Guest essay by Steve Goreham
Large-scale storage of electricity is the latest proposed solution to boost the deployment of renewables. Renewable energy advocates, businesses, and state governments plan to use batteries to store electricity to solve the problem of intermittent wind and solar output. But large-scale storage is only an insignificant part of the electrical power industry and doomed to remain so for decades to come.
Last month, Senator Susan Collins of Maine introduced a bi-partisan bill named “The Better Energy Storage Technology Act,” proposing to spend $300 million to promote the development of battery solutions for electrical power. Collins stated, “Next-generation energy storage devices will help enhance the efficiency and reliability of our electric grid, reduce energy costs, and promote the adoption of renewable resources.”
Arizona, California, Hawaii, Massachusetts, New Jersey, New York, and Oregon adopted statutes or goals to develop storage systems for grid power, with New York committing to most ambitious target in the nation. In January, as part of his mandate for “100 percent clean power by 2040,” New York Governor Andrew Cuomo announced a target to deploy 3,000 megawatts (MW) of storage by 2030.
Today, 29 states have renewable portfolio standards laws, requiring utilities to purchase increasing amounts of renewable energy. But the electricity output from wind and solar systems is intermittent. On average, wind output is between 25% and 35% of rated output. Solar output is even less, delivering an average of about 15% to 20% percent of rated output.
Mandating the addition of wind and solar to power systems is like forcing a one-car family to buy a second car that runs only 30% of the time. The family can’t replace the original car with the new intermittent car, but must then maintain two cars.
Renewable advocates now propose electricity storage to solve the intermittency problem and to help renewable energy replace traditional coal, natural gas, and nuclear generators. When wind and solar output is high, excess electricity would be stored in batteries and then delivered when renewable output is low, to try to replace traditional power plants that generate electricity around the clock.
Headlines laud the growth of battery installations for grid storage, growing 80% last year and up 400% from 2014. But the amount of US electricity stored by batteries today is less than miniscule.
Pumped storage, not batteries, provides about 97% of grid power storage in the United States today. Pumped storage uses electricity to pump water into an elevated reservoir to be used to drive a turbine when electricity is needed. But less than one in every 100,000 watts of US electricity comes from pumped storage.
In 2018, US power plants generated 4.2 million GW-hours of electrical power. Pumped storage capacity totaled about 23 GW-hrs. Battery storage provided only about 1 GW-hr of capacity. Less than one-millionth of our electricity is stored in grid-scale batteries.
Electricity storage is expensive. Pumped storage is the least costly form of grid storage at about $2,000 per kilowatt, but requires areas where an elevated reservoir can be used. Battery storage costs about $2,500 per kilowatt for discharge duration of two hours or more. Batteries are more expensive than onshore wind energy, which has an installed market price of under $1,000 per kilowatt. But a key factor in the effectiveness of storage is the length of time that the system can deliver stored electricity.
In the case of New York State, plans call for the installation of 9,000 MW of offshore wind capacity by 2035 and 3,000 MW of battery storage by 2030. The wind system will likely cost in excess of $9 billion, and the battery system will likely cost about $7.5 billion. But this planned battery deployment is wholly inadequate to remove the wind intermittency.
If the wind system has an average output of 33% of its rated output, then the planned 3,000 MW of battery storage would only be able to deliver the average wind output for about two hours. To replace output for a full day when the wind isn’t blowing, 36,000 MW of storage would be needed at a cost of $90 billion, or about ten times as much as the wind system itself. Since several days without wind in most locations is common, even a day of battery backup is inadequate.
In addition, the 10-15 year lifetime of grid-scale batteries is no bargain. Wind and solar systems are rated for 20-25 years of service life. Traditional coal, natural gas, and nuclear systems last for 35 years or more.
Storage of electricity should be regarded as foolish by anyone in the manufacturing industry. For decades, major companies pursued just-in-time manufacturing, “lot size one,” Kanban, lean manufacturing, and other programs designed to eliminate finished goods inventory to reduce costs. Electricity is delivered immediately upon generation, the ultimate zero-finished-goods-inventory product. But many organizations now clamor for electricity storage to try to fix the intermittency weakness of renewables.
Today, battery grid storage capacity is less than one millionth of national electricity output. Practical battery storage adds a cost factor of at least ten to the cost of the partner renewable system. It will be decades before battery storage plays a significant role in large-scale power systems, if ever.
