The Pause lengthens yet again

A new record Pause length: no warming for 18 years 8 months

By Christopher Monckton of Brenchley

One-third of Man’s entire influence on climate since the Industrial Revolution has occurred since January 1997. Yet for 224 months since then there has been no global warming at all (Fig. 1). With this month’s RSS temperature record, the Pause sets a new record at 18 years 8 months.

clip_image002

Figure 1. The least-squares linear-regression trend on the RSS satellite monthly global mean surface temperature anomaly dataset shows no global warming for 18 years 8 months since January 1997, though one-third of all anthropogenic forcings occurred during the period of the Pause.

As ever, a warning about the current el Niño. It is becoming ever more likely that the temperature increase that usually accompanies an el Niño will begin to shorten the Pause somewhat, just in time for the Paris climate summit, though a subsequent La Niña would be likely to bring about a resumption and perhaps even a lengthening of the Pause.

The spike in global temperatures caused by the thermohaline circulation carrying the warmer waters from the tropical Pacific all around the world usually occurs in the northern-hemisphere winter during an el Niño year.

However, the year or two after an el Niño usually – but not always – brings an offsetting la Niña, cooling first the ocean surface and then the air temperature and restoring global temperature to normal.

clip_image004

Figure 1a. The sea surface temperature index for the Nino 3.4 region of the tropical eastern Pacific, showing the climb towards a peak that generally occurs in the northern-hemisphere winter. For now, the Pause continues to lengthen, but before long the warmer sea surface temperatures in the Pacific will be carried around the world by the thermohaline circulation, causing a temporary warming spike in global temperatures.

The hiatus period of 18 years 8 months is the farthest back one can go in the RSS satellite temperature record and still show a sub-zero trend. The start date is not cherry-picked: it is calculated. And the graph does not mean there is no such thing as global warming. Going back further shows a small warming rate.

The UAH dataset shows a Pause almost as long as the RSS dataset. However, the much-altered surface tamperature datasets show a small warming rate (Fig. 1b).

clip_image006

Figure 1b. The least-squares linear-regression trend on the mean of the GISS, HadCRUT4 and NCDC terrestrial monthly global mean surface temperature anomaly datasets shows global warming at a rate equivalent to a little over 1 C° per century during the period of the Pause from January 1997 to July 2015.

Bearing in mind that one-third of the 2.4 W m–2 radiative forcing from all manmade sources since 1750 has occurred during the period of the Pause, a warming rate equivalent to little more than 1 C°/century is not exactly alarming. However, the paper that reported the supposed absence of the Pause was extremely careful not to report just how little warming the terrestrial datasets – even after all their many tamperings – actually show.

As always, a note of caution. Merely because there has been little or no warming in recent decades, one may not draw the conclusion that warming has ended forever. The trend lines measure what has occurred: they do not predict what will occur.

The Pause – politically useful though it may be to all who wish that the “official” scientific community would remember its duty of skepticism – is far less important than the growing discrepancy between the predictions of the general-circulation models and observed reality.

The divergence between the models’ predictions in 1990 (Fig. 2) and 2005 (Fig. 3), on the one hand, and the observed outturn, on the other, continues to widen. If the Pause lengthens just a little more, the rate of warming in the quarter-century since the IPCC’s First Assessment Report in 1990 will fall below 1 C°/century equivalent.

clip_image008

Figure 2. Near-term projections of warming at a rate equivalent to 2.8 [1.9, 4.2] K/century, made with “substantial confidence” in IPCC (1990), for the 307 months January 1990 to July 2015 (orange region and red trend line), vs. observed anomalies (dark blue) and trend (bright blue) at just 1 K/century equivalent, taken as the mean of the RSS and UAH v. 5.6 satellite monthly mean lower-troposphere temperature anomalies.

clip_image010

Figure 3. Predicted temperature change, January 2005 to July 2015, at a rate equivalent to 1.7 [1.0, 2.3] Cº/century (orange zone with thick red best-estimate trend line), compared with the near-zero observed anomalies (dark blue) and real-world trend (bright blue), taken as the mean of the RSS and UAH v. 5.6 satellite lower-troposphere temperature anomalies.

The page Key Facts about Global Temperature (below) should be shown to anyone who persists in believing that, in the words of Mr Obama’s Twitteratus, “global warming is real, manmade and dangerous”.

The Technical Note explains the sources of the IPCC’s predictions in 1990 and in 2005, and also demonstrates that that according to the ARGO bathythermograph data the oceans are warming at a rate equivalent to less than a quarter of a Celsius degree per century.

Key facts about global temperature

Ø The RSS satellite dataset shows no global warming at all for 224 months from January 1997 to August 2015 – more than half the 440-month satellite record.

Ø There has been no warming even though one-third of all anthropogenic forcings since 1750 have occurred since the Pause began in January 1997.

Ø The entire RSS dataset from January 1979 to date shows global warming at an unalarming rate equivalent to just 1.2 Cº per century.

Ø Since 1950, when a human influence on global temperature first became theoretically possible, the global warming trend has been equivalent to below 1.2 Cº per century.

