Time and the Tides Wait for Godot

Guest Post by Willis Eschenbach

I’ve been listening to lots of stuff lately about tidal cycles. These exist, to be sure. However, they are fairly complex, and they only repeat (and even then only approximately) every 54 years 34 days. They also repeat (even more approximately) every 1/3 of that 54+ year cycle, which is 18 years 11 days 8 hours. This is called a “Saros cycle”. So folks talk about those cycles, and the 9 year half-Saros-cycle, and the like. The 54+ year cycle gets a lot of airtime, because people claim it is reflected in a sinusoidal approximately 54-year cycle in the for example the HadCRUT temperature records.

Now, I originally approached this tidal question from the other end. I used to run a shipyard in the Solomon Islands. The Government there was the only source of tide tables at the time, and they didn’t get around to printing them until late in the year, September or so. As a result, I had to make my own. The only thing I had for data was a printed version of the tide tables for the previous year.

What I found out then was that for any location, the tides can be calculated as a combination of “tidal constituents” of varying periods. As you might imagine, the strongest tidal constituents are half-daily, daily, monthly, and yearly. These represent the rotations of the earth, sun, and moon. There’s a list of the various tidal constituents here, none of which are longer than a year.

day by day tidal force earthFigure 1. Total tidal force exerted on the Earth by the combination of the sun and the moon. 

So what puzzled me even back then was, why are there no longer-period cycles used to predict the tides? Why don’t we use cycles of 18+ and 54.1 years to predict the tides?

Being a back to basics, start-from-the-start kind of guy, I reckoned that I’d just get the astronomical data, figure out the tidal force myself, and see what cycles it contains. It’s not all that complex, and the good folks at the Jet Propulsion Lab have done all the hard work with calculating the positions of the sun and moon. So off I went to JPL to get a couple hundred years data, and I calculated the tidal forces day by day. Figure 1 above shows a look at a section of my results:

These results were quite interesting to me, because they clearly show the two main influences (solar and lunar). Figure 1 also shows that the variations do not have a cycle of exactly a year—the high and low spots shift over time with respect to the years. Also, the maximum amplitude varies year to year.

For ease of calculation, I used geocentric (Earth centered) coordinates. I got the positions of the sun and moon for the same time each day from 1 January 2000 for the next 200 years, out to 1 Jan 2200. Then I calculated the tidal force for each of those days (math in the appendix). That gave me the result you see in Figure 1.

However, what I was interested in was the decomposition of the tidal force into its component cycles. In particular, I was looking for any 9 year, 18+ year, or 54.1 year cycles. So I did what you might expect. I did a Fourier analysis of the tidal cycles. Figure 2 shows those results at increasingly longer scales from top to bottom.

Fourier analysis tidal forceFigure 2. Fourier analysis of the tidal forces acting on the earth. Each succeeding graph shows a longer time period. Note the increasing scale.

The top panel shows the short-term components. These are strongest at one day, and at 29.5 days, with side peaks near the 29.5 day lunar cycle, and with weaker half-month cycles as well.

The second panel shows cycles out to 18 months. Note that the new Y-axis scale is eight times the old scale, to show the much smaller annual cycles. There are 12 month and 13.5 month cycles visible in the data, along with much smaller half-cycles (6 months and 6.75 months). You can see the difference in the scales by comparing the half-month (15 day) cycles in the top two panels.

The third panel shows cycles out to 20 years, to investigate the question of the 9 and 18+ year cycles … no joy, although there is the tiniest of cycles at about 8.75 years. Again, I’ve increased the scale, this time by 5X. You can visualize the difference by comparing the half-year (6-7 month) cycles in the second and third panels. At this scale, any 9 or 18+ year cycles would be very visible … bad news. There are no such cycles in decomposition of the data.

Finally, the fourth panel is the longest, to look for the 54 year cycle. Again, there is no such underlying sine-wave cycle.

Now, those last two panels were a surprise to me. Why are we not finding any 9, 18+, or 54 year cycle in the Fourier transform? Well … what I realized after considering this for a while is that there is not a slow sine wave fifty-four years in length in the data. Instead, the 54 years is just the length of time that goes by before a long, complex superposition of sine waves approximately repeats itself.

And the same thing is true about the 18-year Saros cycle. It’s not a gradual nine-year increase and subsequent nine-year decrease in the tidal force, as I had imagined it. Instead, it’s just the (approximate) repeat period of a complex waveform.

As a result, I fear that the common idea that the apparent ~60 year cycle in the HadCRUT temperatures is related to the 54-year tidal cycles simply isn’t true … because that 54 year repeating cycle is not a sine wave. Instead, looks like this:

repeating 54 year tidal cycleFigure 3. The 54 year 34 day repetitive tidal cycle. This is the average of the 54-year 34-day cycles over the 200 years of data 2000-2200.

Now, as you can see, that is hardly the nice sine wave that folks would like to think modulates the HadCRUT4 temperatures …

This exemplifies a huge problem that I see happening. People say “OK, there’s an 18+ year Saros cycle, so I can divide that by 2. Then I’ll figure the beat frequency of that 9+ year cycle with the 8.55 year cycle of the precession of the lunar apsides, and then apply that to the temperature data …”

I’m sure that you can see the problems with that approach. You can’t take the Saros cycle, or the 54+ year cycle, and cut it in half and get a beat frequency against something else, because it’s not a sine wave, as people think.

Look, folks, with all the planets and moons up there, we can find literally hundreds and hundreds of varying length astronomical cycles. But the reality, as we see above, is not as simple as just grabbing frequencies that fit our theory, or making a beat frequency from two astronomical cycles.

So let me suggest that people who want to use astronomical cycles do what I did—plot out the real-life, actual cycle that you’re talking about. Don’t just grab the period of a couple of cycles, take the beat frequency, and call it good …

For example, if you want to claim that the combined tidal forces of Jupiter and Saturn on the sun have an effect on the climate, you can’t just grab the periods and fit the phase and amplitude to the HadCRUT data. Instead, you need to do the hard lifting, calculate the actual Jupiter-Saturn tidal forces on the sun, and see if it still makes sense.

Best regards to everyone, it’s still raining here. Last week, people were claiming that the existence of the California drought “proved” that global warming was real … this week, to hear them talk, the existence of the California floods proves the same thing.

In other words … buckle down, it’s gonna be a long fight for climate sanity, Godot’s not likely to show up for a while …

w.

THE USUAL: If you disagree with something that I or someone else said, please quote the exact words you disagree with, and tell us why. That way, we can all understand what you object to, and the exact nature of your objection.