Originally published in Energy Central. Republished here at the request of the author
Steve Goreham is a speaker on the environment, business, and public policy and author of the book Outside the Green Box: Rethinking Sustainable Development.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.


Another problem with batteries is manufacturing capacity.
With useful life of a battery limited to 10 to 15 years, you wind up replacing as much as 10% of your installed capacity every year(1). Long, long before you had managed to build enough capacity to supply even a few minutes of capacity for the country, replacement alone would consume all of current manufacturing capacity.
Basically, it’s impossible to build enough enough batteries, fast enough, to come anywhere close to supplying usable battery back up for a 100% renewable system.
(1) You can forget about building any batteries for electric toy cars.
I wrote up the deceptive difference between battery MW and battery MWh in essay California Dreaming in ebook Blowing Smoke, published late 2014.
As the inventor on 4 issued very basic US patents (also issued Korea, Japan, Russia, EU) on advanced energy storage materials, I can also assure everyone at WUWT that not much has changed since. Cheap large scale battery storage is a scientific chimera, no different than the hydrogen solution deconstructed in essay Hydrogen Hype in the same ebook.
Batteries have three basic parameters (ignoring economics, only considering physchem): energy density, power density, and lifetime. You can never get more than 2 of the three simultaneously, thanks to the basics of the governing Nernst equation. Unfortunately, grid applications need all three simultaneously.
Re. the mention of pumped storage, that means building dams, or creating
a lake at a high elevation, the same thing. But wait, the Greens do not
approve of building Dams, it might affect something up there. Anyway
it takes a lot of energy to pump water uphill so where does that come from.
I would suspect from Fossil energy as the renewable just don’t supply a
steady flow of energy. Its a catch 22 situation.
MJE VK5ELL
Battery storage was never meant to make up for long windless periods. It is there to manage the transitions between different power types, and to give better frequency control. Here is an analysis of what the big South Australia battery has been achieving. It is actually really useful.
Correct. Useless for backup power. But that’s not what’s being sold to the people. And you know it.
Mark writes
Most people by far dont understand the issues around grid stability. But most people can see that when they’re not home during the day, that their solar roof feeding their home battery can soak up unused energy to be used later that evening and save them money.
It does save them money, however the amount of money saved is much less than the cost of the system. Unless taxpayers are buying your system for you.
Hey Nick. Frequency control is not needed if you have big spinning generators. It comes with the inertial energy territory.
Now, if you have asynchronous wind or solar, you have lost grid inertia. So, there are two EE solutions:
1. Add a big bunch of ultra expensive short lived batteries, as SA chose. Nuts.
2. Add massive synchronous condensers (essentially unpowered generators of generator spinning mass) that can absorb reactive power (that AC suqre root of minus one wave phase sign thingy) and provide grid inertia.
Your problem is, sufficient (2) is like adding additional equivalent rotating generating capacity but without the associated driving power turbines. Not cheap, meaning renewables (forget direct cost subsidies) are NEVER grid cost competitive on a system grid basis because lacking grid inertia. As Australia continues to prove in the real world.
Rud writes
Yes but batteries are a better solution when you add renewables or indeed if the grid is varying. Otherwise you end up load shedding because batteries dont just hold up the supply when the underlying generation is insufficient, they soak up any excess.
“Frequency control is not needed if you have big spinning generators.”
Two different ways of achieving frequency control. Batteries have capital cost, and eventual replacement cost. Generators (with flywheels) powered by FF have capital cost, replacement cost, and fuel cost. Not to mention emissions.
Wow, such sophistry.
Everything has costs, so costs don’t matter.
Batteries do have fuel cost, are they charged by unicorn flagrance? If they are charge by solar which has a build is loss of 25%. Solar you never retrieve the energy it took to build it, you end generally end up 25% short. I strongly believe much the same is true for wind. You losses on batteries between the energy to charge them and what you get back out is about 10% and that get worst as they age. That plenty oblivious with my golf cart right now. Just the cost of batteries for my golf cart over their life time would buy enough gasoline to drive my pickup five thousand miles, the golf cart miles are nowhere near that. This just the cost of the batteries the cost of electric to charge them is not add in yet. Yes they are lead acid batteries, the reason they are is any other battery would make golf carts unaffordable, yet that what the greenies want to do to our electric cost.