Ø The global warming trend since 1900 is equivalent to 0.75 Cº per century. This is well within natural variability and may not have much to do with us.

Ø The fastest warming rate lasting 15 years or more since 1950 occurred over the 33 years from 1974 to 2006. It was equivalent to 2.0 Cº per century.

Ø Compare the warming on the Central England temperature dataset in the 40 years 1694-1733, well before the Industrial Revolution, equivalent to 4.33 C°/century.

Ø In 1990, the IPCC’s mid-range prediction of near-term warming was equivalent to 2.8 Cº per century, higher by two-thirds than its current prediction of 1.7 Cº/century.

Ø The warming trend since 1990, when the IPCC wrote its first report, is equivalent to 1 Cº per century. The IPCC had predicted close to thrice as much.

Ø To meet the IPCC’s central prediction of 1 C° warming from 1990-2025, in the next decade a warming of 0.75 C°, equivalent to 7.5 C°/century, would have to occur.

Ø Though the IPCC has cut its near-term warming prediction, it has not cut its high-end business as usual centennial warming prediction of 4.8 Cº warming to 2100.

Ø The IPCC’s predicted 4.8 Cº warming by 2100 is well over twice the greatest rate of warming lasting more than 15 years that has been measured since 1950.

Ø The IPCC’s 4.8 Cº-by-2100 prediction is four times the observed real-world warming trend since we might in theory have begun influencing it in 1950.

Ø The oceans, according to the 3600+ ARGO buoys, are warming at a rate of just 0.02 Cº per decade, equivalent to 0.23 Cº per century, or 1 C° in 430 years.

Ø Recent extreme-weather events cannot be blamed on global warming, because there has not been any global warming to speak of. It is as simple as that.

 

 

Technical note

Our latest topical graph shows the least-squares linear-regression trend on the RSS satellite monthly global mean lower-troposphere dataset for as far back as it is possible to go and still find a zero trend. The start-date is not “cherry-picked” so as to coincide with the temperature spike caused by the 1998 el Niño. Instead, it is calculated so as to find the longest period with a zero trend.

The fact of a long Pause is an indication of the widening discrepancy between prediction and reality in the temperature record.

The satellite datasets are arguably less unreliable than other datasets in that they show the 1998 Great El Niño more clearly than all other datasets. The Great el Niño, like its two predecessors in the past 300 years, caused widespread global coral bleaching, providing an independent verification that the satellite datasets are better able than the rest to capture such fluctuations without artificially filtering them out.

Terrestrial temperatures are measured by thermometers. Thermometers correctly sited in rural areas away from manmade heat sources show warming rates below those that are published. The satellite datasets are based on reference measurements made by the most accurate thermometers available – platinum resistance thermometers, which provide an independent verification of the temperature measurements by checking via spaceward mirrors the known temperature of the cosmic background radiation, which is 1% of the freezing point of water, or just 2.73 degrees above absolute zero. It was by measuring minuscule variations in the cosmic background radiation that the NASA anisotropy probe determined the age of the Universe: 13.82 billion years.

The RSS graph (Fig. 1) is accurate. The data are lifted monthly straight from the RSS website. A computer algorithm reads them down from the text file and plots them automatically using an advanced routine that automatically adjusts the aspect ratio of the data window at both axes so as to show the data at maximum scale, for clarity.

The latest monthly data point is visually inspected to ensure that it has been correctly positioned. The light blue trend line plotted across the dark blue spline-curve that shows the actual data is determined by the method of least-squares linear regression, which calculates the y-intercept and slope of the line.

The IPCC and most other agencies use linear regression to determine global temperature trends. Professor Phil Jones of the University of East Anglia recommends it in one of the Climategate emails. The method is appropriate because global temperature records exhibit little auto-regression, since summer temperatures in one hemisphere are compensated by winter in the other. Therefore, an AR(n) model would generate results little different from a least-squares trend.

Dr Stephen Farish, Professor of Epidemiological Statistics at the University of Melbourne, kindly verified the reliability of the algorithm that determines the trend on the graph and the correlation coefficient, which is very low because, though the data are highly variable, the trend is flat.

RSS itself is now taking a serious interest in the length of the Great Pause. Dr Carl Mears, the senior research scientist at RSS, discusses it at remss.com/blog/recent-slowing-rise-global-temperatures.

Dr Mears’ results are summarized in Fig. T1:

clip_image012

Figure T1. Output of 33 IPCC models (turquoise) compared with measured RSS global temperature change (black), 1979-2014. The transient coolings caused by the volcanic eruptions of Chichón (1983) and Pinatubo (1991) are shown, as is the spike in warming caused by the great el Niño of 1998.

Dr Mears writes:

“The denialists like to assume that the cause for the model/observation discrepancy is some kind of problem with the fundamental model physics, and they pooh-pooh any other sort of explanation.  This leads them to conclude, very likely erroneously, that the long-term sensitivity of the climate is much less than is currently thought.”