CALCULATIONS: For ease of calculations, I downloaded the data for the sun and moon in the form of cartesian geocentric (Earth-centered) coordinates. This gave me the x, y, and z values for the moon and sun at each instant. I then calculated the distances as the square root of the sum of the squares of the xyz coordinates. The cosine of the angle between them at any instant is

(sun_x * moon_x + sun_y * moon_y + sun_z * moon_z) / (sun_distance * moon_distance)

and the combined tidal force is then

sqrt( sun_force^2 + moon_force^2 + 2* sun_force * moon_force * cos(angle))

DATA AND CODE: The original sun and moon data from JPL are here (moon) and here (sun), 20 Mb text files. The relevant data from those two files, in the form of a 13 Mb R “save()” file, is here and the R code is here.

EQUATIONS: The tidal force is equal to 2 * G * m1 * m2 * r / d^3, where G is the gravitational constant, m1 and m2 are the masses of the two objects, d is the distance between them, and r is the radius of the object where we’re calculating the tides (assuming that r is much, much smaller than d).

A good derivation of the equation for tidal force is given here.

0 0 votes
Article Rating
528 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
February 9, 2014 1:20 pm

If one takes your formula it almost equals the low.and high points in the century long sunspot cycles not including the lunar numbers.
I use the SIDE numbers but they said that since 1900 their numbers are best.
Thank you
Paul Pierett

Toto
February 9, 2014 1:33 pm

Love the title. I just found a value for the tidal force on a Wikipedia page:

The tidal accelerations at the surfaces of planets in the Solar System are generally very small. For example, the lunar tidal acceleration at the Earth’s surface along the Moon-Earth axis is about 1.1 × 10−7 g, while the solar tidal acceleration at the Earth’s surface along the Sun-Earth axis is about 0.52 × 10−7 g, where g is the gravitational acceleration at the Earth’s surface.

My point is that the force applied is one thing, the response is another. The final paragraph of Willis’s Wikipedia reference is worth reading. The dynamic theory takes into account the properties of the ocean basins, such as resonance. “The equilibrium tide theory calculates the height of the tide wave of less than half a meter, while the dynamic theory explains why tides are up to 15 meters.”
BTW, predicted tide heights are extremely good.

Tonyb
February 9, 2014 1:39 pm

Hi Willis
I imagine you would be interested in this mechanical device invented by the ancient Greeks to predict eclipses amongst other things. They keenly observed cycles and we could perhaps still learn things from them
http://en.wikipedia.org/wiki/Antikythera_mechanism
It is an absolutely fascinating story of the devices rediscovery and an fascinating story of how it’s purpose was put together. The BBC did a wonderful programme on it a couple of years ago.
Tonyb

Admin
February 9, 2014 1:43 pm

Well, that frequency certainly took a beating.

Larry Brasfield
February 9, 2014 1:45 pm

I cannot get this to make sense: ”
the combined tidal force is then
sqrt( sun_force^2 + moon_force^2 + sun_force * moon_force * cos(angle))
“.
When the cosine factor is 1, meaning the angles are aligned, the expression should simplify to ”
sqrt(sun_force^2 + 2 * sun_force * moon_force + moon_force^2)
“.
I think there must be a factor of 2 missing in the term containing cos().
Best regards from an admirer of your work.

RichardLH
February 9, 2014 1:45 pm

I rather suspect that it is not the Saros cycle itself but the path it traces on Earth that matters.
In order to understand how this all plays out you need the elevation changes from some point on Earth, not just the time the pattern repeats for whatever happens to be underneath at the time.
That is like saying each year is the same when in fact there is a 4 year pattern to the system as is well known.
How long does it take for the Moon to return to the same point in the sky at the same time of month, year, etc.
And how does that interact with the 4 year Solar cycle?
And then add back in the Saros cycle.

RichardLH
February 9, 2014 1:48 pm
Lars P.
February 9, 2014 1:51 pm

“In other words … buckle down, it’s gonna be a long fight for climate sanity, Godot’s not likely to show up for a while …”
Oh yes. I just landed accidentally on a warmist site claiming there is a scientifically proven link between “climate change” and “weird weather on steroids” and I just gave up on posting anything as answer there to ask for the evidence….
Tonyb says:
February 9, 2014 at 1:39 pm
Oh yes Tony that is a very interesting mechanism, looks like they were much more advanced then it was thought in designing and using such machines.

tty
February 9, 2014 1:52 pm

The motion of the Moon is very complicated. That’s why determining the longitude by lunar distances which was long known to be theoretically possible did not become practical until the late eighteenth century, just about the same time the chronometer was perfected and made it unnecessary.
There is also a much longer cyclicity in tidal strength due to changes in the eccentricity of the Earth’s orbit which varies in a 413 000 year cycle, overlain by several shorter components. This may have important climatic effects, since the amount of vertical mixing in the ocean is strongly affected by tides, and it is probably very important for the stability of ice-shelves as well.

February 9, 2014 2:01 pm

Willis,
Nice post – however I think it should be abs(cos(angle)) in your formula
sqrt( sun_force^2 + moon_force^2 + sun_force * moon_force * cos(angle))
When angle ~ 0 there is a new moon and when angle ~ pi there is a full moon. Both cause spring tides because there are two tidal bulges reinforcing each other when they align. I did exactly the same as you and downloaded the JPL ephemeris. My calculations are almost the same as yours apart from scale and the cosines difference.see graph here
Please correct me if I am wrong.
What is interesting is that January had 2 perigean spring tides. The first on Jan 1 and the second on Jan 30. The two storms in the UK which caused most coastal damage coincided more or less with both extreme spring tides. In the NH winter the earth is at closest distance from the sun.
[ANSWER: Thanks, Clive. Turns out we were both wrong. As someone else pointed out, I left out a “2” in the formula, which should have been:
sqrt( sun_force^2 + moon_force^2 + 2 * sun_force * moon_force * cos(angle))
Just shows the value of revealing all of your data and code, it makes finding mistakes quick and easy. -w.]

Otter (ClimateOtter on Twitter)
February 9, 2014 2:05 pm

Saros? Didn’t he make the One Ring, to bind all others………….. no?

ferdberple
February 9, 2014 2:07 pm

Toto says:
February 9, 2014 at 1:33 pm
My point is that the force applied is one thing, the response is another.
===========
like a small child pumping on a swing. small cyclical force leads to large response so long as it is in-phase and damping is low.

Paul
February 9, 2014 2:09 pm

Figure 3 is weird, the maximum varies but the minimum is flat. Looks to me like aliasing of some kind, either in your reconstruction or plotting.
[It was an error in the calculations, now fixed. w.]

