Guest Post by Willis Eschenbach
A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”
So what is the S-B temperature, theoretical or otherwise?
A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.
The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is
Radiation = Emissivity times SBconstant times Temperature^4
where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.
This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)
Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.
Figure 1. Planet lit by multiple suns. Image Source.
On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?
Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.
The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:
1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.
2. It allows me to clearly communicate those ideas to others.
In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.
Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:
The poorly-named “greenhouse effect” works as follows:
• The surface of the earth emits energy in the form of thermal longwave radiation.
• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.
• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.
• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.
OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.
I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.
So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?
But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.
I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.
The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.
So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.
Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.
But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.
And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.
Q.E.D.
Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:
… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.
Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.
And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.
But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …
TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.
w.
NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.
Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.
NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.
But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.
NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:
Water, 0.96 Fresh snow, 0.99 Dry sand, 0.95 Wet sand, 0.96 Forest, deciduous, 0.95 Forest, conifer, 0.97 Leaves Corn, Beans, 0.94
and so on down to things like:
Mouse fur, 0.94 Glass, 0.94
You can see why the error from considering the earth as a blackbody in the IR is quite small.
I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Bill Illis says:
January 14, 2012 at 5:10 am
[SNIP: PLease stick to either an elevator speech, or a formal showing that my proof above is incorrect. Thanks, -w.]
Stefan-Bolzmann radiation is called black body radiation because it applies to bodies. S-B radiation may apply to the atmosphere, but at orders of magnitude less than the surface. Willis is right to ignore any atmospheric S-B effect.
“Greenhouse” gases – CO2, H2O, NH4, etc, are such because their asymmetric modes of molecular vibration interact with long-wave radiation, at quantised energy levels. O2, N2 don’t have asymmetric modes of vibration. They can’t absorb long wave radiation ON ANYTHING LIKE THE SAME ORDER OF MAGNITUDE, and can therefore be ignored as “greenhouse” gases. It’s basic physical chemistry.
[Thanks, Phil. Fighting this level of ignorance is like wading through molasses. I appreciate the assistance. -w.]
I doubt that these novel theories are correct since they sound to me like perpetual motion machines, but there are two sources of energy that would have to be ruled out or at least quantified, the rotation of the planet and tidal effects, since these could perturb the atmosphere and keep the machine from running down. Instead, the orbit of the moon, and the speed of the earth’s rotation runs down.
That being said, it sounds like a theory people want to believe.
Willis,
Of course you are correct. Not sure how many you will help to understand this simple concept, but I applaude your efforts. I become too frustrated when I try to do this sort of thing.
Too bad about Tallbloke; he is supporting nonsense and behaving like Tamino…. a bad combination.
Willis, what is the temperature of the atmosphere as due to difficulties in losing energy it doesn’t seem well constrained?
wayne says:
January 14, 2012 at 6:30 am
Bill Illis says:
January 14, 2012 at 5:10 am
[SNIP: PLease stick to either an elevator speech, or a formal showing that my proof above is incorrect. Thanks, -w.]
First of all I think this deserves a historical perspective. The reason the GHG-less atmosphere became a discussion point is because it highlights the claims of N&Z. If gravity/conduction/convection are to replace the GHE then they should do it when no GHGs are present.
Willis is absolutely correct that this simply can’t work. I initially tried to find some way to make N&Z work myself. I failed and I admit it.
However, there is something very important to take out of the N&Z paper. If one follows it to its obvious conclusion one finds that, yes, GHGs are required, but, it only takes a modest amount of GHGs to provide the MAXIMUM GHE. That’s why N&Z found so many planets temperature can be determined by a simple formula. They all have reached the maximum GHE. Hence, the addition of more GHGs will have no impact on the temperature.
One possible reason for this has to do with the turbulence of gases. The turbulence mixes the gases very well and drives the heavier gases like CO2 to greater altitudes. Since the GHE is essentially determined by the height of the effective radiating temperature, that height is almost immediately quite high. This also means that additional CO2 has almost no effect. The basic reason for this has to do with gravity placing bounds on the atmosphere.