Dr Mears concedes the growing discrepancy between the RSS data and the models, but he alleges “cherry-picking” of the start-date for the global-temperature graph:

“Recently, a number of articles in the mainstream press have pointed out that there appears to have been little or no change in globally averaged temperature over the last two decades.  Because of this, we are getting a lot of questions along the lines of ‘I saw this plot on a denialist web site.  Is this really your data?’  While some of these reports have ‘cherry-picked’ their end points to make their evidence seem even stronger, there is not much doubt that the rate of warming since the late 1990s is less than that predicted by most of the IPCC AR5 simulations of historical climate.  … The denialists really like to fit trends starting in 1997, so that the huge 1997-98 ENSO event is at the start of their time series, resulting in a linear fit with the smallest possible slope.”

In fact, the spike in temperatures caused by the Great el Niño of 1998 is almost entirely offset in the linear-trend calculation by two factors: the not dissimilar spike of the 2010 el Niño, and the sheer length of the Great Pause itself. The headline graph in these monthly reports begins in 1997 because that is as far back as one can go in the data and still obtain a zero trend.

Curiously, Dr Mears prefers the terrestrial datasets to the satellite datasets. The UK Met Office, however, uses the satellite data to calibrate its own terrestrial record.

The length of the Great Pause in global warming, significant though it now is, is of less importance than the ever-growing discrepancy between the temperature trends predicted by models and the far less exciting real-world temperature change that has been observed.

Sources of the IPCC projections in Figs. 2 and 3

IPCC’s First Assessment Report predicted that global temperature would rise by 1.0 [0.7, 1.5] Cº to 2025, equivalent to 2.8 [1.9, 4.2] Cº per century. The executive summary asked, “How much confidence do we have in our predictions?” IPCC pointed out some uncertainties (clouds, oceans, etc.), but concluded:

“Nevertheless, … we have substantial confidence that models can predict at least the broad-scale features of climate change. … There are similarities between results from the coupled models using simple representations of the ocean and those using more sophisticated descriptions, and our understanding of such differences as do occur gives us some confidence in the results.”

That “substantial confidence” was substantial over-confidence. For the rate of global warming since 1990 – the most important of the “broad-scale features of climate change” that the models were supposed to predict – is now below half what the IPCC had then predicted.

In 1990, the IPCC said this:

“Based on current models we predict:

“under the IPCC Business-as-Usual (Scenario A) emissions of greenhouse gases, a rate of increase of global mean temperature during the next century of about 0.3 Cº per decade (with an uncertainty range of 0.2 Cº to 0.5 Cº per decade), this is greater than that seen over the past 10,000 years. This will result in a likely increase in global mean temperature of about 1 Cº above the present value by 2025 and 3 Cº before the end of the next century. The rise will not be steady because of the influence of other factors” (p. xii).

Later, the IPCC said:

“The numbers given below are based on high-resolution models, scaled to be consistent with our best estimate of global mean warming of 1.8 Cº by 2030. For values consistent with other estimates of global temperature rise, the numbers below should be reduced by 30% for the low estimate or increased by 50% for the high estimate” (p. xxiv).

The orange region in Fig. 2 represents the IPCC’s medium-term Scenario-A estimate of near-term warming, i.e. 1.0 [0.7, 1.5] K by 2025.

The IPCC’s predicted global warming over the 25 years from 1990 to the present differs little from a straight line (Fig. T2).

clip_image014

Figure T2. Historical warming from 1850-1990, and predicted warming from 1990-2100 on the IPCC’s “business-as-usual” Scenario A (IPCC, 1990, p. xxii).

Because this difference between a straight line and the slight uptick in the warming rate the IPCC predicted over the period 1990-2025 is so small, one can look at it another way. To reach the 1 K central estimate of warming since 1990 by 2025, there would have to be twice as much warming in the next ten years as there was in the last 25 years. That is not likely.

But is the Pause perhaps caused by the fact that CO2 emissions have not been rising anything like as fast as the IPCC’s “business-as-usual” Scenario A prediction in 1990? No: CO2 emissions have risen rather above the Scenario-A prediction (Fig. T3).

clip_image016

Figure T3. CO2 emissions from fossil fuels, etc., in 2012, from Le Quéré et al. (2014), plotted against the chart of “man-made carbon dioxide emissions”, in billions of tonnes of carbon per year, from IPCC (1990).

Plainly, therefore, CO2 emissions since 1990 have proven to be closer to Scenario A than to any other case, because for all the talk about CO2 emissions reduction the fact is that the rate of expansion of fossil-fuel burning in China, India, Indonesia, Brazil, etc., far outstrips the paltry reductions we have achieved in the West to date.

True, methane concentration has not risen as predicted in 1990 (Fig. T4), for methane emissions, though largely uncontrolled, are simply not rising as the models had predicted. Here, too, all of the predictions were extravagantly baseless.

The overall picture is clear. Scenario A is the emissions scenario from 1990 that is closest to the observed CO2 emissions outturn.

clip_image018

Figure T4. Methane concentration as predicted in four IPCC Assessment Reports, together with (in black) the observed outturn, which is running along the bottom of the least prediction. This graph appeared in the pre-final draft of IPCC (2013), but had mysteriously been deleted from the final, published version, inferentially because the IPCC did not want to display such a plain comparison between absurdly exaggerated predictions and unexciting reality.