KLinTexas
February 9, 2014 2:21 pm

“…like saying each year is the same when in fact there is a 4 year pattern to the system as is well known” (from RichardLH)
erm, you do realize that the 4 year pattern in calendar years is a kludge to account for the actual time used as our world travels around the sun which is not an even number of days long? That there’s approximately a quarter-day extra over the 365, which is then roughly accounted for by the Feb 29 leap day? This is the big change that was made by the Gregorian calendar, the one that when it was finally adopted in Protestant Great Britain shifted George Washington’s birthday by something like 11 days…during his actual lifetime yet. That must have been startling. (Perhaps not as startling as the extended time period when the Catholic countries were on Gregorian dating and the Protestant countries weren’t yet, and you could find yourself in a different month by traveling from one capital city to another. And I’m not sure but I think the different countries adopted the Gregorian dating at different times, even.)
So no, there isn’t a 4 year pattern to the year “as is well known.” Calendar dates are an approximate map of the system, they are not the system itself.
I don’t understand how a cycle can be said to trace a path on the earth, either, but maybe it’s just me. (unattributed pronoun? dunno.)
best

ferdberple
February 9, 2014 2:21 pm

Tonyb says:
February 9, 2014 at 1:39 pm
http://en.wikipedia.org/wiki/Antikythera_mechanism
============
we did a tour through Turkey and Greece some years back. It is fascinating how many modern “inventions” have been found in the ruins of the ancient world. Almost as though human development halted or took a step backwards for the better part of two thousand years.

Coldlynx
February 9, 2014 2:23 pm

Willis,You miss the elephant in the room
Moon Inclination and Earth axial tilt.
Moon Inclination 5.145° to the ecliptic (between 18.29° and 28.58° to Earth’s equator) and Earth axial tilt of 23.26° cause the tidal acceleration to have a different angle toward Earth’s equator.
This acceleration will probaly have an effect on acceleration and deacceleration of the earth fluids,
atmosphere and oceans. Overlay this with your pure force calculation and I am sure You will have a very intresting graph.
Here is an example http://tallbloke.wordpress.com/2009/11/

ferdberple
February 9, 2014 2:40 pm

What I find most fascinating about tidal calculations is that they require no understanding of the underlying mechanism. Indeed, if you try and calculate them from first principles like global climate models, you are doomed to failure.
Instead we record the height of the tides and the position of the sun and moon in the heavens. When the sun and moon repeat, so will the tides. If you want to improve the accuracy even more, throw in Jupiter, mars and Venus. For all intents and purposes, this is Astrology.
As a result, cause and effect is not important. You don’t need to understand the mechanism. You don’t even need a mechanism. You can simply say “reason unknown”. It will not affect the accuracy of the method.

February 9, 2014 2:55 pm

“In other words … buckle down, it’s gonna be a long fight for climate sanity, Godot’s not likely to show up for a while …”
Correct! However, meanwhile, people are quietly slipping away to deal with more pressing matters.
http://joannenova.com.au/2014/02/australia-more-skeptics-than-believers-and-few-really-care-about-climate-change/

Carbomontanus
February 9, 2014 3:02 pm

[snip -more pointless off-topic latinizing -mod]

February 9, 2014 3:07 pm

Curious:
Figure 2 Top give a cause for the division of months into approximately 30 days; therefore the use of 12 x 30 days for a year.
This was defined by Ancient Babylon who gave us the 360 degrees in a circle.
So what is curious?
Babylon was not a maritime nation. It’s now Iraq. Their earliest surviving literature (Gilgamesh) refers to a great flood.
This looks like evidence for an earlier people with astronomy than Babylon.
Woah… or maybe woo…

Berényi Péter
February 9, 2014 3:27 pm

Tidal forces, especially speed of tidal flows in the boundary layer have tremendous impact on vertical turbulent mixing in oceans, hence on ocean currents; as pure mechanical energy input they can drive three orders of magnitude larger heat flows than tidal energy dissipation itself. That in turn drives much of climate.
Deep Sea Research Part I: Oceanographic Research Papers
Volume 45, Issue 12, December 1998, Pages 1977–2010
doi: http://dx.doi.org/10.1016/S0967-0637(98)00070-3
Abyssal recipes II: energetics of tidal and wind mixing
Walter Munk &. Carl Wunsch
I wonder what periodicity is observed in rate of turbulent mixing and how is it related to temporal changes of tidal forces.

gregjxn
February 9, 2014 4:05 pm

Willis says: “So what puzzled me even back then was, why are there no longer-period cycles used to predict the tides? Why don’t we use cycles of 18+ and 54.1 years to predict the tides?” The analysis then proceeds to look at the characteristics of predictions based on astronomical data. In a way, this is a sort of model of the tides, not the tides themselves. If we had perfect, actual tidal data, then the Fourier analysis could be applied to that and perhaps locate cycles not to be found in the “model”. Perhaps we know that the “model” is so good that such a thing cannot be even though it is a logical possibility.

RichardLH
February 9, 2014 4:05 pm

Willis Eschenbach says:
February 9, 2014 at 3:18 pm
“I don’t know the answer to your question about the “4 year Solar cycle”, because I don’t know of any such cycle except the leap year cycle, which is just an accounting convenience to keep the seasons from drifting …”
No it is more than that. It is the time taken for the Sun to be the same point in the sky at the same time of day on the same day of the year for any given position on Earth. The world under-rotates 6 hours per year to make the 4 years to get back to the same position. Hence the Leap Year. So it is more than just accounting.
As I said, Wood et al is an example of how complicated this apparently very simple cycle gets.

RichardLH
February 9, 2014 4:07 pm

Willis Eschenbach says:
February 9, 2014 at 3:33 pm
“Anyone who includes the other planets in tidal is fooling themselves, the effect is miniscule.”
Except for the tiny detail that planets DO affect the precise orbital path of the Moon around the Earth. Mostly in an up and down direction.