Ten percent round-trip loss is unrealistic. It requires one-way efficiency well over 95% if you consider parasitic losses. Good luck finding a battery that manages that.
One other difference. Spinning generators produce electricity, batteries consume it.
Useful in an engineering sense…. no one doubts that. And putting big capacitors in small scale UPS systems and power supplies is always a good idea (if you can afford it/justify it for the application) to help smooth-out nasty voltage spikes and freq changes.
The question is not whether it is helpful, the question is why do you NOW need it in the first place? When spinning reserve was always the better answer from stability and overall costs in the past?
If you think this entire “green” energy and batteries is about emissions of CO2, then the entire production to replacement life-cycle of the batteries and wind turbines must be considered. And when that is done properly, the batteries and the turbines themselves cancel out any emissions decrease and simply transfer the carbon accounting elsewhere. And the only thing delivered is higher costs at less reliability.
Joel,
Have you omitted something from your summary?
“And the only thing delivered is higher costs at less reliability.”
Also delivered – otherwise the system will not be financed, even with Other Peoples’ Money – is cash for the friends [and relatives, perhaps] of the politicians.
OPM – in large amounts!
Auto
In other words, if you want to build a renewable system you have to build:
1) Enough renewable power to run everything.
2) Enough fossil fuel power to everything.
3) Enough batteries to run everything long enough to fire up the fossil fuel power plants.
PS: Starting a fossil fuel plant from a cold start takes days. So despite what Nick claims, you are going to need enough battery storage to last for days.
PPS: The only way to avoid the need for huge batteries is to keep your fossil fuel plants hot, so that they can take over in a matter of minutes. The problem with keeping them hot is that they use almost as much fuel as they would had you been using them to generate power.
High-Availability (HA) isn’t feature of “renewables”.
Mark W ‘with useful life of a battery limited to 10 to 15 years’ one must wonder what is required to recycle lithium batteries? Can the substances used in the batteries be easily recovered? What is the energy requirements to recycle? In the near future we will be deluged with old electric car batteries, let alone grid storage batteries. A recent post in WUWT calculated it takes 100 barrels of oil energy equivalent to manufacture one barrel of oil energy equivalent of battery storage. One should then add in the recycling energy. Has there been any attempt to do the sums on battery storage or is it all pipe dreams?
It’s still at the research stage:
https://www.swerea.se/en/news/47-million-kronor-for-research-in-battery-recycling
” It will be decades before battery storage plays a significant role in large-scale power systems, if ever.”
Hmm, seems the author believes he can see into the future! So, the grid-capacity batteries that are in development now will prove to be flops? He ought to tell that to those who are working on them, save them some time.
“The wind system will likely cost in excess of $9 billion, and the battery system will likely cost about $7.5 billion.” How the heck does the author know how much the battery system would cost if it isn’t yet commercially available?
“Since several days without wind in most locations is common, even a day of battery backup is inadequate.”
Several days totally without wind off the coast of NY is common? Really? Well, if that’s the case, it’s a pretty dumb project, isn’t it? Presumably they would have thought of such things.
” He ought to tell that to those who are working on them, save them some time.”
A pretty general caution for scoffers. The people involved in these developments can do this arithmetic. There is an interesting article here on the SA Musk battery. Seems it cost $90 million, but is rapidly paying for itself, just in the marketplace. In the conventional way, buying low and selling high. The commercial benefit of smoothing the short term market.
Nick writes
It just goes to show the value of energy at peak demand. Your average Joe cant get past understanding the value in a battery that cant even last a day.
The Jamestown battery **IS** a good idea Nick. You pretty much need one or more for any sort of bursty electricity supply that doesn’t have sufficient turbines and motors in the load to smooth out the short term peaks and dips. That’d be large scale wind, solar, and probably waves. But not hydro, geothermal or tides. And the cost really should be included in the nominal cost of those “renewable” energy sources that need a whopping great battery. But it’s not because that’d be realistic and realism is NOT what green power advocates want.
OTOH, Musk’s battery is, as far as I can see, **NOT** really “paying for itself”. The appearance of doing so is an artifact of the bizarre “market-oriented” electricity control scheme used in South Australia — which appears to be similar to the one that Enron used to cause chaos in California two decades ago. I’m not an expert in that area and I could be wrong, but it appears to me that these “electricity markets” are a truly terrible idea that should appeal only to scam artists and slow learners.