To be precise, a quarter-century after 1990, the global-warming outturn to date – expressed as the least-squares linear-regression trend on the mean of the RSS and UAH monthly global mean surface temperature anomalies – is 0.27 Cº, equivalent to little more than 1 Cº/century. The IPCC’s central estimate of 0.71 Cº, equivalent to 2.8 Cº/century, that was predicted for Scenario A in IPCC (1990) with “substantial confidence” was approaching three times too big. In fact, the outturn is visibly well below even the least estimate.

In 1990, the IPCC’s central prediction of the near-term warming rate was higher by two-thirds than its prediction is today. Then it was 2.8 C/century equivalent. Now it is just 1.7 Cº equivalent – and, as Fig. T5 shows, even that is proving to be a substantial exaggeration.

Is the ocean warming?

One frequently-discussed explanation for the Great Pause is that the coupled ocean-atmosphere system has continued to accumulate heat at approximately the rate predicted by the models, but that in recent decades the heat has been removed from the atmosphere by the ocean and, since globally the near-surface strata show far less warming than the models had predicted, it is hypothesized that what is called the “missing heat” has traveled to the little-measured abyssal strata below 2000 m, whence it may emerge at some future date.

Actually, it is not known whether the ocean is warming: each of the 3600 automated ARGO bathythermograph buoys takes just three measurements a month in 200,000 cubic kilometres of ocean – roughly a 100,000-square-mile box more than 316 km square and 2 km deep. Plainly, the results on the basis of a resolution that sparse (which, as Willis Eschenbach puts it, is approximately the equivalent of trying to take a single temperature and salinity profile taken at a single point in Lake Superior less than once a year) are not going to be a lot better than guesswork.

Unfortunately ARGO seems not to have updated the ocean dataset since December 2014. However, what we have gives us 11 full years of data. Results are plotted in Fig. T5. The ocean warming, if ARGO is right, is equivalent to just 0.02 Cº decade–1, equivalent to 0.2 Cº century–1.

clip_image020

Figure T5. The entire near-global ARGO 2 km ocean temperature dataset from January 2004 to December 2014 (black spline-curve), with the least-squares linear-regression trend calculated from the data by the author (green arrow).

Finally, though the ARGO buoys measure ocean temperature change directly, before publication NOAA craftily converts the temperature change into zettajoules of ocean heat content change, which make the change seem a whole lot larger.

The terrifying-sounding heat content change of 260 ZJ from 1970 to 2014 (Fig. T6) is equivalent to just 0.2 K/century of global warming. All those “Hiroshima bombs of heat” of which the climate-extremist websites speak are a barely discernible pinprick. The ocean and its heat capacity are a lot bigger than some may realize.

clip_image022

Figure T6. Ocean heat content change, 1957-2013, in Zettajoules from NOAA’s NODC Ocean Climate Lab: http://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT, with the heat content values converted back to the ocean temperature changes in Kelvin that were originally measured. NOAA’s conversion of the minuscule warming data to Zettajoules, combined with the exaggerated vertical aspect of the graph, has the effect of making a very small change in ocean temperature seem considerably more significant than it is.

Converting the ocean heat content change back to temperature change reveals an interesting discrepancy between NOAA’s data and that of the ARGO system. Over the period of ARGO data, from 2004-2014, the NOAA data imply that the oceans are warming at 0.05 Cº decade–1, equivalent to 0.5 Cº century–1, or rather more than double the rate shown by ARGO.

ARGO has the better-resolved dataset, but since the resolutions of all ocean datasets are very low one should treat all these results with caution.

What one can say is that, on such evidence as these datasets are capable of providing, the difference between underlying warming rate of the ocean and that of the atmosphere is not statistically significant, suggesting that if the “missing heat” is hiding in the oceans it has magically found its way into the abyssal strata without managing to warm the upper strata on the way.

On these data, too, there is no evidence of rapid or catastrophic ocean warming.

Furthermore, to date no empirical, theoretical or numerical method, complex or simple, has yet successfully specified mechanistically either how the heat generated by anthropogenic greenhouse-gas enrichment of the atmosphere has reached the deep ocean without much altering the heat content of the intervening near-surface strata or how the heat from the bottom of the ocean may eventually re-emerge to perturb the near-surface climate conditions relevant to land-based life on Earth.

clip_image024

Figure T7. Near-global ocean temperatures by stratum, 0-1900 m, providing a visual reality check to show just how little the upper strata are affected by minor changes in global air surface temperature. Source: ARGO marine atlas.

Most ocean models used in performing coupled general-circulation model sensitivity runs simply cannot resolve most of the physical processes relevant for capturing heat uptake by the deep ocean.

Ultimately, the second law of thermodynamics requires that any heat which may have accumulated in the deep ocean will dissipate via various diffusive processes. It is not plausible that any heat taken up by the deep ocean will suddenly warm the upper ocean and, via the upper ocean, the atmosphere.

