A Matter of Some Gravity

Guest Post by Willis Eschenbach

A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”

So what is the S-B temperature, theoretical or otherwise?

A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.

The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is

Radiation = Emissivity times SBconstant times Temperature^4

where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.

This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)

Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun  with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.

Figure 1. Planet lit by multiple suns. Image Source.

On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?

Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.

The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:

1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.

2. It allows me to clearly communicate those ideas to others.

In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.

Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:

The poorly-named “greenhouse effect” works as follows:

• The surface of the earth emits energy in the form of thermal longwave radiation.

• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.

• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.

• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.

 OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.

I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.

So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?

But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.

I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.

The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.

So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.

Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.

But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.

And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.

Q.E.D.

Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:

… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.

Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.

And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.

But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …

TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.

w.

NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.

Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.

NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.

But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.

NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:

Water, 0.96

Fresh snow, 0.99

Dry sand, 0.95

Wet sand, 0.96

Forest, deciduous, 0.95

Forest, conifer, 0.97

Leaves Corn, Beans, 0.94

and so on down to things like:

Mouse fur, 0.94

Glass, 0.94

You can see why the error from considering the earth as a blackbody in the IR is quite small.

I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …

5 1 vote
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

1.2K Comments
Inline Feedbacks
View all comments
kwik
January 14, 2012 2:23 am

I forgot to mention; This is my Elevator speech. Only the Elevator was very fast.

Roger Knights
January 14, 2012 2:25 am

michael hammer says:
January 13, 2012 at 9:45 pm
Willis, I agree with amonst everything you said with one exception. I question the emissivity of fresh snow. Yes cetainly water and ice have IR emissivities very close to 1 but fresh snow is a mixture of ice and air with each “layer” or crystal a few to a few 10′s of microns thick. each transition of refractive index gives rise to reflections and the repeated and rapid change of refractive index results in a highly reflective surface. That is also what makes crazed paint surfaces appear whitish. It means absorptivity and hence also emissivity should be low – well below 1. I know how at least some of these absorptivity measurements are made (using an integrating sphere) and integrating spheres give the wrong answer for translucent materials – they suggest a reflectivity lower than it actually is (I know I design them). Consider how the interior of an igloo could be at +18C with minimal heating if the interior walls had an absorptivity of about 1. A high absorptivity would make an igloo more or less the equivalent of a sub zero cool store. Much more significantly, consider how the temperature in the antarctic as measured from satellites is around 180K when the coldest point even on the high plateau is more like 220K. The only way that I know for a low temperature to be recorded spectroscopically is if the surface emissivity is low.
Its an important issue because of the claim that snow gives rise to positive feedback. Supposedly the snow reflects incoming energy whilst radiating outgoing energy so it signifiucantly cools the surface yet the ground underneath would absorb incoming energy and thus would be more warming. If the emissivity of snow is far less than 1 then that theory is disproven.

Wow–this is something that might be put to the test–maybe even by a college-class or a high-school science fair project! (If the kid can get a grant.)
[COMMENT: Roger, I use the MODIS IR emission library for this question. It gives the same value as Geiger, .98 or so – w.]

Archonix
January 14, 2012 2:27 am

I found this thread somewhat interesting until I read tallbloke’s rebuttal just above. Willis is being disingenuous, setting up a strawman to knock down and thus not engaging with the actual theoretical model he claims to be taking apart.
[SNIP: If you wish to accuse me of being disingenuous, quote my words or go home. I won’t stand for this kind of vague nasty accusation, that’s a slimy tactic. And if you believe a man like Tallbloke, who censors scientific opinion that he disagrees with, you are an idiot. -w.]

Robin Hewitt
January 14, 2012 2:33 am

Okay I obviously know very little compared to you lot, but surely planet Earth has to radiate more than it receives to maintain a crust… ?

Gary Hladik
January 14, 2012 2:38 am

Steve C says (January 14, 2012 at 12:45 am): “Willis, surely your transparent atmosphere is, like the standard GHE model, an unphysical and unhelpful concept, since in reality all gases will have some absorptive / emissive characteristics.”
I assume W’s “transparent atmosphere” is a conceptually ideal experimental tool much like the frictionless planes and weightless pulleys I remember (vaguely) from physics class. Granted it may not apply to any real atmosphere, but we’re talking about a narrow thought experiment, not real life.