“The appearance of doing so is an artifact of the bizarre “market-oriented” electricity control scheme used in South Australia”
It’s actually the national market (except WA). SA is doing quite well out of it. Their battery makes money in scarcity, and SA is now a net exporter of power, based on renewables.
The market profits reflect the actual benefit the battery provides, in providing power when no-one else can.
Naw. The apparent profitability is windfall, not fundamental. With a grid “management” (is that the right word?) scheme that somehow creates spot prices in excess of $10,000 per mwhr, it’s hard not to make money if you have power to sell and a grid connection. It’s sort of like a pharma salesman inadvertently winding up in the middle of a cholera epidemic with a suitcase full of tetracycline.
I assume that sooner or later, you folks will tame your energy pricing problem.
That’s by contrast to the battery’s genuine utility in making up for the lack of “spinning reserve” in your renewable oriented electricity scheme.
“It’s sort of like a pharma salesman inadvertently winding up in the middle of a cholera epidemic with a suitcase full of tetracycline.”
Yes. But it reflects the fact that bringing tetracycline to a cholera epidemic is actually a good thing to do.
Nick, you really are a ‘clever’ idiot.
The prices in the national market reflect the absurd inefficiency of the grid’s costs. As Don K says, the battery only appears to make money because its currently trading those inefficiencies. Either the trading will eventually produce the right price signals to bring about the investment required to end those inefficiencies, or a ‘regulator’ will impose a new trading system.
Its economic life will be shortlived.
” the right price signals to bring about the investment required to end those inefficiencies, or a ‘regulator’ will impose a new trading system.”
The problem is intermittent scarcity of power. A regulator can’t fix that with trading rules. They do cap prices, but that just means that people in the spot market can’t get power at all, rather than getting it at excessive prices. The “investment required to end those inefficiencies” is the building of batteries, which can supply power on those timescales. Then indeed the profitability of the SA battery will be eroded, but only by competition from other batteries.
As Nick well knows, when government is paying for research, it isn’t necessary for it ever to produce anything useful.
One doesn’t have to be able to see into the future in order to run the numbers on the batteries available now and those under development.
Beyond that, as others have pointed out. The chemistry behind batteries is well known. The idea that there is a magical combination of chemicals that will create a new battery that is substantially better than the ones we currently have is wishful thinking.
Again with the sophistry.
The author says that there are many days that go without wind for days.
Kristi counters by saying that many days without wind is rare in one place.
“Kristi counters by saying that many days without wind is rare in one place.”
Not that rare. They are known as “stationary high pressure areas” and can last for a couple of weeks at a time and affect Europe-sized areas. They aren’t that common, but happen every few years and can happen both in summer and winter. An energy storage system must be sized to cope with them. Unfortunately they cause heat-waves in summer and cold waves in winter.
I didn’t say that Kristi’s counter was factual, I was just pointing out that it was illogical.
And the green dreamers don’t believe they can see into the future?
We need what works in the mean time (ie NOW) to keep things running and people safe to keep running until something better comes along.
PS Let those working on them work on their own dime or the dimes of those who voluntarily chose to invest in them, not mine.
PS Soros, Steyer and others invest a lot into politics that are supposed to make the Green Dream come true. Why don’t they invest in the green stuff directly? Why don’t they “build the better mouse trap”?
But at present an incredibly useful power source, in 2 circumstances:
1) replaces spinning reserve. It responds much, much more quickly. The SA (weather caused!) power outage is now unlikely to reoccur because the local grid has battery support
2) it replaces peaking power plants… which are expensive to run
the long term backup power to grids is NOT going to be anything like 100% battery in any case… power to gas will likely be the UK and German solutions.
Apparently, that excess “battery” power is exported to other states in Australia now. I guess no-one lives in SA anymore.
Equally incredible power sources — unicorn farts, rainbows, and fairy dust…..
If batteries were cheaper than peaking power plants, power companies would be falling all over each other to build them.
Response time isn’t relevant. What matters is the ability to maintain frequency as the load varies. For that, batteries are inferior.
What matters is the ability to maintain frequency as the load varies??????