Carbomontanus
February 9, 2014 4:14 pm

To all and everyone
On calculating the lunar effect.
In once asked my father, “What about the moon for the weather?”
“no, he said. it has been shown that it does not matter!
And that was the history of the Norwegian University Almanach. Christopher Hansteen was responsible, and corrected the almanach on that point. Before that, they repeated the weather forecasts along with the 18 .6 year lunar period. For several reasons, Hansteen who communicated with H.C Ørsted, found this….. silly.
It is grasped if you do not give a damn to The Grandfather Clock and its second pendulum in the earth gravitational field, and to Ole Rømers definition of the Royal Danish Foot.
“1`= 12 /38 of the matematical pendulum that swings 1 sec at sea level at 45 deg North!”
That is to state CHECKERS! to the Pope, because that is exacly across the St Marcus square in… Venetia!
It is slightly bigger and better in Norway you see. That inferiour English foot is defined by terribly irratinal number down in the muds at Greenwhich, just to pleace the foot of an arbitrary potentat further up at the Thames.
Remark the Elegance of Ole Rømers definition.
At the observatory, Observatoriegt. 1, there is a kepplerian telescope and Gallileis Pendulum on fixed mount. Sideroical time is observed on the second by a fix star twinkling out over a fixed edge in the ocular focus. And next by is the official solar clock that is adjusted to keep in step with the year knowing siderical time and the vernal eqvinox.
I have such a Long- Tick-Tack. I can adjust it within 1 minute per week. The scientific devices are highly refined with temperature compensated pendulum and finely grades to see the pendulum amplitude.
From Observatoriegaten 1 and from the Greenwhich, there is an electrical lead up to Westminster or down to DOMVS ACADEMICA to a next Long- tick- tack with display out of the window, so that Winston Churchill / Henrik Ibsen can adjust their pocket watches quite exactly and scientifically.
Thus never give a damn to HOROLOGIVM OSCILLATORIVM ( Christiaan Huyghens 1770) ,and to Big Ben. Telescopivm and Horologivm both are noticed on the southern star map.
According to Bakers Astronomy 6th edition 1959, the moons mass is 0.012 of that of the earth. And the moons distance is 60 times the earth radius. Thus simply 1/60 ^2
* 0.012 = 0.0000033. That is 3.3 ppm. ( simplicity works Mr Watts, ain`t I quite ingenious?)
Then 1 norwegian cartoon of milk is one liter weighing one Kg. And we place it on the shore.
How much does the moon “drag” on that liter of water? 3.3 milli- gram.
incredible,… so we take a man weighing 100 Kg and put him on the shore. He will be dragged by 330 milligram. How much is that? 20 drops is a milliliter times 0.33 is 6.6 drops of,….. piss!
I repeat…..! and quite exactly.
You can also count how many pills of aspirine in his pocket more or less, and if you do not drink milk you can count paints or barrels of beer.
So I think we give both Rømer and Hansteen right.
Any effects of that kind would have been stated in the nautical almanacs and in Bakers Astronomy. And objections to that are IMMATVRVS. If not ADLTERARE.
and if you are not even convinced of that,..
“Nature and natures law lay hidden in darkness and night
God said Let Newton be, and all was bright,” SANN! (William Blake)
Because we take it from Newtons law of gravitation f = g m1 * m2 / r^2 and from Newtons pendulum law.
Only Immaturers discuss gravity without having heard of the grandfathers clock and its physics.
And only Adulterarers , namely alian enemies of the British Empire, try and mess up with the Big Ben.

February 9, 2014 4:29 pm

RichardLH says:
February 9, 2014 at 4:07 pm
Except for the tiny detail that planets DO affect the precise orbital path of the Moon around the Earth. Mostly in an up and down direction.
That detail is too TINY to have any effect on the timescales of interest.

John
February 9, 2014 4:40 pm

Thanks for a clear description of the data.
Would it be possible to graph your data on a log-log scale, so that everything is on one plot and you can immediately see the relative size of the peaks.

Henry Bowman
February 9, 2014 4:41 pm

Longman [ref. below] provides formulae for solid-earth tides [i.e., accelerations] due to the sun and moon. The results plains depend on one’s position on the earth. I’m nt sure your results are correct. A simple calculation using Longman’s formulae reveals many peaks between 0 and 55 years.
I have codes available to calculate such acceleration (in python, Perl, C, and Fortran). Let me know if you are interested. I think that I also have a scanned copy of Longman’s article if you wish.
Reference: Longman, I. M. (1959) Formulas for computing the tidal accelerations due to the moon and the sun, Jour. Geophysical Research, 64(12), 2351-2355.

February 9, 2014 4:49 pm

Odd is it not that the tides can not be calculated using our gravity formulae they are calculated over time using observation and precedents? What are we missing?

ferdberple
February 9, 2014 5:01 pm

Willis Eschenbach says:
February 9, 2014 at 4:00 pm
As a result, it’s not common to find natural systems where, in your words, “damping is low”.
==========
Most of the large scale motion in the universe demonstrates low damping. Thus the ocean tides on earth don’t run down, except perhaps at extremely long time scales, and are much higher in many locations than is explained by tidal forces.
One obvious explanation for climate change is a change in the ocean mixing rate. One of the main drivers for this could easily be the ocean tides and harmonics. The tides don’t run down. Like the kid on the swing they keep pumping and pumping. And like the kid on the swing, it makes a difference if they are in-phase or not. For example: http://www.pnas.org/content/97/8/3814.full
A small force over a long time has no less energy than a large force over a short time. However, it is easy to overlook cause and effect when events take thousands or millions of years to develop. One of my favorite examples is the rotation of Venus. The tidal force from Earth is small, yet the same face of Venus always presents itself at closest approach. Conventional wisdom is that this is co-incidental, because the force is so small. Yet, to me the odds of this are so fantastically low as to be zero.

Steve Fitzpatrick
February 9, 2014 5:12 pm

Willis,
It is always a pleasure to read what you write, even if I sometimes disagree with your conclusions. In this case, there is no disagreement.
SF

E.M.Smith
Editor
February 9, 2014 5:28 pm

Willis,
I think you will find that JPL is a model, not actual data. These folks also use a model, but with terms that show a significant set of lunar / tidal cycles:
http://www.pnas.org/content/97/8/3814.full

In a previous study (3) we proposed a tidal mechanism to explain approximately 6- and 9-year oscillations in global surface temperature, discernable in meteorological and oceanographic observations. We first briefly restate this mechanism. The reader is referred to our earlier presentation for more details. We then invoke this mechanism in an attempt to explain millennial variations in temperature.

The “previous study” link is:
http://www.pnas.org/content/94/16/8321.abstract?ijkey=dd006ea42e6e72cc934ffde5bc98f60cede0d5c9&keytype2=tf_ipsecsha

To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.

Does look a tiny bit more complicated than your analysis…
BTW, historical eclipse data does not support the notion that the accepted model of lunar orbit changes is correct. I think the model is lacking some terms:
https://chiefio.wordpress.com/2014/01/25/a-remarkable-lunar-paper-and-numbers-on-major-standstill/
https://chiefio.wordpress.com/2014/01/24/the-moons-orbit-is-wrong-it-can-change-a-lot-and-tides-will-too/
So my “suspicion” is that you’ve done a simple analysis on a model and found the model is simple. IMHO, reality is more complex than that. Some other folks have also done such analysis, found cycles that matter. Some other, other folks have done some looking at historical data and found it doesn’t match predictions from the accepted orbit description. In other words, the data doesn’t match the theory. So I think you have based your analysis on too simple a view, of too simple a model, that does not agree with long term data.
Oh, and since tidal forces tend to cause odd circulations rather than just up and down, it isn’t just a simple “calculate the gravity and be done”, but involves the actual basin dynamics too. Even Newton didn’t like trying to calculate tides…
http://en.wikipedia.org/wiki/Celestial_mechanics

There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. The common difficulty with the method is that usually the corrections progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections. Newton is reported to have said, regarding the problem of the Moon’s orbit “It causeth my head to ache.”

So if your head does not ache, I think you didn’t have a complicated enough description of things to capture the real complexity…
It’s the perturbations that will get you on lunar orbit… every time…

Richard M
February 9, 2014 6:04 pm

Another complication to this whole mess is the Earth itself has a liquid core. That means it is also influenced by tides. I don’t think anyone really knows if the core itself is in equilibrium so there may be convection and currents of unequal density. Not to long ago the core was found to be rotating at a different speed than the surface. Our ocean currents could be influenced by core currents that we don’t even know exist.

