A Matter of Some Gravity

Guest Post by Willis Eschenbach

A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”

So what is the S-B temperature, theoretical or otherwise?

A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.

The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is

Radiation = Emissivity times SBconstant times Temperature^4

where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.

This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)

Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun  with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.

Figure 1. Planet lit by multiple suns. Image Source.

On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?

Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.

The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:

1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.

2. It allows me to clearly communicate those ideas to others.

In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.

Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:

The poorly-named “greenhouse effect” works as follows:

• The surface of the earth emits energy in the form of thermal longwave radiation.

• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.

• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.

• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.

 OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.

I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.

So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?

But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.

I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.

The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.

So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.

Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.

But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.

And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.

Q.E.D.

Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:

… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.

Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.

And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.

But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …

TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.

w.

NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.

Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.

NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.

But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.

NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:

Water, 0.96

Fresh snow, 0.99

Dry sand, 0.95

Wet sand, 0.96

Forest, deciduous, 0.95

Forest, conifer, 0.97

Leaves Corn, Beans, 0.94

and so on down to things like:

Mouse fur, 0.94

Glass, 0.94

You can see why the error from considering the earth as a blackbody in the IR is quite small.

I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …

5 1 vote
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

1.2K Comments
Inline Feedbacks
View all comments
wayne
January 14, 2012 3:57 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

AusieDan
January 14, 2012 3:58 am

Please forgive me.
What I meant to say was …… that I almost ALWAYS enjoy your posts.

richard verney
January 14, 2012 4:03 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

AusieDan
January 14, 2012 4:08 am

Willis – just a quick, second comment.
I suggest that you think some more about how heat is transferred around the planet and up and down in the atmosphere, before being radiated out into space.
And a request for clarification – is heat radiated out into space directly from the surface or from the top of the atmosphere?
How do these two factors mesh with temperature on the surface, the near surface where it is measured, and the top of the atmosphere?
How does the lapse rate fit in and how is that caused?

Roy Spencer
January 14, 2012 4:09 am

Willis is correct…if the atmosphere cannot absorb or emit IR, then the surface must emit thermal radiation at the same average rate as it absorbs solar radiation, which then (through the S-B relationship) yields a much lower average energy-equilibrium temperature than that observed.
Conduction into the ground or to the atmosphere does not alter this fact. Conduction might change the timeline if the ground or atmosphere are not at the same temperature as the surface, but eventually the average temperature of the surface must correspond to the average rate of solar absorption, since IR emission by the surface is the only way for the planet to cool in the face of solar heating (in the absence of a GHE).
As I have discussed on my blog, the observed temperature lapse rate of the atmosphere only describes how temperature CHANGES with height *IF* the atmosphere is convecting. It says nothing about what the temperature will be, in an absolute sense, which is an energy budget issue. If the atmosphere cannot absorb/emit IR, it would become isothermal, and all convection would cease. The greenhouse effect is what destabilizes the troposphere (by cooling the upper layers) and enables convective overturning. Without the GHE, we would not have weather as we know it.

Bomber_the_Cat
January 14, 2012 4:12 am

I think many commentators are confused because they have heard or read the somewhat loose statement ‘All substances above absolute zero emit electromagnetic radiation’. This is certainly true for solids and liquids but it is NOT true for low density gases in our atmosphere. At atmospheric pressures gases absorb and radiate in specific spectral lines. Let me clarify, this is not just my opinion, this is an empirical result based on measurement (no models involved). Gases such as oxygen and nitrogen do absorb (and emit) at short wavelengths but not perceptibly in the long wave infrared where the greenhouse effect is important.
Kwik says: January 14, 2012 at 2:08 am “Are you saying I cannot heat Nitrogen?”.
No, Kwick, this means that you cannot heat nitrogen with long wave infrared radiation. You can heat it, as you describe, by putting it in a bottle and immersing the bottle in hot water – but not by LWIR radiation.
As I say, these things are confirmed by actual measurements. The following graph of the spectral distribution of downwelling (‘back’) radiation at the earth’s surface is very informative in this respect. Note that there is no typical blackbody distribution, instead radiation comes back from the atmosphere in specific spectral bands. There is no contribution from oxygen or nitrogen. Notice the dominant input from CO2 – the clear ‘fingerprint’ of CO2 in ‘back radiation’.
http://scienceofdoom.files.wordpress.com/2010/04/longwave-downward-radiation-surface-evans.png
Again – these are measurements, not models.
So, when Willis talks of a transparent GHG-free atmosphere he postulates an atmosphere that is not going to absorb radiation – and if it doesn’t absorb then it doesn’t emit – Kirchoff’s Law,
Is that clear?