If the “deep heat” explanation for the Pause were correct (and it is merely one among dozens that have been offered), the complex models have failed to account for it correctly: otherwise, the growing discrepancy between the predicted and observed atmospheric warming rates would not have become as significant as it has.

Why were the models’ predictions exaggerated?

In 1990 the IPCC predicted – on its business-as-usual Scenario A – that from the Industrial Revolution till the present there would have been 4 Watts per square meter of radiative forcing caused by Man (Fig. T8):

clip_image026

Figure T8. Predicted manmade radiative forcings (IPCC, 1990).

However, from 1995 onward the IPCC decided to assume, on rather slender evidence, that anthropogenic particulate aerosols – mostly soot from combustion – were shading the Earth from the Sun to a large enough extent to cause a strong negative forcing. It has also now belatedly realized that its projected increases in methane concentration were wild exaggerations. As a result of these and other changes, it now estimates that the net anthropogenic forcing of the industrial era is just 2.3 Watts per square meter, or little more than half its prediction in 1990 (Fig. T9):

clip_image028

Figure T9: Net anthropogenic forcings, 1750 to 1950, 1980 and 2012 (IPCC, 2013).

Even this, however, may be a considerable exaggeration. For the best estimate of the actual current top-of-atmosphere radiative imbalance (total natural and anthropo-genic net forcing) is only 0.6 Watts per square meter (Fig. T10):

clip_image030

Figure T10. Energy budget diagram for the Earth from Stephens et al. (2012)

In short, most of the forcing predicted by the IPCC is either an exaggeration or has already resulted in whatever temperature change it was going to cause. There is little global warming in the pipeline as a result of our past and present sins of emission.

It is also possible that the IPCC and the models have relentlessly exaggerated climate sensitivity. One recent paper on this question is Monckton of Brenchley et al. (2015), which found climate sensitivity to be in the region of 1 Cº per CO2 doubling (go to scibull.com and click “Most Read Articles”). The paper identified errors in the models’ treatment of temperature feedbacks and their amplification, which account for two-thirds of the equilibrium warming predicted by the IPCC.

Professor Ray Bates gave a paper in Moscow in summer 2015 in which he concluded, based on the analysis by Lindzen & Choi (2009, 2011) (Fig. T10), that temperature feedbacks are net-negative. Accordingly, he supports the conclusion both by Lindzen & Choi (1990) (Fig. T11) and by Spencer & Braswell (2010, 2011) that climate sensitivity is below – and perhaps considerably below – 1 Cº per CO2 doubling.

clip_image032

Figure T11. Reality (center) vs. 11 models. From Lindzen & Choi (2009).

A growing body of reviewed papers find climate sensitivity considerably below the 3 [1.5, 4.5] Cº per CO2 doubling that was first put forward in the Charney Report of 1979 for the U.S. National Academy of Sciences, and is still the IPCC’s best estimate today.

On the evidence to date, therefore, there is no scientific basis for taking any action at all to mitigate CO2 emissions.

Finally, how long will it be before the Freedom Clock (Fig. T11) reaches 20 years without any global warming? If it does, the climate scare will become unsustainable.

clip_image034

Figure T12. The Freedom Clock edges ever closer to 20 years without global warming