Think of a basketball. I can fill it with a little air and the structure does not change much. Put in more air and it gets a little more firm but still stays pretty much the same. I have to put in a lot of air to get the ball to expand to any degree. Gravity puts the same general limits on an atmosphere. Clearly, not as much as my analogy but along the principle.
As a result the GHE becomes a function of pressure (gravity and mass) just as N&Z stated. However, some GHGs are required.
[Richard, thanks … but if you could boil that handwaving down to an elevator speech, I might be able to understand what you are saying. Leave out the basketballs, and explain the science of what you claim N&Z say is happening. -w.]
Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis
Wills. I can see a fairly easy way to prove or disprove the thesis. First a thought experiment and then a real one.
You and most folks only talk in terms of radiative theory when talking about temperature but that is not the only way that energy is exchanged.
Lets say that the sun is shining and the atmosphere is 100% transparent to infrared energy. We have to think about what is actually happening when the sun shines on a surface. Speaking in simple terms a photon in the visible spectrum (say 550 nanometers) has energy x. That photon strikes a surface that is capable of absorbing that energy x. This raises the temperature of a single molecule by y. Since this is happening en masse, you would do a summation of x and y and eventually you get the rise in temperature of the surface as described in the S-B equations.
There is a lag time between absorption and emission of energy, depending on many factors but between the absorption time T and the emission time T1, there is time for elastic collisions between the molecules of the surface, and the molecules of the non IR emitting atmosphere above it. These elastic collisions increase the energy of the molecules, and thus the temperature. Since the molecules cannot radiate in the infrared anymore than they can absorb energy in the infrared, the temperature of the atmosphere rises and via convection, the energy absorbed by the molecules is spread through the same elastic collisions between molecules. Thus we now have a mechanism whereby the temperature of the atmosphere rises without any resort to radiative theory at all.
This is very easy to test. Take a cylinder of air without any GHG’s in it. The cylinder needs to be to be at say 25c. At the bottom of the cylinder you have a radiative surface that you raise in temperature to say 75c, which is close to what the temperature of the ground would be with the sun shining directly down on it. Use multiple temperature probes at 50 cm intervals from the bottom of the cylinder to the top.
If this hypothesis is true you will se a temperature gradient between the first probe at 50cm and subsequent ones. As convection takes hold due to the gradient, eventually the temperature of the gas will rise to the temperature of the emitting surface, and this is without any resort to GHG’s.
The reverse would happen at night with the atmosphere transferring energy to the ground and with nothing more than mechanical energy equations I can describe an atmosphere above the S-B average temperature.
So the elevator pitch is that we can describe a atmosphere with no GHG’s that is above the S-B temperature by resorting to nothing more than equations of mechanical energy transfer.
What is wrong with this picture?
[Thanks, Dennis. If as you claim the atmosphere is above the S-B temperature and the surface is still at S-B temperature, heat will be constantly flowing 24/7 from the warmer atmosphere to the cooler surface … and that violates conservation of energy. -w.]
Atmospheric Greenhouse Effect
Both sides of the argument generally stated miss the basic point of an atmospheric greenhouse gas causing a higher ground temperature. In order to understand what is occurring, you first have to …
[SNIP: Read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
The mechanics of W. Eschenbach’s thinking is interesting to observe. Temperature is a property of matter. Willis can’t grasp how gravity, which directly controls the gradient density of an atmosphere which is constantly stirred, agitated and wafted, can influence our surface temperature. Wow. Does gravity influence density? Is heating more efficient when you stir a dense or thin fluid?
[Again, I’ll leave this in, to give a flavor of the vague nonsense folks are posting. Please read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
[SNIP: Read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
This is my “elevator speech” version of the discussion so far.
Postulate. Gibberish-gibberish-gibberish.
You’re right. Gibberish-gibberish-gibberish.
You’re wrong. Gibberish-gibberish-gibberish.
You’re all wrong and the original postulate is beeswax. This is why. Gibberish-gibberish-gibberish.
What’s a liberal arts education to make of all this? Could someone please tell me if humans are causing the planet to burn up, or what?