February 9, 2014 6:09 pm

Sorry to be OT – here’s another issue that might interest you Willis.
http://hockeyschtick.blogspot.com.au/2014/02/new-paper-finds-excuse-8-for-pause-in.html
As you will see from my hasty comment on Hockey Schtick, I smell a rat ….

February 9, 2014 6:26 pm

I’m afraid that your investigation using FFT is not showing the whole picture. Because I make ENSO predictions and ENSO is an important cause of variations in global mean temperature I like to add a comment.
With linear regression analysis or Fourier analysis you can only prove that there is a connection. You can not disprove that there is a connection or disprove if there exist any form of cause and effect.
What I have found is that ENSO is driven by changes in a combination of tidal forcing, magnetic forcing as measured by the Ap and Kp indexes, by other unknown factors and by the inertia of the affected sea currents. ENSO has a semi oscillation pattern. Because of this, the input from its drivers often has complicated time lag patterns on the output. As a result of this the output signal is noisy and it is difficult with ordinary statistical method to discern influence from the input of these different drivers.
BTW! You only looked at 2 dimensions, but our world is 3 dimensional, excluding the 4th one.

anengineer
February 9, 2014 6:33 pm

“Figure 3. The 54 year 34 day repetitive tidal cycle. This is the average of the 54-year 34-day cycles over the 200 years of data 2000-2200.”
Shouldn’t this be something like 1800-2000?

Nylo
February 9, 2014 6:39 pm

RichardLH says:
February 9, 2014 at 4:05 pm
Willis Eschenbach says:
February 9, 2014 at 3:18 pm
No it is more than that. It is the time taken for the Sun to be the same point in the sky at the same time of day on the same day of the year for any given position on Earth. The world under-rotates 6 hours per year to make the 4 years to get back to the same position. Hence the Leap Year. So it is more than just accounting.
Sorry but it is not 6h, By considering the year length of 365 days, you make an error of either 5h 48m 45.25s (if considering equinox to equinox, which is what interests us for the seasons) or 6h 9m 9.75s (if considering same orbital point). The leap year only corrects for 6 extra hours, which leaves an average error of 12m 14.75s per year. After 100 years, the error has grown to ~20.4 hours. We reduce it to ~-3.6 hours by deciding not to take a leap year every 100 years. So every 100 years we are accumulating some error in the other direction. To compensate it, every 400 years we DO take a leap year in a multiple of 100. Which again corrects for most but not all… But we are everytime making smaller errors over longer time periods. This final correction is currently considered “good enough”. There is still a minimal drift of the seasons in the calendar, but it is a drift of less than half a day every 400 years.

February 9, 2014 6:40 pm

Willis,
“if you want to claim that the combined tidal forces of Jupiter and Saturn on the sun have an effect on the climate, you can’t just grab the periods and fit the phase and amplitude to the HadCRUT data. Instead, you need to do the hard lifting, calculate the actual Jupiter-Saturn tidal forces on the sun, and see if it still makes sense.”
A sensible suggestion, I personally think the tidal forces of the planets that do effect the sun are very small, although it’s not an insignificant effect, there is after-all a barycentric motion. Still, I’m not convinced at-all one bit that the planets cause the sunspots and therefor drive earths climate.
I am convinced that there is a relationship between the sun and the planets, Leif himself has stated that “the sun runs the planets” it’s actually encouraging to see you taking an active interest in the subject. The other two areas of interest which are actively being researched are the solar/climate how much the sun influences earths climate, and orbital/climate how much orbital changes effect earths climate, long term orbital changes originate from the outer solar system and solar changes originate from the inner-solar system.
As for signal processing of planetary beats and pattern recognition etc.. I believe the research is important, as a scientific tool it sheds light on underlining processes.Willis,
“if you want to claim that the combined tidal forces of Jupiter and Saturn on the sun have an effect on the climate, you can’t just grab the periods and fit the phase and amplitude to the HadCRUT data. Instead, you need to do the hard lifting, calculate the actual Jupiter-Saturn tidal forces on the sun, and see if it still makes sense.”
A sensible suggestion, I personally think the tidal forces of the planets that do effect the sun are very small, although it’s not an insignificant effect, there is after-all a barycentric motion. Still, I’m not convinced at-all one bit that the planets cause the sunspots and therefor drive earths climate.
I am convinced that there is a relationship between the sun and the planets, Leif himself has stated that “the sun runs the planets”, it’s actually encouraging to see you taking an active interest in the subject. The other two areas of interest which are actively being researched are the solar/climate how much the sun influences earths climate, and orbital/climate how much orbital changes effect earths climate, long term orbital changes originate from the outer solar system and solar changes originate from the inner-solar system.
As for signal processing of planetary beats and pattern recognition etc.. I believe the research is important, as a scientific tool it sheds light on underlining processes.

February 9, 2014 6:42 pm

Willis,
“if you want to claim that the combined tidal forces of Jupiter and Saturn on the sun have an effect on the climate, you can’t just grab the periods and fit the phase and amplitude to the HadCRUT data. Instead, you need to do the hard lifting, calculate the actual Jupiter-Saturn tidal forces on the sun, and see if it still makes sense.”
A sensible suggestion, I personally think the tidal forces of the planets that do effect the sun are very small, although it’s not an insignificant effect, there is after-all a barycentric motion. Still, I’m not convinced at-all one bit that the planets cause the sunspots and therefor drive earths climate.
I am convinced that there is a relationship between the sun and the planets, Leif himself has stated that “the sun runs the planets” it’s actually encouraging to see you taking an active interest in the subject. The other two areas of interest which are actively being researched are the solar/climate how much the sun influences earths climate, and orbital/climate how much orbital changes effect earths climate, long term orbital changes originate from the outer solar system and solar changes originate from the inner-solar system.
As for signal processing of planetary beats and pattern recognition etc.. I believe the research is important, as a scientific tool it sheds light on underlining processes.

February 9, 2014 6:46 pm

Sorry I botched my first comment, I always try to copy it just before I submit it, I must have hit paste. D’oh…

Nylo
February 9, 2014 6:46 pm

Correction, the yearly error after correcting for leap years is 11m 14.75s which after 100 years is roughly 18.74 hours and when not taking the leap year is reduced to roughly 5.26h in the other direction, which after 400 years has accumulated to roughly 1 day (21.04h) and that’s why we DO take the leap year in years multiple of 400, leaving a final error of less than 3h every 400 years.

February 9, 2014 6:47 pm

So it is with Milankovitch. Follow the fish. They’ve been around half a billion years. They ought to be able to discern a cycle that is just a statistical repetition of values from something real. The PDO is fish based. Not saying it’s tidal, but I trust those fish.

