikipedia.org/wiki/Hydrothermal_circulation

6. Outer Space/Cosmic/Galactic Influences;

http://en.wikipedia.org/wiki/Outer_space

http://en.wikipedia.org/wiki/Cosmos

http://en.wikipedia.org/wiki/Galaxy

including Asteroids;

http://en.wikipedia.org/wiki/Asteroid

Meteorites;

http://en.wikipedia.org/wiki/Meteorite

and Comets;

http://en.wikipedia.org/wiki/Comet

can all significantly impact Earth’s climate upon impact.

It has been hypothesized that Galactic Cosmic Rays;

http://en.wikipedia.org/wiki/Galactic_cosmic_ray

http://en.wikipedia.org/wiki/Cosmic_ray

modulated by Solar Wind, may influence cloud formation on Earth:

http://wattsupwiththat.com/2009/08/04/a-link-between-the-sun-cosmic-rays-aerosols-and-liquid-water-clouds-appears-to-exist-on-a-global-scale/

Galactic Magnetic Fields also result in the;

http://www.scholarpedia.org/article/Galactic_magnetic_fields

Galactic Tide;

http://en.wikipedia.org/wiki/Galactic_tide

which may influence the hypothesized Oort cloud;

http://en.wikipedia.org/wiki/Oort_Cloud

“Besides the galactic tide, the main trigger for sending comets into the inner Solar System is believed to be interaction between the Sun’s Oort cloud and the gravitational fields of near-by stars or giant molecular clouds.”

7. Magnetic Forces;

http://en.wikipedia.org/wiki/Earth%27s_magnetic_field

Earth Core Changes:

http://physicsworld.com/cws/article/news/42580

“appears to be generated in the Earth’s core by a dynamo process, associated with the circulation of liquid metal in the core, driven by internal heat sources”

impact the Magnetosphere;

http://en.wikipedia.org/wiki/Magnetosphere

including movement of the Geomagnetic Poles:

http://www.ngdc.noaa.gov/geomag/GeomagneticPoles.shtml

http://news.nationalgeographic.com/news/2009/12/091224-north-pole-magnetic-russia-earth-core.html

8. Atmospheric Composition

http://en.wikipedia.org/wiki/Atmosphere_of_Earth

Nitrogen (N2) represents approximately 780,840 ppmv or 78.084% of Earth’s Atmosphere;

http://en.wikipedia.org/wiki/Nitrogen

Oxygen (O2) represents approximately 209,460 ppmv or 20.946%;

http://en.wikipedia.org/wiki/Oxygen

Argon (Ar) represents approximately 9,340 ppmv or 0.9340%;

http://en.wikipedia.org/wiki/Argon

Carbon Dioxide (CO2) represents approximately 390 ppmv or 0.039%;

http://en.wikipedia.org/wiki/Carbon_dioxide

contributes to the Greenhouse Effect;

?

and

influences the rate of Plant Growth;

http://www.sjsu.edu/faculty/watkins/CO2plants.htm

Neon (Ne) represents approximately18.18 ppmv or 0.001818%;

http://en.wikipedia.org/wiki/Neon

Helium (He) represents approximately 5.24 ppmv (0.000524%);

http://en.wikipedia.org/wiki/Helium

Krypton (Kr) represents approximately 1.14 ppmv (0.000114%);

http://en.wikipedia.org/wiki/Krypton

Methane (CH4) represents approximately 1.79 ppmv (0.000179%);

http://en.wikipedia.org/wiki/Methane

contributes to the Greenhouse Effect;

?

Hydrogen (H2) represents approximately 0.55 ppmv (0.000055%);

http://en.wikipedia.org/wiki/Hydrogen

Nitrous Oxide (N2O) represents approximately 0.3 ppmv (0.00003%);

http://en.wikipedia.org/wiki/Nitrous_oxide

contributes to the Greenhouse Effect;

?

Ozone (O3) represents approximately 0.0 to 0.07 ppmv (0 to 7×10−6%);

http://en.wikipedia.org/wiki/Ozone

Nitrogen Dioxide (NO2) represents approximately 0.02 ppmv (2×10−6%) (0.000002%);

http://en.wikipedia.org/wiki/Nitrogen_dioxide

Iodine (I2) represents approximately 0.01 ppmv (1×10−6%) (0.000001%) and;

http://en.wikipedia.org/wiki/Iodine

Ammonia (NH3) represents a trace amount of Earth’s Atmosphere:

http://en.wikipedia.org/wiki/Ammonia

Additional atmosphere components includes Water vapor (H2O) that represents approximately 0.40% over full atmosphere, typically 1%-4% at surface.

http://en.wikipedia.org/wiki/Water_vapor;

Aerosols;

http://en.wikipedia.org/wiki/Aerosol

that “act as cloud condensation nuclei, they alter albedo (both directly and indirectly via clouds) and hence Earth’s radiation budget, and they serve as catalysts of or sites for atmospheric chemistry reactions.”