January 14, 2012 2:40 am

Somehow, I have difficulty with the concept of a perfectly transparent atmosphere, one that does not absorb radiation. As has been pointed out, neither could it emit radiation. An interesting concept, but not available in this particular galaxy.
Genghis is closest to my thoughts on this. The atmosphere is going to sort itself out to the adiabatic lapse rate temps, and the radiative “surface” is going to rise, warmer below, cooler above.
The dry adiabatic lapse rate is g / Cp, where g is gravity and Cp is the specific heat of the atmosphere. The lapse rate does not vary with elevation, which means that Cp doesn’t vary with density, so I don’t see how a denser atmosphere would perforce be warmer.
Lapse rate indeed has nothing to do with elevation, but density does. A denser atmosphere will be thicker, for any gas. We think of elevation in terms of “up,” but a better term for our purposes would be “depth.” Starting at the top of the atmosphere, zero depth, zero density, the deeper you go, more more distance that lapse rate has to work, thus higher temperature.

Geoff Sherrington
January 14, 2012 2:45 am

Willis [NOT SO. Repeat after me, “GHG-free atmosphere”. The surface is the only thing that can radiate. w.]
Since both the surface and the atmosphere consist of atoms and molecules, it might help if you explain the fundamental difference between them that allows the surface to radiate, but not the atmosphere.
You must envision some solid materials that emit far infra red that passes unchanged through the non-GHG atmosphere. They are all around us. The commercial FLIR camera will detect temperature differences that show as lifelike images via a microbolometer detector, into the tens of microns wavelength range at least. The “image” can travel many kilometers through the atmosphere. The cameras perform better when the interior optical path, where the image is smaller and more concentrated after passing through lenses, is filled with dry nitrogen gas to remove absorbers CO2 and H2O (gas). The idealised FLIR camera would seem to be a working example of your preferred elevator in action.
For a model where an atmosphere is suddenly introduced, there would be an equilibration period. Depending on the precise method, there should be heating from gravitational compression. Then there would be cooling, because the introduction process is a once-off, not a continuous one. The cooling cannot reintroduce hot material by conduction or convection to lead to an overall gain because the external heat sorce has a constant input in the first approximation.
BTW, it would be interesting to know if there is a compilation of global surface temperatures taken a few meters BELOW the surface. We seems to be fixated on certain concepts because Stevenson screens with thermometers were a meter and a bit above the surface.

John Marshall
January 14, 2012 2:47 am

Willis I cannot believe that you do not understand adiabatic heat gains due to compression. [SNIP- I specifically asked you to stick to elevator speeches and disproving my proof. -w.]

joshua Corning
January 14, 2012 2:47 am

shot in the dark.
[SNIP … I specifically asked people not to shoot in the dark. -w]
Anyway i hope that helped.
[It didnt. -w]

wayne Job
January 14, 2012 2:47 am

I have only one question, why all the argument over a hyperthetic planet with an unreal atmosphere using equations that only apply to something that does not exist.
We have a real planet and a real atmosphere and a sun, the vagarities of which are real, there is a mystery to solve and the answers do not lay in hyperthetics.

Steve (Paris)
January 14, 2012 2:48 am

Is there a virtual bar where Willis, TB and JS can line up at the bar and sink a few whiskies and settle their differences? Such’he said/you said/they said’ squables are a distraction from the far more important AGW debate. Its good to disagree and debate, its not good to throw your toys out of the pram.

gbaikie
January 14, 2012 2:51 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

Patrick Davis
January 14, 2012 3:04 am

And discussing the chemical composition of methane, CH4, with the same person in my previous post claimed CH4 had “4 carbons”…and was “interesting”. I think CH4 having “4 carbons” would be interesting to many.

January 14, 2012 3:08 am

[snip . . off topic . . kbmod]

Pete in Cumbria UK
January 14, 2012 3:13 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

Sandy
January 14, 2012 3:17 am

The air above the south pole in winter has as little CO2 and H2O as you’ll get anywhere, so makes the nearest thing to a GHG-free atmosphere we have.
If calibrated beacons at various wavelengths were put there the Dr. Spencer’s satellites could get a direct reading of absorption from a GHG-free atmosphere??