February 9, 2014 7:18 pm

Willis writes:
“For example, if you want to claim that the combined tidal forces of Jupiter and Saturn on the sun have an effect on the climate, you can’t just grab the periods and fit the phase and amplitude to the HadCRUT data. Instead, you need to do the hard lifting, calculate the actual Jupiter-Saturn tidal forces on the sun, and see if it still makes sense.”
Again this tidal exercise was done
Scafetta N., 2012. Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. Journal of Atmospheric and Solar-Terrestrial Physics 81-82, 27-40.
http://www.sciencedirect.com/science/article/pii/S1364682612001034

MattS
February 9, 2014 7:18 pm

“EQUATIONS: The tidal force is equal to 2 * G * m1 * m2 * r / d^3, where G is the gravitational constant, m1 and m2 are the masses of the two objects, d is the distance between them, and r is the radius of the object where we’re calculating the tides (assuming that r is much, much smaller than d).”
So what happens if r is not much, much smaller than d?

February 9, 2014 7:22 pm

Anthony, I got your joke.

Mooloo
February 9, 2014 7:24 pm

As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface.
So the ocean sloshes backwards and forwards twice a day, over a non-flat seabed and round islands, but when it does it by slightly more for a few days, that causes climate change?
Pull the other one!
As Willis has shown, the “cycle” is just a mathematical thing. In the oceans the tides go up and down daily, sometime high, sometimes slightly lower. That once every sixty years they go a bit higher again is so far into noise to be silly.
And why would extreme tides cause more mixing for a start? The water moves one way, then moves the other as a body. It’s not the top moving and the bottom staying still (or it wouldn’t be resonance). The tides seem quite large to us, but as a percentage change in the oceans they are tiny. Each molecule is moving across, on average, what? A nanometer?

February 9, 2014 7:32 pm

Willis,
My calculations are not ready, (which do not deal with tidal models) when they are, you will have the data and everything you need.
I will point out that there are tidal forces on the sun caused by the planets and that I have done “the hard lifting”.

daddylonglegs
February 9, 2014 7:42 pm

Tonyb says:
February 9, 2014 at 1:39 pm
Hi Willis
I imagine you would be interested in this mechanical device invented by the ancient Greeks to predict eclipses amongst other things. They keenly observed cycles and we could perhaps still learn things from them
http://en.wikipedia.org/wiki/Antikythera_mechanism
It is an absolutely fascinating story of the devices rediscovery and an fascinating story of how it’s purpose was put together. The BBC did a wonderful programme on it a couple of years ago.
Tonyb

I once attended a lecture by someone from the company Xtek who custom-built a 12-ton 450 kV xray tomography system and shipped it out to Greece, to make a CT scan of the Antikythera mechanism. This is included in the Wiki article – the CT scan doubled the amount of text they could read inside the mechanism. It had more than 50 gears and accurately modelled numerous astronomical cycles. It was made around 100-150 BC, nothing approaching its sophistication was made for another 1500 years.

February 9, 2014 8:01 pm

daddylonglegs says:
February 9, 2014 at 7:42 pm
RE: Antikythera mechanism
People have been around in their present form for over five hundred thousand years or more, it shouldn’t be a surprise that a an astronomical model like the Antikythera mechanism was found, there are astronomical models built in stone that are dated before the last ice-age.

David L. Hagen
February 9, 2014 8:35 pm

Hi Willis
What is the story about the near-fortnightly tide component that I found discussed in several quick references?
17.4 Theory of Ocean Tides
Fortnightly Earth rotation, ocean tides and mantle anelasticity., Richard Ray, Gary Egbert
/j.1365-246X.2012.05351.x

The near-fortnightly tide Mf, of period 13.66 d, is the largest of the zonally symmetric, long-period tides. Like all the long-period lunar tides, it may be thought of as a time-varying modulation of the Earth’s permanent tide M0. In the case of Mf, the modulation arises from the twice monthly excursion of the moon off the Earth’s equator.

Toto
February 9, 2014 9:19 pm

Mooloo says:
“So the ocean sloshes backwards and forwards twice a day”
This metaphor will only confuse. Tides are not sloshing in the open ocean, they are a wave, a very fast wave. If you’ve studied waves, the water in them does not move much, just a bit of mini-sloshing, and less of it as you go deeper. In places other than the open ocean and in shallow water, tides can cause currents like in a river.
Willis Eschenbach says:
“Anyone who includes the other planets in tidal is fooling themselves, the effect is miniscule.”
Here are some numbers to support that.
http://staff.washington.edu/aganse/europa/tides/tides.html
(see link for explanation)

Tidal accels (m/s^2) at pts A & B on Earth due to solar system bodies.
———————————————————————-
due to a_T at A a_T at B
——– ———– ———–
Sun 5.05392e-07 5.05456e-07
Moon 1.09338e-06 1.14948e-06
Mercury 3.65155e-13 3.65232e-13
Venus 5.80684e-11 5.80952e-11
Mars 1.98055e-12 1.98103e-12
Jupiter 6.49978e-12 6.49998e-12
Saturn 2.31856e-13 2.31859e-13
Uranus 3.63353e-15 3.63356e-15
Neptune 1.05777e-15 1.05778e-15
Pluto 5.57134e-20 5.57136e-20

Silver ralph
February 9, 2014 9:23 pm

.
Saros Cycle?
I have always known this as the Metonic Cycle. I presume that these are one and the same:
http://en.wikipedia.org/wiki/Metonic_cycle
Ralph

Clay Marley
February 9, 2014 9:23 pm

In any case, between the model of Wood and the model of JPL … well, I’ll take JPL. They use their numbers to send rockets to Mars and Saturn, good enough for me.

As an ex-rocket scientist, I’ll offer one caution. The orbital models needed to fly to the moon or Mars only have to be accurate over the time-of-flight. For the moon that’s 3 days. For other planets, longer but still measured in months to years. And even then we can always update the ephemeris data in flight.
The kind of errors the Chiefio is referring to are those that accumulate over many decades to hundreds of years or longer caused by perturbations that aren’t modeled well if at all. Even if data is provided that goes hundreds of years into the past, how would one test the model?
One clever way is to compare past Lunar eclipses predicted by the model to actual observations. One study Chiefio links to does just that, and finds discrepancies. These discrepancies probably wouldn’t cost me a pound of propellant on a flight to Mars, but might affect my estimate of the tidal forces a hundred years ago.

David Falkner
February 9, 2014 9:30 pm

Willis says:
“I don’t know the answer to your question about the “4 year Solar cycle”, because I don’t know of any such cycle except the leap year cycle, which is just an accounting convenience to keep the seasons from drifting …”
Willis:
Since you bring this up, how do we know that this “reconciliation” you are speaking of hasn’t screwed with the comparability of each year? 1 day every four years means something different on Earth than it does at the Sun, especially over 200 years. In terms of solar activity, things may be considerably different and this may be masked because of a simple little thing like leap years. And missed by people who are quite ready to brush it off as an accounting trick.
You acknowledge it is to keep the seasons straight that we make this adjustment, but what effect would not making the adjustment have? Are we just booking an adjustment because we always have and we don’t have the underlying support? Is this an audit difference?