“Aerosols play a critical role in the formation of clouds;

http://en.wikipedia.org/wiki/Clouds

Clouds form as parcels of air cool and the water vapor in them condenses, forming small liquid droplets of water. However, under normal circumstances, these droplets form only where there is some “disturbance” in the otherwise “pure” air. In general, aerosol particles provide this “disturbance”. The particles around which cloud droplets coalesce are called cloud condensation nuclei (CCN) or sometimes “cloud seeds”. Amazingly, in the absence of CCN, air containing water vapor needs to be “supersaturated” to a humidity of about 400% before droplets spontaneously form! So, in almost all circumstances, aerosols play a vital role in the formation of clouds.”

http://www.windows2universe.org/earth/Atmosphere/aerosol_cloud_nucleation_dimming.html

Particulates;

http://en.wikipedia.org/wiki/Particulates

including Soot/Black Carbon;

http://en.wikipedia.org/wiki/Soot

http://en.wikipedia.org/wiki/Black_carbon

Sand;

http://en.wikipedia.org/wiki/Sand

Dust

http://en.wikipedia.org/wiki/Dust

“Volcanic Ash;

http://en.wikipedia.org/wiki/Volcanic_ash

particles have a maximum residence time in the troposphere of a few weeks.

The finest Tephera;

http://en.wikipedia.org/wiki/Tephra

remain in the stratosphere for only a few months, they have only minor climatic effects, and they can be spread around the world by high-altitude winds. This suspended material contributes to spectacular sunsets.

The major climate influence from volcanic eruptions is caused by gaseous sulfur compounds, chiefly Sulfur Dioxide;

http://en.wikipedia.org/wiki/Sulfur_dioxide

which reacts with OH and water in the stratosphere to create sulfate aerosols with a residence time of about 2–3 years.”

“Emission rates of [Sulfur Dioxide] SO2 from an active volcano range from 10 million tonnes/day according to the style of volcanic activity and type and volume of magma involved. For example, the large explosive eruption of Mount Pinatubo on 15 June 1991 expelled 3-5 km3 of dacite magma and injected about 20 million metric tons of SO2 into the stratosphere. The sulfur aerosols resulted in a 0.5-0.6°C cooling of the Earth’s surface in the Northern Hemisphere.”

http://volcanoes.usgs.gov/hazards/gas/index.php

“The 1815 eruption [of Mount Tambora] is rated 7 on the Volcanic Explosivity Index, the only such eruption since the Lake Taupo eruption in about 180 AD. With an estimated ejecta volume of 160 cubic kilometers, Tambora’s 1815 outburst was the largest volcanic eruption in recorded history.”

“The eruption created global climate anomalies that included the phenomenon known as “volcanic winter”;

http://en.wikipedia.org/wiki/Volcanic_winter

1816 became known as the “Year Without a Summer”;

http://en.wikipedia.org/wiki/Year_Without_a_Summer

because of the effect on North American and European weather. Agricultural crops failed and livestock died in much of the Northern Hemisphere, resulting in the worst famine of the 19th century.”

http://en.wikipedia.org/wiki/Mount_Tambora

“In the spring and summer of 1816, a persistent “dry fog” was observed in the northeastern US. The fog reddened and dimmed the sunlight, such that sunspots were visible to the naked eye. Neither wind nor rainfall dispersed the “fog”. It has been characterized as a stratospheric sulfate aerosol veil.”

“The greatest volcanic impact upon the earth’s short term weather patterns is caused by sulfur dioxide gas;”

http://en.wikipedia.org/wiki/Sulfur_dioxide

“In the cold lower atmosphere, it is converted to Sulfuric Acid;

http://en.wikipedia.org/wiki/Sulfuric_acid

sulfuric acid by the sun’s rays reacting with stratospheric water vapor to form sulfuric acid aerosol layers. The aerosol remains in suspension long after solid ash particles have fallen to earth and forms a layer of sulfuric acid droplets between 15 to 25 kilometers up. Fine ash particles from an eruption column fall out too quickly to significantly cool the atmosphere over an extended period of time, no matter how large the eruption.