Peter Czerna
January 14, 2012 4:15 am

Marshall and all the other adiabatic compressors
Adiabatic compression cannot warm an atmosphere in any lasting way.
When a gas is compressed adiabatically its temperature is raised as long as no heat escapes from the gas.
In the real world, near-adiabatic compression usually only happens when a gas is compressed very quickly, as, for example, in a bike pump.
If you hold the gas compressed, heat will gradually escape by conduction/convection/radiation and the temperature will fall until it reaches ambient temperature again. A compressed atmosphere will just leak heat to its surroundings and return to ambient temperature.
A gas is not hotter just because it is denser. If it were, liquified gases would not be possible.
How can gravity apply continuous work compressing the atmosphere?
When does it decompress? (If a gas decompresses it loses heat (because of the work it is doing in expanding) and its temperature falls).
In other words a one-off compression will not permanently raise the temperature of an atmosphere.

Paul Potter
January 14, 2012 4:15 am

Solids absorb and radiate in a black body manner because of there electron structure gives near continuous energy levels. Gas however do not interact with radiation fields unless the energy of the radiation corresponds to an discrete energy level of the molecule most the vibration modes are in the IR most of the atomic levels are in the visible or higher energies. Green house gases have vibrations modes in the IR and absorb and radiate.
Now come on this is basic physics.
The adiabatic lapse rate which this thread is talking about only gives the temperate change between the top and bottom of atmosphere. If the earth temp is -18C then the top will be a lot lower.
It tells us nothing on its own about the surface temperature.
Paulus

gbaikie
January 14, 2012 4:26 am

[SNIP: read the instructions. Elevator speeches and disproofs only. Stick to the topic. -w.]

AusieDan
January 14, 2012 4:28 am

Willis,
As a final comment tonight, may I suggest that you put aside all that you have learnt about greenhouse theory and just read the N&Z paper and see what it actually says.
[SNIP: If you understand it, give us the elevator speech. If not, why are you posting? w.]

Bryan
January 14, 2012 4:34 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

Viv Evans
January 14, 2012 4:35 am

subscribe

gbaikie
January 14, 2012 4:51 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

coturnix
January 14, 2012 4:52 am

Mouse fur, 0.94
—–
Wow, thats soo cool, mice are soo cute.
Wanna add few remarks:
[SNIP: read the instructions. Elevator speeches and disproofs only. And mice. Mice are cute. -w.]

coturnix
January 14, 2012 4:57 am

[SNIP: read the instructions. Elevator speeches and disproofs only. And mice. Mice are cute. -w.]

Andy West
January 14, 2012 5:06 am

[SNIP: read the instructions. Elevator speeches and disproofs only. And mice. Mice are cute. -w.]

Bill Illis
January 14, 2012 5:10 am

What is the physics explanation for why temperatures of a gas/star/planet increase as it is gravitationally compressed?
Why does matter do this?
I think the answer to this question will point to the answer about an atmosphere in gravitational equilibrium.
Otherwise, in a non-GHG atmosphere, the molecules next to the surface will be colliding with the surface 8 billion times per second.
Energy will be transferred from the surface to the non-GHG molecules in translational energy. These molecules then appararently NEVER lose their energy without colliding with another non-GHG molecule or the surface again. I don’t see how the atmosphere does not continually increase in temperature then. At some point, millions of years worth of solar energy will be locked up in the inert atmosphere.
[COMMENT: This is total nonsense. I mean, there is not a valid scientific thought in it. I leave it in to give a flavor of the nonsense that I am snipping. Give me your elevator speech, disprove my proof, or stay schtumm. What in that is not clear? -w.]