February 9, 2014 10:19 pm

The [trimmed] Scafetta is back again.
Here is the correction he issued to one of his papers
################################################
“The author would like to substitute the following lines
“Consequently, the IPCC projections for the 21st century should not be trusted.” (Page 126.)
and
“Consequently, the IPCC projections for the 21st century cannot be trusted.” (Page 135).
to
“IPCC projections for the 21st century should be viewed with great caution because the historical temperature data are herein shown to be likely interpretable in an alternative way that stresses the importance of natural cyclical variability, which would lead to very different 21st projections”.
that may more appropriately describe the findings of the paper and the true intention of the author.
The author would like to apologise for any inconvenience caused.
####################
that’s a man of his convictions.. Not.

JP
February 9, 2014 10:32 pm

This is getting too much of a personal Eschenbach outlet here. Nothing personal, but I’m moving over to Bishop Hill for my climate news.

charles nelson
February 9, 2014 10:45 pm

So when you were calculating your ‘tidal forces’ you took the perigees and apogees into consideration did you?
You factored in the Periselene/Pericynthion/Perilune and the Aposelene/Apocynthion/Apolune?
I hope you didn’t forget to do the calcs on the basis that the Earth and Moon orbit about their barycentre (common centre of mass), which lies about 4600 km from Earth’s centre (about three quarters of the Earth’s radius).
And I’m sure you didn’t leave out the 18 year precession of nodes….

charles nelson
February 10, 2014 12:15 am

I think the laughter is mostly directed at you Willis…and by the way do let us know when you ‘calculate’ how many angels can dance on the head of a pin.

Carbomontanus
Reply to  charles nelson
February 10, 2014 11:20 am

[snip – ok, your off-topic rantings about the “iron curtain” have gone over to the loony zone now. I’m assigning you to the troll bin then since you’ve been warned previously – Anthony]

February 10, 2014 12:32 am

Hi Willis,
Thank you for your explanation, I have but one problem, some large lakes north of the moons track. Have small tides that are measurable. North of the moons path. The tide runs away from the moon, like the water is repulsed, this tends to bother my brain some what.
Maybe you have an explanation, if you have I would like to hear it.

markx
February 10, 2014 12:44 am

JP says: February 9, 2014 at 10:32 pm
This is getting too much of a personal Eschenbach outlet here. Nothing personal, but I’m moving over to Bishop Hill for my climate news.
Ha ha .. that sort of statement is always cute! Can’t control your eyeballs, eh?
What I do if I don’t like something is to skip over it … You could skip every second article here and you’d still get more reading than at Bishop Hill (much as I do appreciate BH).
Hang on a sec, think of the free time I’d generate! Maybe I should follow your lead?

Mooloo
February 10, 2014 1:24 am

Toto says:
This metaphor will only confuse. Tides are not sloshing in the open ocean, they are a wave, a very fast wave.

The problem is that people think that the molecules that propagate the wave are moving a lot. Hence they get the impression that there is a huge shift in the water with each tide, that will somehow mix it, and mix it more if the tides are a bit bigger.
Whereas, a wave doesn’t require very much movement at all by its individual components. They just have to align to move in the same direction for a brief period of time.
The idea that anyone would seriously consider that the long run cycles in tides affects the amount of mixing bothers me.
(I note that many people seem to think that winds are somehow affecting the amount of mixing. I find that very difficult to believe. The surface layer isn’t going to be still at the best of times, so more mixing of a well mixed top couple of metres makes little difference. I doubt strongly that winds cause deep mixing beyond that layer. The concept that winds can cause water to not just pile up, but then force it downwards seems very unlikely IMO. The overwhelming power of the Humbolt Current, Gulf Stream etc are orders of magnitude more important.)

bobl
February 10, 2014 1:41 am

Willis, I do disagree, but its hard to cite what, but I do think your conclusion is unjustified. Recently at a conference I was treated to a very interesting lecture about how the great floods of Queensland, Australia are correlated to solar and lunar juxtaposition. His premise is that floods occur when the sun and moon are both at apogee in the wet season, since the orbital patterns repeat each 18 years the weather effect has an 18 year cycle (except I guess it is the earth at apogee, but you knew what I meant right?). Interestingly this occured in both summer of 2011 and a less pronounced peak in summer of 2013, both of which had great floods.
Anyway, while the tidal forces themselves may have no pattern the way they interact with the seasons and the monsoon certainly does show a pattern. At least in northern Australia.
Where, and when the tidal forces peak is important.

February 10, 2014 2:08 am

The eccentricity of the moon’s orbit around the earth is not constant and is varying on a monthly to yearly basis. I know this sounds crazy – but it really is true. If you plot out the eccentricity values of the moon relative to the earth-moon barycentre using JPL ephemeris – for example take their horizon interface you will get the following :
graph shown here
There are at least 2 regular resonances which at first sight seems odd because neither coincide with the orbital period of the moon (27.32days) nor that of the earth (365.25 days). There are also beats in the amplitude. Following this german article, I made a least squares fit shown as the blue curve which reproduces almost perfectly the signal .
eccentricity(d) = 0.55 + 0.014cos(0.198*d + 2.148) + 0.0085cos(0.0305*d +10.565)
This variation in eccentricity changes the perihelion distance from the earth significantly causing large variations in the strength of spring tides on a yearly basis. The eccentricity becomes a maximum when the semi-major axis of the orbit lines up with the sun. This happens every 205.9 days – more than half a year due to the precession of the orbit every 18.6 years. The 31.8 day variation is I think the regular orbital change in distance from the sun.
The moon is really in orbit around the sun because the sun’s gravitational field on the moon is twice that of the earth’s. The moon’s orbit is locked into that of the earth to give an effective lunar orbit as viewed from earth. It turns out to be impossible to accurately calculate the moon’s effective orbit around the earth far into the past. The error on the lunar eccentricity becomes > 100% more than 1 million years ago as reported in Laskar et al. 2010. Who knows what happens to the lunar eccentricity when the earth’s eccentricity around the sun increases with Milankovitch cycles ? Large changes in the lunar-earth distance will have very large (1/R^3) effects on tides and indirectly on climate.