Sulfur aerosols last many years, and several historic eruptions show a good correlation of sulfur dioxide layers in the atmosphere with a decrease in average temperature decrease of subsequent years. The close correlation was first established after the 1963 eruption of Agung volcano in Indonesia when it was found that sulfur dioxide reached the stratosphere and stayed as a sulfuric acid aerosol.

Without replenishment, the sulfuric acid aerosol layer around the earth is gradually depleted, but it is renewed by each eruption rich in sulfur dioxide. This was confirmed by data collected after the eruptions of El Chichon, Mexico (1982) and Pinatubo, Philippines (1991), both of which were high-sulfur compound carriers like Agung, Indonesia.”

http://volcanology.geol.ucsb.edu/gas.htm

There is also some evidence that if “volcanic activity was high enough, then a water vapor anomaly would be introduced into the lower stratosphere before the anomaly due to the previous eruption had disappeared. The result would be threefold in the long term: stratospheric cooling, stratospheric humidification, and surface warming due to the positive radiative forcing associated with the water vapor.”

See: http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2003)016%3C3525%3AAGSOVE%3E2.0.CO%3B2#h1

9. Albedo

http://en.wikipedia.org/wiki/Albedo

“or reflection coefficient, is the diffuse reflectivity or reflecting power of a surface. It is defined as the ratio of reflected radiation from the surface to incident radiation upon it. Being a dimensionless fraction, it may also be expressed as a percentage, and is measured on a scale from zero for no reflecting power of a perfectly black surface, to 1 for perfect reflection of a white surface.”

Clouds

http://en.wikipedia.org/wiki/Clouds

Aerosols

http://en.wikipedia.org/wiki/Aerosol

“act as cloud condensation nuclei, they alter albedo (both directly and indirectly via clouds) and hence Earth’s radiation budget, and they serve as catalysts of or sites for atmospheric chemistry reactions.”

“Aerosols play a critical role in the formation of clouds. Clouds form as parcels of air cool and the water vapor in them condenses, forming small liquid droplets of water. However, under normal circumstances, these droplets form only where there is some “disturbance” in the otherwise “pure” air. In general, aerosol particles provide this “disturbance”. The particles around which cloud droplets coalesce are called cloud condensation nuclei (CCN) or sometimes “cloud seeds”. Amazingly, in the absence of CCN, air containing water vapor needs to be “supersaturated” to a humidity of about 400% before droplets spontaneously form! So, in almost all circumstances, aerosols play a vital role in the formation of clouds.”

http://www.windows2universe.org/earth/Atmosphere/aerosol_cloud_nucleation_dimming.html

Snow

Ice

Water

Particulates

http://en.wikipedia.org/wiki/Particulates

Soot/Black Carbon

http://en.wikipedia.org/wiki/Soot

http://en.wikipedia.org/wiki/Black_carbon

Algae (Ocean Surface)

10. Biology

http://en.wikipedia.org/wiki/Biology

“Phototrophs

http://en.wikipedia.org/wiki/Photoautotroph

are the organisms (usually plants) that carry out photosynthesis;

http://en.wikipedia.org/wiki/Photosynthesis

to acquire energy. They use the energy from sunlight to convert carbon dioxide and water into organic materials to be utilized in cellular functions such as biosynthesis and respiration.” “In plants, algae, and cyanobacteria, photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product.”

Chemoautotrophs;

http://en.wikipedia.org/wiki/Chemotroph

are “organisms that obtain carbon through Chemosynthesis;

http://en.wikipedia.org/wiki/Chemosynthesis

are phylogenetically diverse, but groups that include conspicuous or biogeochemically-important taxa include the sulfur-oxidizing gamma and epsilon proteobacteria, the Aquificaeles, the Methanogenic archaea and the neutrophilic iron-oxidizing bacteria.”

Bacteria – TBD

Fungi – TBD

Protozoa – TBD

Chromista – TBD

Animal – Anthropogenic including:

Carbon Dioxide;

http://en.wikipedia.org/wiki/Carbon_dioxide

contributes to the Greenhouse Effect;

?

and

influences the rate of plant growth ;

http://www.sjsu.edu/faculty/watkins/CO2plants.htm

Methane

http://en.wikipedia.org/wiki/Methane

Nitrous Oxide

Ozone

Particulates, especially Black Carbon/Soot

Aerosols

Icebreakers/Arctic Shipping/Fishing/Cruise-Line Transits

Contrails

Nuclear Power Generation – Including Ships

Land Use Changes – Including De and Re-Forestation

Urban Heat Islands

Run Off From Asphalt/Urban Heat Islands

Fossil Fuel Energy Generation Waste Heat –

Renewables – Wind Farms, Solar Arrays, Dams and Ethanol

Sewage/Wastewater Treatment Discharge

etc.