[SNIP: Read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
[SNIP: Read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
I’m convinced you’re right, Willis. The simple energy conservation is enough. Roy Spencer & many others agree.
Willis & others should continue to be patient. Everyone can’t be convinced. I feel fortunate for a good thermo education & work experience to follow most of this — at least in general. Coal-fired boiler design (especially in radiant boilers) has to take into account radiation effects of H2O & CO2 in the flue gas.
Why not test the data?
There is a recent statistical method that can be used to separate cause and effect from multiple interacting variables. Originally developed for economics, this technique looks like a possible way forward to resolve the cause and effect climate question.
http://en.wikipedia.org/wiki/Vector_autoregression
Vector autoregression (VAR) is a statistical model used to capture the linear interdependencies among multiple time series. VAR models generalize the univariate autoregression (AR) models. All the variables in a VAR are treated symmetrically; each variable has an equation explaining its evolution based on its own lags and the lags of all the other variables in the model. VAR modeling does not require expert knowledge, which previously had been used in structural models with simultaneous equations.
Sims advocated VAR models as providing a theory-free method to estimate economic relationships, thus being an alternative to the “incredible identification restrictions” in structural models.[1]. Sims was awarded the 2011 Nobel Prize in Economics for his work in applying VAR models to macroeconomic analysis.[2]
[Interesting, so I’ll leave it. But in general, read the instructions, stick to an elevator speech for Nikolov or Jelbring, or a falsification of my proof. Thanks, -w.]
I am enjoying the thought process here. Some aren’t paying attention to Willis’ constraints:
1. The perfectly smooth, perfectly round, single substance planet is receiving equal amounts of heat/energy uniformly from all directions.
2. The added surrounding atmosphere is perfectly transparent to the heat/energy sources.
In this scenario, it would logically seem that since the atmosphere by definition can have no effect, it is having no effect; the denseness of the atmosphere caused by gravity will not matter.
However, now replace that atmosphere with one of 100% of any other gas, also insuring that the parameters will not be such that the gas will cool or warm enough to change state. Now, the warmer surface of the planet will heat the portion of that atmosphere that touches it, and heat “rises” (moves away from the center of gravity) toward the upper levels of the atmosphere while the cooler gas replaces it and is being heated and it “rises”, etc. until it reaches equilibrium.
If I’ve got that correct, than here are my questions: If there was only a “ball” of that gas in that same theoretical position, what would the temperature of center of the gas be? Would it not be lower than the surface of the theoretical planet? If so, then with all the conduction and convection going on in the planet/gas configuration, wouldn’t the gas ultimately be a coolant for the planet? Wouldn’t gravity be the driving force causing the heat to be moved away from the surface of the planet by pulling the cooler, denser gas toward it?
In this regard, I have a serious doubt regarding “down welling” in this scenario, too. Even if the chosen 100% gas is CO2, wouldn’t warmer molecules always “rise” or move away from the surface? As has been pointed out many times, the radiation is “out welling” – moving out in all directions. Essentially, if all the molecules in a given area are “out welling” at essentially the same rate, wouldn’t they all move somewhat together, taking their heat/energy with them, “up” or away from the center of gravity?
Willis, can you also confirm that your model has an atmosphere thst can not radiate any energy at all? It seems there are a lot of posters that question that assumption, if so.
I thought anything raisef in energy tends to radiate it away eventually.
I suggest you can test both theories with data at the South Pole during the six months of night. There is no direct energy input from the sun. Water vapor is the least of any place on earth and the accumulation of snow is a measure of energy conservation. The air is thinner at that altitude. Energy is being delivered by the atmosphere and lost to space by radiation. These input and output rates can tell us if atmospheric CO2 has had any significant “greenhouse” effect.
Essentially, more mass equals more gravity which results in a hotheaded person, radiating fury at a crazier rate the denser he be. :p
I dont know the theories of N&Z but the physics in your example are quite easy and clear. An atmosphere will increase the temperature of the planet even if the atmosphere does not emit infrared. The reason is that the atmosphere will get heated by the ground by convective heat transfer. Because of this heating the air at the ground will raise up and create air circulation causing a redistribution of heat from hot parts of the planet to cold parts of the planet. In other words heat will be transfered from the ground to the atmosphere in hot places and heat will be transfered from the atmosphere to the ground in cold places. The result is that acording to the T^4 law the temperature has to be higher to emit the same amount of energy. All of this ofcause assumes that the planet is rotating. The confusion stems from the fact that there are more than one way that heat can be transfered or moved.