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

223 Comments
Inline Feedbacks
View all comments
September 5, 2015 6:13 pm

“the Pause that lengthens, yet again” represents a huge amount of work, as much as a full length article in Science would involve. In looking it over I nevertheless found reasons for improving or changing some parts of it and am adding appropriate comments. If this were a peer review I would probably say similar things. I touch on six selected subjects, not all of equal weight, that the author should find useful in his further work.
[1] Figure 1a – Nino 3.4 index etc… You state that “…warmer sea surface temperatures in the Pacific will be carried around the world by the thermohaline circulsation…” This is untrue. Nino 3.4 sts directly in the middle of the equatorial countercurrent, the route an El Nino wave normally takes in crossing the Pacific. Once it has crossed the Pacific it runs ashore in South America, spreads out north and south along the coast, and warms the air above it. Warm air rises, joins the westerlies, gets carried aroind the world by them and we notice the arrival of an El Nino. A beautifuk example of it is a wave train of five El Ninos in rhe eighties and nineties. Some things can go wrong with this, however. One of them is the variable border between the westerlies and the trades which may influence the fate of the rising warm air. Muddying the waters that way probably accounts for El Nino irregularities during the first seven years of this century as well as currently. Another problem may be a mechanical obstruction of the equatorial countercurrent that can stop an El Nino wave in its tracks. When this happens the warm water of the El Nino wave simply spreads out in the Central Pacific and creates an El Nino on the spot instead of along the coast. It is called an El Nino Modoki or CP El Nino and the La Nina that follows could also be abnormal. The natural frquency of a complete El Nino cycle is about four-five years. That of the thermo-haline oscillation could be fifty years judging by a damped oscillastion recorded by the Berkeley Earth people they have not evennoticed yet.
[2] Figure 1b, the mean of GiSS, HadCRUT4 AND NCDC. I consider these three data-sets worthless. First, they are involved in covering up the hiatus of the eighties and the nineties. I discovered the existence of this hiatus in 2008 while doing research for my book “What Warming?” and it is shown as figure 15 in the book. Fortunately these peoplle still don’t control the satellites or we would never even have known about it. The fact that the three groups cooperated comes from the observation that they used the same computer to adjust their outputs. It left identical traces of its work on their temperature curves. These consit of sharp upward spikes and tTwo of them are visible right on top of their 1998 El Nino in this figure. Find more by comparing it with satellites back to 1997. Their upward slope is totally phony too, just a continuation of the fakery that started with the coverup of the hiatus of the eighties and nineties.
[3] Figure 2 is dead wrong because you are comparing apples and oranges with your fitted curves. It contains two El Nino peaks on the left, followed by the super El Nino of 1998. Those two are part of an ENSO wave train of four whose beginning you don’t see. To display these data correctly you should have two horizontal fitted lines on both sides of the super El Nino that do not make contact, one for each hiatus there. And show everything back to 1979, the beginning of the satellite era. FThe wave train on the left is part of an ENSO oscillation that is cut short by the appearance of the super El Nino of 1998. That one does not belong to ENSO and is a rare one you might get once in a century. It must not be included in any curve fit involving parts of ENSO. It follows that the temperature curve fitted to the left side should stop at the beginning of 1997 and not be connected to the right side at all. In satellite data it forms a hiatus shown as figure 15 in my book. The current hiatus is also part of Figure 2 and comprises a straight horizontal line starting in 2002, the end point of the step warming. Thanks to that step warming of 1999 the twenty-first century temperature is a third of a degree higher than the twentieth century is. It raises global temperature by a third of a degree Celsius in only three years.Year 2002 is therefore the correct year to begin the present day hiatus , not 1997 as is commonly used. The hiatus itslf is flat as satellite data show, not sloping up as HadCRUT, GISS and NCDC tell us. These ground-based data sets show falsified warming but you can get the real data for the hiatus of the eighties and nineties by using the satellite database. Hansen noticed the warmth at the beginning of the twenty-first century and quickly claimed it for the greenhouse effect. He was wrong. It is quite impossible to create a three year warming by means of the greenhouse effect. To start it, you need to inject carbon dioxide into the air, and we know this did not happen in 1999. To stop it you would have to pluck out all carbon dioxide molecules from the air and this sure did not happen. Hansen got away with his greenhouse fantasy for the twenty-first century because apparently no one in his camp knew any physics.
[4] Figure 3 is actually redundant if fig. 2 is done right.
[5] Figure T1 – Global mean etc. There are several problems. First, resolution could be better. You could also have drawn in the lines defining the two hiatuses, the current one on the right and the one in the eighties and nineties on the left. And why waste time with models? Not only are they worthless but they also perpetrate the myth of volcanic cooling. They show an imaginary El Chichon cooling that does not exist here simply because it is written into their code. There is no cooling after El Chichon in real life. As to Pinatubo, the cooling you assign to it is an ordinary La Nina valley, not any volcanic cooling. Sad to say, that applies to all volcanic coolings entered in global temperature graphs. Read pp. 17-21 in my book and get it straight.
[6] Figure T3 — CO2 emissions etc. This is actually irrelevant because CO2 is not the cause of global warming but this fact itself needs to be made clear. Not because I say so but because observations of nature say so. As the current paper states, we observe that “THE PAUSE LENGTHENS YET AGAIN.” The Arrhenius greenhouse theory used by the IPCC requires that if you add carbon dioxide to the air it will get warm. Let me explain. Right now, today, there is no such thing as global warming. And there has been none whatsoever for the last 18 years, not because I say so but because scientific measurements of global temperature say so. This lack of warming now has a name, the hiatus. What happens during this hiatus is that atmospheric carbon dioxide keeps increasing but global temperature does not. This increase of atmospheric carbon dioxide is caused by all the fossil fuels we burn and according to their doctrine it should cause global warming. But there is a problem. According to the greenhouse theory of Arrhenius, the one used by IPCC that keeps official records, addition of this anthropogenic carbon dioxide to air should warm the air by its greenhouse effect. Supposedly it does that by absorbing the infrared radiation that leaves the atmosphere for outer space and converts it into heat before it can slip away. This outward bound radiation is part of the heat balance of the earth as a whole. It is how the earth gets rid of the warmth it absorbed when the sun was shining. Clearly, if you do not get rid of it global temperature will keep rising and this is what global warming is all about. According to the Arrhenius greenhouse theory this temperature rise should be happening right now. Except that it doesn’t. So what is wrong? Is Arrhenius theory wrong? It does give wrong predictions about warming. If a scientific theory gives wrong predictions it is considered invalid and belongs in the waste basket of history. Especially so if it has been wrong eighteen years in a row. Fortunately for us there is an alternative reenhouse theory that does not suffer from the problem that Arrhenius has. It is called the MGT (Miskolczi greenhouse theory). It was summarily rejected by IPCC in 2007 when it first came out. MGT differs from Arrhenius in being able to handle absorption by more than one greenhouse gas at the same time. Our atmosphere contains several such gases but Arrhenius can handle only one – carbon dioxide – and is incomplete. According to MGT, carbon dioxide and water vapor, both greenhouse gases, form a joint optimal absorption window in the infrared whose optical thickness is 1.87. This value was measured by using radiosonde observations. If you now add carbon dioxide to the atmosphere it will start to absorb, just as Arrhenius says. But this will increase the optical thickness. And as soon as this happens, water vapor will start to diminish, rain out, and the original optical thickness gets restored. The added carbon dioxide will of course keep absorbing but the reduction of water vapor has reduced the absorptivity of the atmosphere and prevents any warming from taking place. As a result, what we see is that carbon dioxide keeps increasing but there is no simultaneous warming that the Arrhenius theory requires. And this is exactly why there is is no warming during the hiatus. You will of course immediately realize that thus makes greenhouse warming in the earth atmosphere impossible.. There are large numbers of climate scientists who apparently have cme to the same conclusion. More than two dozen of them have written scholarly, peer-reviewed articles in an effort to prove that the hiatus does not exist. They are desperate to find that “lost heat” somewhere, even if it means looking at the ocean bottom. They have not succeeded, for the simple reason that the missing heat left for outer space before they even got started.