Animal – Non-Anthropogenic including

Plankton

Beaver (Genus Castor)

http://en.wikipedia.org/wiki/Beaver

etc.

11. Chemical

Fossil Fuels:

Coal

Oil shale

Petrochemicals

– Petroleum

– Mineral Oil

Asphalt

Tar Pits/Sands

Methane

http://en.wikipedia.org/wiki/Methane

etc.

“Photosynthesis;

http://en.wikipedia.org/wiki/Photosynthesis

is a chemical process that converts carbon dioxide into organic compounds, especially sugars, using the energy from sunlight.”

“Chemosynthesis;

http://en.wikipedia.org/wiki/Chemosynthesis

is the biological conversion of one or more carbon molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic molecules (e.g. hydrogen gas, hydrogen sulfide) or methane as a source of energy, rather than sunlight, as in photosynthesis.”

Reactions:

Combustion

– Forest Fires

– Fossil Fuels

– – Methane

http://en.wikipedia.org/wiki/Methane

etc.

Conversion of Methane, CO2, etc.

12. Physics – Other

Temperature

http://en.wikipedia.org/wiki/Temperature

Pressure

http://en.wikipedia.org/wiki/Pressure

States of Matter

http://en.wikipedia.org/wiki/State_of_matter

Heat Conduction

http://en.wikipedia.org/wiki/Heat_conduction

Convection

http://en.wikipedia.org/wiki/Convection

Thermal Radiation

http://en.wikipedia.org/wiki/Thermal_radiation

Thermodynamics

http://en.wikipedia.org/wiki/Laws_of_thermodynamics

-Entropy

http://en.wikipedia.org/wiki/Entropy

General summaries of the potential variables involved in Earth’s climate system;

http://www.physicalgeography.net/fundamentals/7y.html

http://oceanservice.noaa.gov/education/pd/climate/factsheets/whatfactors.pdf

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

332 Comments
Inline Feedbacks
View all comments
F. Ross
June 30, 2011 5:42 pm

Well how about the role of submarines, surface boats and ships, and surfers on the mixing/interruption of oceanic currents? Didn’t think of that one didja? 🙂
On the serious side how about the possible affect(s) of large scale wind farms on the atmosphere. For your consideration:
http://www.savewesternny.org/environment.html
and
http://people.ucalgary.ca/~keith/WindAndClimateNote.html

DanDaly
June 30, 2011 5:55 pm

Outstanding post! I look forward to seeing the other half regarding biological influences on atmosphere and climate, including biological changes in the use of land, ocean and atmosphere. Taking into account accuracy of observation and recording would be useful as well.
I would also recommend a more balanced approach to the section regarding Solar EUV/UV observations, which truly are in their infancy. Although there have been several speculative theories, no one has had time to measure and analyze what happens when we change from (TSI = solar constant) to [(TSI – 0.1%) – (10% EUV/UV)]. Although I’ve heard it said that our atmosphere is “opaque” or “nearly” opaque to EUV/UV, I wonder whether there isn’t enough that gets through the atmosphere to excite oxygen and water enough that its absence would be perceptibly missed.
And, given that the prolonged lack of significant solar wind has seemingly caused the collapse of the outer atmosphere, I would think more observation should be devoted to whether that causes changes in other parts of the atmosphere coupled with the climate.
But those are just my personal interests.
Keep up the wonderful work!

Lew Skannen
June 30, 2011 5:56 pm

This is the article I have been waiting for!
A while ago I wanted to gather together all the parameters that would need to go into THE MODEL we would need to predict climate. I soon realised that I did not have anywhere near the knowledge and from this list I can see that I was not even close. (I came up with only about a dozen factors)
The list above is an excellent start and can only grow.
What might also be interesting would be to produce a matrix indicating how each factor affects any of the other factors.
When that is done then maybe Al Gore or the Hockey Team will be kind enough to show us how they have solved it all.
I mean they have solved it haven’t they?…

June 30, 2011 5:59 pm

I knew all of this insane and insurmountable complexity in 1984 (I was a geology major) when I tried (unsuccessfully) to convince my college roommate that humans could NOT control the world’s weather in in WAY, SHAPE OR FORM… His ignorance of the true complexity was resolute and I soon gave up. Twenty seven years later, his ignorance is now represented in every government n the world… Ugh.