…
No MarkW, what matters is the ability to maintain voltage as the load varies.
Both need to be maintained, however we are talking about why spinning reserves are necessary.
How big are these batteries?
How big are the buildings to house them?
How long do they last?
How do we dispose of them safely?
What is there carbon footprint?
What is the actual cost, not the fairy tale cost?
Where are all the materials coming from and what is the environmental impact (or does this not matter for “the greater good”)?
Not going to happen, no matter how much money is wasted.
In South Australia they are all in the open. 100Mwh iirc.
How big are the batteries?
If they are stationary they can be huge, but not nearly as large as an aluminum smelter. Think big. Is it possible to reverse the process of making aluminum to store electricity? Some say it is possible but aluminum is the wrong stuff. More like magnesium and antimony alloyed in appropriate ways to lower melting points.
I spoke to a senior UK civil service about backup for wind over 15 years ago. He pointed out that there just wasn’t the sites for enough pump storage. Neither of us seriously mentioned batteries.
typically when I installed off grid renewable energy systems, i used to include about 1month of storage, 10 days was pushing it, 1 day would be insane.
The fact that storage is the last thing anyone is now thinking about, is I think, very clear proof that the sane people stopped being listened to about 15 years ago.
There is nothing wrong with storing energy, it just depends how you store it. Trees are a decades-to-centuries store, with intermittent downside risk of fire, wind or human destruction. Oil, gas and coal are energy stores of geological epoch timescales.
In nature, we eat fresh food in summers but grow storable crops for winter. Squirrels bury nuts as winter food stores. Bears simply gorge themselves in summer and sleep it off for five months in a snow hole. Storage is pragmatism, common sense.
It is not whether to store, it is how to store. Those that store winter vegetables know a lot about what works and what does not.
It is the same with energy. Finding the right modes of energy storage for different scenarios.
If one mode is rubbish then discard it.
But do not discard the concept of energy storage per se. It is a timeless feature of human life….
Speaking of storage – oil, coal, gas, nuclear. It’s nature’s way.
“It is not whether to store, it is how to store.” And WHY to store. We need this storage to accommodate intermittent generators. The price of storage must be added to the price of of energy so generated.
EGT? Or Egit?
https://www.urbandictionary.com/define.php?term=egit
As far as I am aware, no truly realistic cost studies have been produced for highly ambitious wind and solar proposals which cover large, specifically-identified geographic areas such as Australia, studies which use commonly accepted methods for doing engineering-level cost and schedule estimating.
Nick Stokes, can I ask a favor of you? Can I ask you to seek a fully-funded study grant from the Australian government for designing an 80% renewable / 20% gas-fired electric grid for Australia to a level of engineering detail which supports a reasonably accurate cost and schedule estimate for completely eliminating coal from Australia’s energy mix by the year 2050?
The questions to be studied are these:
— What will it take in time and money to build and operate this fully integrated 80/20 grid system for the next fifty years?
— What particular cost trends in which particular technology areas will have the greatest impacts on the project’s total cost and schedule, both its capital costs and its total lifecycle costs?
— Using the study’s initial output as a basis for further analysis, what are the impacts of using a series of alternative baseline planning assumptions on the project’s total lifecycle costs?
The numbers and types of alternative planning assumptions might include the predicted costs and availability of renewable energy technologies, future changes in today’s grid reliability and performance requirements, future changes in today’s regulatory review processes, changes in current methods of project financing and capital formation, and the inclusion of alternative scenarios for the evolution through time of Australia’s overall socio-political and economic dynamic.
Here are the initial assumptions which are to support the study:
— Through legislation and agreement, Australia grants carte blanche authority to its Prime Minister and to its federal and state governments for overcoming any technical, financial, or regulatory obstacles which might get in the way of building and deploying this 80% renewable power grid.
— A list of grid reliability and performance requirements equivalent to what is now in force today is applied.
— The public and private lands needed for locating the solar arrays, the wind farms, the pumped hydro facilities, the battery storage facilities, and the gas-fired generation facilities are allocated and reserved through a process of eminent domain, with fair prices and rents paid to the land’s current owners. Other wind farms are located off Australia’s coasts wherever they are best placed to maximize wind capacity factors.
— A fast track environmental review process for all elements of the renewable energy grid system is applied so that regulatory oversight of energy facility siting, construction, and plant operations is minimized.