ren
Reply to  Arno Arrak (@ArnoArrak)
September 6, 2015 12:14 am

Low solar activity and meanders jetstream affect the decrease in wind speed over the oceans and the decline of water vapor.

Mervyn
September 6, 2015 5:11 am

It makes one wonder what the “hockey stick” lovers, like Sir John Houghton, would have to say over this flat global average temperature anomaly trend of18 years and 8 months?
Can someone visit the ‘state pen’ … oops, sorry… I meant Penn State university and seek out Mann’s opinion?

September 6, 2015 7:35 am

It becomes more and more likely that earth has just passed a peak in both its 1000 year+/- and 60 year +/-natural temperature cycles.
http://3.bp.blogspot.com/-gH99A8_0c6k/VexLL1zC7AI/AAAAAAAAAaQ/T50D6jG3sdw/s1600/trendrss815.png
The graph above better illustrates where we are with regard to the natural cycles and where we are headed with regard to climate. The inflexion point at about 2003 correlates with the peak in solar activity at about 1991 as seen in the neutron count. The delay reflects the thermal inertia of the oceans
http://3.bp.blogspot.com/-QoRTLG14Siw/VdOUiiFaI5I/AAAAAAAAAYM/NxQVb2LMefk/s1600/oulu20158.gif
For forecasts of the timing and amplitude of the coming cooling see
http://climatesense-norpag.blogspot.com/2014/07/climate-forecasting-methods-and-cooling.html

richard verney
Reply to  Dr Norman Page
September 6, 2015 9:10 am

But your green line should be flat (at around the zero deg C, or just a bit below, say at – 0.05degC) between 1980 and 1996,
When one eyeballs the satellite data, temperatures were flat (apart from seasonal variations) between about 1980 and 1996. This is the first ‘pause’ (approximately 17 years in length) seen in the satellite data.
The second ‘pause’ seen in the satellite data is the present ‘pause’ which is the subject of this present article by Lord Monckton. Why he does not mention the first ‘pause’ (as from the satellite launch in 1979 through to about 1996) is a mystery to me. It is extremely relevant when one is discussing climate sensitivity (if any) to CO2..
What will happen to future temperatures will probably be dictated by the oceans, and the amount of solar energy that they are absorbing and/or releasing to the atmosphere.

Reply to  richard verney
September 6, 2015 10:01 am

Note I said “The graph above better illustrates where we are with regard to the natural cycles ”
Every one has to cherry- pick the data to illustrate the idea they are trying to put across. In my case I want to stress that the rise is part of the rising trend of the 1000 year cycle. Of course there are shorter term highs lows and pauses within that rise. But that is a subject for a different discussion better illustrated by a longer data set.

ren
Reply to  Dr Norman Page
September 6, 2015 9:13 am
September 6, 2015 8:37 am

Not sure how much reliance can be placed on analyses based on cyclical trends. The mathematical objection to applying too much cyclical analysis to the climate is that the object behaves as a mathematically-chaotic object and the timing of the cycles is accordingly aperiodic or, at best, quasi-periodic.
There are many voices now saying that we are heading for a cooling. And, like all the voices, they should be fairly heard. But they should be heard with caution.

richard verney
Reply to  Monckton of Brenchley
September 6, 2015 9:18 am

No one knows what the future has in store, and nature will do its thing and let us know.
Any prediction as to the future is a guess. But if we carefully observe and monitor what happens during the course of the next 10 to 15 years, it is likely that we will thereby gain a far better understanding of the workings of the atmosphere and what influences change.
If temperatures do not begin to rise then we will be fairly certain that CO2 is at best a bit player. In this regard a release of heat from the oceans pursuant to this years El Nino, will not be CO2 induced warming, so if there is another step change in the satellite data (as seen in the response to the 1998 Super El Nino), this will not further the AGW meme. Indeed, it will do the opposite, namely suggesting that all temperature rises during the satellite data are natural of origin, being driven by oceanic events (not CO2).