January 14, 2012 3:18 am

Steve (Paris) says:
January 14, 2012 at 2:48 am
“Is there a virtual bar where Willis, TB and JS can line up at the bar and sink a few whiskies and settle their differences? Such’he said/you said/they said’ squables are a distraction from the far more important AGW debate. Its good to disagree and debate, its not good to throw your toys out of the pram.”
Well said, Sir. However, responsible bar staff would eject – at least two of them – for being excessively drunk wih their own importance

gbaikie
January 14, 2012 3:24 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

tallbloke
January 14, 2012 3:31 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

tallbloke
January 14, 2012 3:35 am

[SNIP: read the instructions. Elevator speeches and disproofs only. -w.]

Jordan
January 14, 2012 3:41 am

The thought experiment is interesting, but its usefulness may be limited by its own constraints.
The issue is defined in terms of surface temperature, and not temperature of the gas.
This ideal transparent gas can be warmed from the surface, and this means gas temperature above the surface could rise above the surface temperature. All we need is a day/night temperature profile at the surface, and convection to selectively warm the gas at higher levels towards the higher daytime surface temperature. This could eventually settle with the almost the whole atmosphere at the highest surface temperature with a very slim Temperature profile near the surface due to conduction.
Energy is conserved as the gas is a perfect insulator (constrained to not radiate at any frequency).
I’m not sure whether this thought experiment adds much to the debate. As I understand things, all matter will emit photons at certain frequencies so long as electrons are excited and then drop to ground state. The ideal non-emitting atmosphere sounds unphysical.
There may be more productive thought experiments if we were to focus more on the kinetic theory of temperature and pressure.
Cheers – I’m now off to the football (soccer) to observe other examples of kinetics.

gbaikie
January 14, 2012 3:42 am

“Willis Eschenbach says:
January 14, 2012 at 12:19 am
Genghis says:
January 13, 2012 at 11:14 pm
1. The non greenhouse gas atmosphere is a perfect conduction insulator to space, it can’t radiate its heat out.
True
2. The radiation transparent atmosphere is heated from the surface via conduction/convection until the atmospheric average temperature is at the S-B average. (Almost exactly the same way GHG’s heat the atmosphere, except that it is the planets surface molecules directly heating the atmosphere.)
I don’t think so. As soon as the dry adiabatic lapse rate temperature profile is established, circulation will stop and the atmospheric temperature will stabilize. ”
Perhaps, but on earth we have a night and and day. Whereas night may in some degree may stablize. Day time with sunlight will heat the ground and air will rise- destabilizing the adiabatic lapse rate.

Roger Longstaff
January 14, 2012 3:50 am

I think that the planet has to be considered as a whole – including its atmosphere – and that it must obey the laws of thermodynamics regardless of energy transport mechanisms. I have tried the following as a mind clearing exercise:
“Considering the entropy of the planet as a whole, including the conductive effects of the surface – gas boundary and with calculations performed within a boundary high above the top of the atmosphere, the lapse rate acts to maximise entropy, and minimise enthalpy, in a near – equilibrium thermodynamic system that constantly seeks equilibrium as a consequence of rotation. the laws of thermodynamics subsume the effects of all energy transport mechanisms – conduction, convection and radiation.”
I think that he implication is that only insolation, gravity, rotation and the mass of the atmosphere are responsible for “climate”, and that doubling, tripling or whatever the mass of CO2 will have a negligible effect on the total mass of the atmosphere, and hence would not lead to any measurable effects on the “climate”.
I am not sure if the “total mass of the atmosphere” should read (the bulk specific heat of the atmosphere”

David Reeve
January 14, 2012 3:54 am

Willis, you have just done something no man has done before. In all the years of lurking on climate sites this is the first time I’ve seen peoples objections to the radiation balance model reduced to pretty much a single theme. Normally we all but drown in the extravagence of response.
My challenge to you is to now is to get just the right words to convey the fact that, if a gas doesn’t significantly absorb in a given wavelength range, then it follows that it doesn’t significantly emit in the same range. A challenge for the elevator speech maestro.

AusieDan
January 14, 2012 3:56 am

Willis – I need to think more about your explanation, so I may (or may not) come back again some time later.
As a first comment, it seems to me that your explanation of why N&Z are wrong can equally be applied to greenhouse theory.
If all energy leaving the earth is radiated from the surface, then, by your own explanation, greenhouses gasses cannot warm the surface, as all additional warming would be radiated out into space to preserve equilibrium at the top of the atmosphere and surface temperatures would quickly return to pre greenhouse levels.
Something may be wrong with your facts or with you analysis, me-thinks.
Never-the-less, I almost enjoy your posts.