— The Australian Prime Minister and the governors of the Australian states are granted authority to modify or reverse any regulatory decision made at any level of federal, state, or local government if that decision might impede progress in siting, constructing, and operating the 80% renewables grid.
The feasibility design for the 80/20 grid includes specific engineering details for the particular solar arrays to be used and their proposed locations, the particular wind mills to be used and their proposed locations, the particular battery and pumped storage facilities and their locations, the particular gas-fired generation facilities, the routes and configurations of the power transmission corridors, and the configurations and locations of the power distribution and control facilities.
After the feasibility design for the 80/20 grid is complete, and it is available in enough level of detail to reliably identify what each major phase and sub-phase of the project will cost, and how long each phase and sub-phase will take, then the cost and schedule risks for the entire project as a whole are analyzed.
The project lifecycle cost and schedule risk analysis will determine what range of total costs can be expected and how long it will actually take before the 80% figure for Australia can finally be achieved, if it can’t be achieved by the target date of January 1st, 2050.
Thanks in advance.
Stokes is retired IIRC.
That’s what I understand. However, this proposed feasibility study is of such importance to Australia I’m sure Nick Stokes could be persuaded to come out of retirement to lead it.
One of Stoke’s first tasks as project manager would be to hire Mosher as the project’s data archiving and research process QA expert, and to hire Griff as the project’s public relations coordinator.
“As far as I am aware, no truly realistic cost studies have been produced for highly ambitious wind and solar proposals which cover large, specifically-identified geographic areas such as Australia, studies which use commonly accepted methods for doing engineering-level cost and schedule estimating.”
Asking those questions is a very bad career move as you can see here moving your mouse over the June graph of current Australian wind energy output only to discover it varies from 1.9% to 63.1% of installed capacity and it’s entirely left to what you’re smoking as to the cost of storage to level that out at around 30% average over a year-
https://anero.id/energy/wind-energy/2019/june
Not to worry something will turn up if you truly believe in science and technology as long as you dismiss economics as the dismal science. From each according to their ability and to each according to their ne.. ahh..perhaps we’ll forget the last part.
The largest pumped storage system in the USA is the Bath County Pumped Storage Station hydroelectric power plant, often described as the “largest battery in the world”, with a maximum generation capacity of 3,003 MW. However the total storage capacity is 24,000 MWh. Thus when you divide 24,000 by 3,000 you get 8 hours.
That’s right eight hours. Look at “Bath County Pumped Storage Station” on your favorite map app. The reservoir takes up a good chunk of land. The US only has about 20,000 MW total pumped storage capacity, and has not built any new ones in the last 30 years. Any environmentalist know why.
Math problem #1 Bath County Pumped Storage Station reservoir contains 8,000,000 cubic yards. How many yards will it take to provide the 750,000 people that Duke claims it supplies with power for a period of one week when the wind is not blowing for a week?
Math problem #2 determine how many acres will be needed for the battery storage system for one week of use providing 750,000 people for a week.
Hydrogen is produced through electrolysis; it can be used in fuel cells in cars or underground salt caverns can store the fuel for power generation for the grid.
http://energystorage.org/energy-storage/technologies/hydrogen-energy-storage
Man made underground salt caverns at 200 bar? And I certainly would not like to be anywhere near high volumes of 300 bar pressurised cylinders. Pure pie in the sky stuff that is.
This has been studied in Sweden, where no salt deposits are available. Steel-lined rock caverns are known to work well for other gases, but there is some uncertainty with hydrogen, due to possible hydrogen embrittlement of the steel.
Ristvan will be long gone before Hell freezes over, which is when “hydrino tech” will be producing power, so no he won’t be eating a plate of crow.
“Hydrinos” are every bit as much a fraud as ecat, emdrive, and Keeely motor.
So, boiling it down to a sound bite that can be understood by everybody … and repeated many times in presidential debates:
“The renewables technology simply does not work”
If we can produce molten aluminum on a massive scale using massive amounts of electricity, we also can store massive amounts of energy using liquid (molten) metals. Don Sadoway has worked it all out and has a wonderful presentation explaining it all. He’s not a kook inventor. He teaches materials chemistry in a very popular course at MIT. Check out his YouTube. This is not just theoretical. He’s producing practical cells that are about ready to be marketed.
https://m.youtube.com/watch?v=pDxegcZqx_8
This guy was on Colbert.