Reply to  Monckton of Brenchley
September 6, 2015 10:20 am

The quasi-periodicy seems to hold for the interglacials. As you might expect for a chaotic system. They are post predictable and so give some predictive confidence if the signal pattern does not change and the system is also relatively (well what ever that means in our state of ignorance) unchanged.
The graphs below (or is it above?) do show no abrupt change in the signal pattern of temperature. So far.
But even if we know the local pattern drivers we still know nothing about GCR strength variations. Not to mention solar modulations.
None the less I line up with the coolers.

Reply to  M Simon
September 6, 2015 12:23 pm

Simon. Not so – the general relationship between GCRs and Temperature is reasonably clear in the 10 Be data .See below the 1700+/- peak ( Maunder solar activity low), and the Dalton temperature minimum, 10Be peak ,(activity low) at 1815 or so. The 20th century warming trend shows up well in the declining 10Be trend in the Dye 3 data.
http://4.bp.blogspot.com/-cmUdPuT0jhc/U9ACp-RIuSI/AAAAAAAAAT8/kBTHWwpf6Bg/s1600/Berggren2009.png
For links to the original data sources see
.httpp://climatesense-norpag.blogspot.com/2014/07/climate-forecasting-methods-and-cooling.
The system in general is simply not chaotic in any meaningful sense. The patterns in the temperature data are clearly meaningful and useful . This doesn’t mean that they are computable ,however, because we don’t know enough details about the various component systems.

September 6, 2015 9:38 am

The timing of the cycles depends on the beats between the phases of a large number of, what you call “quasi “- periodic processes. However the principal astronomical cycles have been stable for hundreds of millions of years and we can calculate the ephemerides back for about 55 million years before the rounding algorithms on different computers cause the outcomes to diverge. I am sure that numerical models ie the IPCC GCMs provide no useful outcomes for climate forecasting because we cannot parameterize the inputs an a fine enough special or temporal grid.
However the outcomes in the real world ( think of it as a virtual computer if you are mathematically and numerically inclined) are clearly sufficiently coherent as to provide obvious quasi- periodicities.
http://3.bp.blogspot.com/-fbW69d6Nf-c/VdN7jJy-kII/AAAAAAAAAXk/hCNcOZTsvWU/s1600/GISP2%252520TemperatureSince10700%252520BP%252520with%252520CO2%252520from%252520EPICA%252520DomeC.JPG
See the peaks at about [10000],9000.8000,7000 …. 2000,1000 and current ( the Fig cuts off about 1850- imagine the recent warming tacked on)
Moving to the last millennium we are obviously now approaching, just at or just past a millennial peak .
http://1.bp.blogspot.com/-Mj4eZioh8C8/VdOHYKQnKrI/AAAAAAAAAX4/JU-PJhgqKEg/s1600/fig5.jpg
To decide where we are see
http://climatesense-norpag.blogspot.com/2015/08/the-epistemology-of-climate-forecasting.html

ren
Reply to  Dr Norman Page
September 6, 2015 11:58 am

It is worth noting the temperature drop over the southern polar circle, leading to an increase range of ice in Antarctica.
http://www.cpc.ncep.noaa.gov/products/stratosphere/temperature/70mb6590.png

September 6, 2015 10:02 am

dbstealey September 5, 2015 at 6:02 pm
Flying saucer delayed? It is my contention that it has attained light speed and is no longer observable. That also explains the missing heat.

September 6, 2015 8:11 pm

I keep wondering why an El Nino will make any difference. Isn’t there a huge blob of warm water already hugging the entire Pacific coast of North America? Wasn’t rainfall in Oregon and California suppressed anyway? If there’s another mechanism at play, how will the warm water from an El Nino make any difference except to possibly make the West Coast drought even worse?

sturgishooper
Reply to  gloccamorra
September 6, 2015 8:14 pm

The Pacific NW drought has been decisively broken this week.
Rain, rain, go away. Come again some other day.

ren
Reply to  gloccamorra
September 6, 2015 10:09 pm
September 6, 2015 11:27 pm

To claim there is been a “pause” in the global warming is to define the “global warming” such that the global warming in a given interval is multivalued, negating the law of non-contradiction. Thus, though true that there has been no global warming in a recent interval of time it is also true that there has been global warming in this interval. As I’ve posted proofs on several occasions I won’t repeat them unless asked.

Reply to  Terry Oldberg
September 7, 2015 11:29 pm

Void for uncertainty of meaning.

fretslider
September 7, 2015 1:37 am

18 years and 8 months is in the new SI unit
1.098 Santers
Where one Santer = 17 years or 204 months

philincalifornia
Reply to  fretslider
September 7, 2015 10:57 pm

Yes, and let’s not forget the Madoff Unit of theft from humanity. $17 Billion if I’m remembering correctly. Maybe Lord Stern could weigh in here.

September 13, 2015 8:28 am

Reblogged this on Climate Collections and commented:
18 years, 8 months

Verified by MonsterInsights