– Convective heat transfer only happens between a liquid/solid gas/solid og gas/liquid interface
– conductive heat transfer only happens inside solids
– radiation
– Mass transfer for eksample when air moves from one place to another carrying stored heat
– Phase transitions like evaporation and solidification.
In this case Willis has forgotten about the convective heat transfer. and the mass transfer modes of moving heat. If convective heat transfer and mass transfer does not happen Willis is right.
In an atmosphere basically IR-inert, there would still be an adiabatic lapse rate due to pressure differential with altitude.
Gas heated by conduction from the surface would expand and rise (convection), trading thermal kinetic energy for potential (gravitational) energy.
This thermal energy convected away from the surface as potential energy is no longer available for reradiation, and the potential energy acquired will be expended when the now-cooled body of gas eventually descends to equalize the pressure differential caused by the rising of another warmed body of gas.
This is why the “evenly-heated average” image has to be discarded for a more realistic picture of constantly-changing areas of maximal warmth (i.e. planetary rotation; noon is always moving).
So whether weather is climate or not, weather clearly regulates climate, and both received solar energy and gravity contribute to both weather and climate. The question (here again) is the relative magnitude of the “greenhouse” contribution, not whether it exists or not.
jorgekafkazar says:
January 13, 2012 at 11:27 pm
“Is that short a tube accurate enough for the levels of energy and accuracy we’re dealing with?”
If I remember my light physics correctly, light energy is lost by destructive interference laterally during transmission through the atmosphere. I do not know what proportion is lost but the sky is blue because of the lateral dispersion. This dispersion to the atmosphere might the atmosphere a bit but it would decrease the energy reaching the surface, making it difficult to hold the planet up to a gas less black body radiation budget. It would not be fair.
Also, I know the discussion involves surface temperature but the numbers we have for Earth are NOT surface temps, they are from 5–6 feet above the surface; thus, atmosphere is being measured not the surface. Measuring the surface would be much too circumstantial regarding conditions, materials, etc. I am coming to an apples and oranges position, albeit reluctantly.
In science there is only one test that has any meaning. The ability to predict. The method that gives the best predictions is the best theory.
N&Z have found a means to predict the temperature of planets based on atmospheric density. Repeat their exercise with radiation and see if it gives a better result. Not just on one of two planets and moons, but all of them.
Because in the end, a theory that matches the data in one of two cases, but fails in other cases, is a failed theory. So far, the climate models which are based on the radiation theory have done a pretty poor job of forecasting temperatures since 2000. This suggests there is more to the story that GHG.
Willis
I admire your honesty and your knowledge. (perhaps a tiny bit less anger wouldn’t go amiss!)
II totally agree with your reasoning.
The only difficulty I have is with “bb radiation”:
a) it is said all matter radiates broadband according to its temperature
b) it is then said gases do not radiate in this manner but only radiate at discrete wavelengths (GGs at LWIR and O2 N2 in UV This is the reason why the sun does not heat the atmosphere little UV gets through to gnd level)
c) most people seem to have trouble with the concept of GHG free air not being able to cool / heat other than by conduction ( a N2 packet – uncontained – of gas in a vacuum would not cool – any containment would heat and then BB radiate to cool the gas by conduction).
Perhaps they also need to consider a roughened black anodised aluminium block radiating efficiently – change the surface – polish it to 100% reflectance and most would agree that radiation will be reduced. i.e. change its state and you change its level of radiation.
Can the same be said of a gas.
Does liquid nitrogen have a bb radiation? I would say yes.
Does changing to gas then change the only radiation to a few lines in UV? I am not sure but side with the possibility that non-GHGs do not have bb-radiation
Can anyone who can show proof that gasses to NOT have “BB-radiation” please?
scienceofdoom has promised to cover this!