Being on Colbert is evidence that his science is solid? Really?
Call back when he has actually produced something other than a fancy video.
BTW, just because something can be done isn’t proof that it is smart or economical to do it.
I agree with your sentiments, but I also encourage you to look at his argument. Colbert means nothing , but MIT on the other hand…
The electricity used to produce aluminium isn’t stored in the molten metal. It is mostly used to change aluminium oxide to aluminium, and the only way to get it out is to re-oxidize the metal. This can be done in an aluminium-air battery, which actually has quite high energy density, but, alas, can’t be re-charged. The aluminium has to be regenerated once again using massive amounts of electricity, and since there are large losses in this process, the round-trip efficiency is awful.
Incidentally the massive amounts of energy needed to make aluminium is the reason aluminium is one of the few things worth recycling.
I don’t disagree at all. For Sadoway an aliminum smelter is just a starting point for thinking about about the problem. His scheme involves molten magnesium and antimony. His YouTube is worth taking a glance at.
I’m confused by these numbers. Why is storage being listed in MW? Battery storage should be listed in MWh.
Also, if wind is 3000MW, then a day without wind should be 72,000 MWh.
In fact, 3000 MW of battery storage is sufficient to replace wind energy of 9000 MW that runs at 33% capacity.
This is because they haven’t told you the size of the storage, just the system’s power.
I currently drive for Uber in Taos & Santa Fe, NM. Both cities host conferences, meetings and study groups on topics related to electricity generation, battery storage and the safety of the national electrical grid. I have transported numerous highly placed and highly experienced business and technical people who deal with these topics to and from the airports in both cities. Airport rides take longer than the average city fare, and hence give me time to ask questions.
One consistent response from all parties that I do not see reflected in the popular press or even in WUWT, is that “spinning horsepower”, ie fossil fuel powered generators, are and will be for the foreseeable future, the safety net that insures the integrity of the national electrical grid. At their best and most efficacious use, batteries are intended to level out the uneven power generated by rising and falling wind speeds and diurnal variations in sunlight, including variations in cloud cover, smoke, etc. The characteristics of battery supplied power cannot be relied upon to provide the instant massive power needed to maintain the integrity of the electrical grid in case of a major failure somewhere in the grid.
Every state has one or more Energy Balancing Authority (name may vary) who is (are) responsible for providing and maintaining the spinning horsepower that is instantly ava available to maintain the amperage, voltage and frequency of electrical power in the grid in case of a major failure somewhere in the system. In NM, this energy balancing responsibility lies with Public Service Company of New Mexico.
Not one of the dozen or so knowledgeable people I have transported believes that any renewable source will be able to provide this critical energy balancing function in the foreseeable future.
Why is this critical information never mentioned, even in the case of South Australia? Tesla’s batteries may have evened out power availability on most days, but they do not provide critical system backup.
In the interest of full disclosure, I am a petroleum geologist with 48 years of experience split between office and wellsite. I consider my professional endeavors to have been focused on the intersection of climate change and plate tectonics, ie sedimentary rocks. I have been snowed on the every month of the year in New Mexico, and am aware that there have been periodic ice ages since the Precambrian. It strikes me as dishonest to describe wind and solar power as environmentally friendly only by ignoring the massive amounts of raw materials like cement, rare earth mineral, steel, etc required to produce industrial sale electric Enrgy from “green” sources. EVERY energy source produces noxious byproducts and side effects somewhere in it’s life cycle.
If we take Bucky Fuller’s admonition that “pollution” is really valuable resources being either in the wrong place or being improperly utilized, productive uses can ultimately be discovered for all the so-called pollutants. These productive uses will not be found, however, if the physical realities of ALL forms of electricity production continue to be ignored.
Hydro dams (renewable) also have spinning reserve capacity, they can increase generator torque quickly to meet demand.
Solar has no moving parts, so obvously any reserve has to be simulated using batteries, and batteries cost a fortune – it’s becoming cheaper to overbuild and then curtail overproduction. Musk explained the scale of batteries it would take occasionally but people seem to only hear the parts they like, and then there’s a lot of yelling and noise.
Some turbine generators can be physically decoupled from the generator and run as a ‘rotary synchronous capacitor’