William
January 14, 2012 5:23 am

Let’s take a step back.
[SNIP: No, let’s not. Read the instructions. Elevator speeches and disproofs only. -w.]

January 14, 2012 5:25 am

Like Willis, I found Nikolov & Zeller’s poster, well, inscrutable. And I confess to being appalled at how many arguments on this thread are so clearly based on violating conservation of energy.
But anyone who has even a nodding acquaintance with tallbloke’s evenhandedness on the one hand and Joel Shore’s often ill-mannered thread monopolizing on the other should be able to appreciate that, not blessed with the moderator manpower that Wattsupwiththat enjoys, tallbloke’s choice to segregate Joel Shore’s output in a separate thread was a reasonable solution to the problem, brought on by Joel Shore, of how to avoid intolerable disruption but preserve open discourse.
I personally have benefited greatly from tallbloke’s blog, and I commend it to everyone’s attention.

January 14, 2012 5:27 am

[NOT SO. Repeat after me, “GHG-free atmosphere”. The surface is the only thing that can radiate. w.]
You keep saying that, but it’s BS.
[SNIP: No, it’s not bs, it’s called science. -w]

January 14, 2012 5:53 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

markus
January 14, 2012 6:02 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

Will
January 14, 2012 6:02 am

[snip – you seem to forget the comment where you told Willis and I to go F*** ourselves about a month ago. As a result of that, and continued threadjacking and references to your website to try to draw traffic, you’ve been banned, do the words get out and stay out have any meaning to you? Apparently not. – Anthony]

simpleseekeraftertruth
January 14, 2012 6:10 am

OK Willis, I’ll bite.
Daytime;
Consider a photon leaving the sun in the IR absorption band of CO2.
[SNIP- I’m talking about a GHG-free atmosphere, why are you discussing CO2? -.w]

NoIdea
January 14, 2012 6:14 am

Willis, my best shot at an elevator speech version of Huffman’s analysis. I am not saying that I believe him to be right, or that I even properly understand his claims, I merely observe that to me, a layperson, it makes sense and is simple. My original question was to seek a comparison between N&Z and Huffman’s ideas.
—————————————————————————————————-
All energy in the system is received from the sun.
The ‘US Standard Atmosphere’ defines the pressure/temperature gradient for the Earth atmosphere. For example, at sea level, the pressure is determined to be 1013 millibars and temperature 15C, while at 20000 metres the pressure is determined to be 55.29 Mb and the temperature -56.5C.
The atmosphere is largely warmed by direct solar infrared irradiation (the surface can and does warm a part of the atmosphere – but only transiently and locally).
‘Visible’ light passes through the atmosphere without warming it but is also reflected back by clouds, ice etc. The portion of the solar irradiance which warms the Earth atmosphere is the same portion as heats the Venusian atmosphere – the differing albedos play no part in that absorption.
The Venusian atmosphere at the same pressure levels as defined in the US Standard Atmosphere has a temperature that is 1.176 times that of earth (for example, at 1000Mb Earth has a temp of 288K and Venus 1.176 times that or 338K, while at 600Mb the figures are 260.8K and 302.1K respectively).
The 1.176:1.00 ratio is derived from the difference in distance from the sun – Venus receives 1.91 times the power from the sun when compared to Earth due to being closer, and applying SB to obtain the 4th root of the power gives 1.176.
Atmospheric pressure does not cause heating rather it enables the atmosphere to retain more heat energy per volume at higher pressures. ‘Greenhouse gasses’ via radiation facilitate increasingly rapid distribution of heat throughout the atmosphere rather than heating it per se (ie local temperature variations are more quickly dissipated by heat transfer, both vertically and around the planet).
The greenhouse effect does not warm the atmosphere, the sun does directly.

1 3 4 5 6 7 48