June 30, 2011 6:00 pm

“I didn’t notice a category for the effects on earths climate from passing comets, meteor Impacts and rare asteroid impact events, Meteors and interplanetary dust particles and the gases from these particles add about [Add an estimate here] tons of mass to Earth and earths atmosphere each year, it could be as significant or not as man made co2 but it is another factor.”
Sorry!! that category is there, I found it the third time I looked. It’s 1:58 am here and I’m half asleep. 🙂
good job!!

Pamela Gray
June 30, 2011 6:15 pm

Derek Sorensen says:
June 30, 2011 at 3:27 pm
“TL, DR.
Sorry.”
Oh good heavens. I’m currently reading both “1776” by McCullough, and “Battle Cry of Freedom” by McPherson. And I can find time to read through such a great post. Cowboy up.

Editor
June 30, 2011 6:18 pm

Derek Sorensen says:
June 30, 2011 at 4:05 pm

The point is, you need to keep it short. Attention spans these days are vanishingly small – if that wasn’t the case we wouldn’t be in the fix we are today. Although I must say that even in the era I grew up in (60′s/70′s), your post would still have been TLDR.

This will be a reference page, don’t think of it as a regular post. I think a model of not too many reference pages, but each being substantial is good. That limits the amount of clicking on page to find the right one, and searches within a page have a decent chance of reaching the goal.
Justthefacts – I noticed a Lief (should be Leif) somewhere above that you’ll want to fix.

Cecil Coupe
June 30, 2011 6:35 pm

You could also use this as a primer or extended table of contents to the reference pages. You could include hyperlinks to the WUWT reference pages since it’s a long weekend…
Rather than insert another comment into the system, If Mike Tobis reads down this far: At WUWT, not every single post is about Global Warming, climate science or flinging poo over the fence(s). If you want to debate the physics and math head over to Judy’s or Lucia’s. If you want to debate the the warming/not-warming I’m sure another post on that topic will appear here in a day or less.
/rant Sorry, I’m just tired of commentators demanding what websites and posters should do to satisfy their view of what the site is.

commieBob
June 30, 2011 6:38 pm

Wil says:

That particular area is not a normal ice melt – it should not melt in the middle first.

There are places where the water never melts, they are called polynya.
http://en.wikipedia.org/wiki/Polynya

commieBob
June 30, 2011 6:56 pm

Just The Facts says:

I have been studying Earth’s climate system for several years and have found it to be a ridiculously complex, continually evolving and sometimes chaotic beast.

The climate is the very definition of a chaotic system. I heard an interview with Lorenz (discoverer of chaos theory). He had run a climate model and there was a problem before the run could be completed. He needed the results and didn’t have enough time to run the model again. He decided to run the model with fewer significant digits. That would speed up the process with, he thought, a loss of accuracy. The results were, however, completely different. This led to: “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? ” http://en.wikipedia.org/wiki/Butterfly_effect
Perhaps your list could have something on chaos theory added. http://www.schuelers.com/ChaosPsyche/part_1_3.htm
http://en.wikipedia.org/wiki/Chaos_theory

June 30, 2011 7:04 pm

Already a great resource and looking forward to further ammedments.

June 30, 2011 7:04 pm

Doesn’t matter. If we ruin the Western economies we will limit the temperature rise to 2C.
/sarc

John R T
June 30, 2011 7:29 pm

Can you search for the word ´varies?´ Should be VARY. oops-.-. here it is
¨…appears to varies/VARY by approximately 10% during the solar cycle;
http://www.nasa.gov/topics/solarsystem/features/solarcycle-sorce.html¨
The following entry also has a grammar/typo error. May be the word ´grand.´
This contribution is priceless. Last year, I spent several weeks on Donna´s IPCC audit. What about crowd-sourcing?
AND, what about our friendly Castor X neighbors: for decades, they enjoyed the distinction of Greatest Changers of the Earth´s surface!

Theo Goodwin
June 30, 2011 7:32 pm

Bystander says:
June 30, 2011 at 3:40 pm
“That seems to be a silly thing to say.- there is a vast amount of science being done in each area and the basic physics and chemistry are know.It is like saying because the human body is complex no one should pursue an understanding of disease.”
Cool!!! So, now you are going to show us the physical hypotheses that enable explanation and prediction of forcings and that go beyond Arrhenius’ work to reveal that dangerous warming from CO2 is coming down the pike? Huh? Huh? Are you going to do it?

Theo Goodwin
June 30, 2011 7:34 pm

This is wonderful work. Thanks so much.

savethesharks
June 30, 2011 7:35 pm

I need about a week or two to study all of this, Justthefacts, but your logic is impeccable.
Thanks for this and I plan to print everything out and put it in a notebook to study.
Chris
Norfolk, VA, USA