Greg Goodman
February 10, 2014 2:24 am

“Thank you for your explanation, I have but one problem, some large lakes north of the moons track. Have small tides that are measurable. North of the moons path. The tide runs away from the moon, like the water is repulsed, this tends to bother my brain some what”.
It’s because teh tidal works in both directions ! Yeah, sounds mad and is a bit hard to imagine but the tidal force is due the gradient or divergence of the gravitational field.
Graivity falls off as inv sqr law : 1/r^2 the rate of change with respect to radial distance is thus proportinal to 1/r^3 , hence the r^3 in the formula.
So it’s not just a simple gravitational tug as one would think intuitively.
So the nearest part of the ocean gets more gravitational attraction than the centre of the Earth, Equally the ocean at the opposite side to the moon gets _less_ attraction in about the same measure when compared to the centre of the Earth. The Earth gets accelerated towards the moon more strongly than the far ocean which gets ‘left behind’ so to speak.
That is why many tides tend to happen twice per day. That’s called semi-diurnal. This is a simple case when the moon is over the equator.
When the moon is not over the equator one of these simplistic “bulges” (which don’t actually happen like that in reality) is circling to the north and the other to the south. Thus it is a once a day event as the Earth rotates.
There is some overlap and the result a composite tide with both diurnal and semi-diurnal components.
It took me a long time to find that out because there is an enormous amount of misunderstanding and misinformation even from academic sources.
Hopefully this will help others understand with a lot less effort.

RichardLH
February 10, 2014 2:30 am

Willis Eschenbach says:
February 9, 2014 at 5:33 pm
“The key word being “tiny” … look, Richard, any planet, moon, asteroid, and planitesimal affects the orbit every single other planet, moon, asteroid, and planitesimal. That’s not the question.”
Ok, this is going to get long. Sorry in advance for those who have to wade through it.
So we have Earth, Moon and Sun in a constant, never quite repeating gravitation dance with very minute additional factors that influence both of the TWO components of the gravitational field and its impact here on Earth.
Now I really do not know the answer to all this and it may well end up in the ‘Meh – Who cares’ bucket that you (and Leif) so quickly placed it in but, as people are calculating temperatures to 1/100s of a degree C, I hope you will bare with me whilst I try to lay the case out.
Firstly the vertical component to the field is as you plotted at the top. This should strictly be plotted around the barycentre (but others have mentioned that already). The vertical field is every so egg shape – pointy end towards the Moon – as this is the sum of two different forces to make the one field (otherwise we would have only one tide a day). Picky points but 1/100s of a degree is picky also. Now this plot gives the vertical field on a water only globe (rotating or not as you wish).
We still have the other component, the tangential to the surface field that happens at 45 to 60 degrees to the orbital plane as shown by me above (from Wiki). This is the part of the picture, overlooked so often, that I believe may be what is the important bit here. This is a force not seeking to raise the water/atmosphere up and down but to push it sideways back and forth along the surface. It operates across the whole cross-section of the water/air column and does not have the same high speed pattern that the vertical vector does because it is an almost constant angle despite the rotations.
So we have the two ellipses of the two orbits beating horizontally now. We are still missing the other major factor. The vertical beating. The two orbits are not aligned to each other vertically. So there is another supple beat happening there as well. That IS influenced by Saturn in particular which moves the path up and down (I know not very much but details again).
Whilst we are at it lets bring in the fact that the Earth is not rotating at right angles to the orbital plane either. Not important so much if this was a water only globe but if that was the case we wouldn’t be here to worry about this stuff.
With a land/ocean mixed globe this now becomes much more important. Now we have to worry about fixed points on the globe as it rotates. That brings in the Leap Year ‘same point in the sky, same time of day, same day of the year’ detail as well as the Saros cycle.
Now we have the ‘lever’ reasonably well defined and it modulates around its central value but how does that operate here on Earth. What ‘fulcrums’ are there against which it can operate?
Now land/ocean geography plays its part.
That tangential field. It operates at 45-60 degrees or so, and the important Geography appears to lie in the Northern Hemisphere. And the vertical field (much smaller) also operates on the North Pole (and the South Pole as well but that is all land). This vertical component operates with the same periodicity as daylight and we all know how daylight operates at the poles. Not the same quick pattern as tides/daylight elsewhere.
So we have a multi chamber, geographically defined, pumping system driven by the vertical field and ported to the rest of the rest of the Oceans through some very small Straights and Cills that surround the Northern Oceans. This sucks water in and out through the Straights and the resultant opposes or helps the currents that otherwise flow through them.
Then we have the tangential component also helping or preventing current flow though the other major Straights and Cills between Greenland to Scotland.
These are tiny flows of a few knots at best and it is the percentage change that matters, not the absolute value. Anyone who sails knows that tidal stream can well affect motion over the land and this is the sort of effect we are seeking. A few meters rise in the Ocean surface if a Cill height is only a few hundred meters or less matters also. Current will flow much easier in one case than the other.
The atmosphere may also be of interest when considering the tangential component as well. This 45-60 degree band is precisely where the Polar and Ferrel Cells meet. Does that ‘along the surface or slightly upwards/downwards’ vector affect where it forms or not?
And now we are in territory that is well beyond that of simply downloading data from JPL and running a plot. This is super-computer land and I don’t have one of those to hand.
Hence the curiosity.
Can simple, physics based, field vector maths and some fluid dynamics explain the longer term patterns we see? No exotic theory. Just a simple application of known physics to the case in hand.
Anyone got a research grant? Oil money?……

RichardLH
February 10, 2014 2:36 am

Willis Eschenbach says:
February 10, 2014 at 1:08 am
“47, everyone knows that.”
I thought it was 42 (and that mice and dolphins were the reason) 🙂

Kasuha
February 10, 2014 2:40 am

Venus and Earth trajectories around Sun can be thought of as independent periodical signals. And you may say that there’s nothing like a 243-year period after which the cycle repeats, it’s just how the two independent signals add up.
Except that Venus transits over Sun happen at such period.
I don’t really disagree with any of your conclusions, but I can see your methods. When you want to prove there is a period, you use periodicity analysis and declare it better than fourier transform. When you want to prove there is not the period, you use fourier transform.
The truth is, the strongest tidal effect event happens with the 54-year period. It may not be much stronger than other local maxima, but similarly to the Venus transits, there is certain period to them.

Greg Goodman
February 10, 2014 2:47 am

Clive Best: “The eccentricity of the moon’s orbit around the earth is not constant and is varying on a monthly to yearly basis. I know this sounds crazy – but it really is true. ”
It’s not that odd. The changes in the moon’s orbit are due to the graviational effect or the other planets. How they interact and line up will be very complex. Also the sun is not stationaly with respect to a inertial frame of reference. It has its own path relative to the solar system barycentre.
Since the earth and the moon are orbitting the sun we get pulled around with it.
So Willis is quite correct that the direct effect of planetary gravity on Earth is neglibible but it is wrong to conclude that the postition of the planets has no effect or the Earth or the moon.
The moon’s orbit is somewhat eccentric, at it’s most extreme the difference between closest approach (perigee) and furthest distance (apogee) is about 14% . The produces a difference of around 40% in r^3 hence the lunar tidal force. It goes from one extreme to the other and back in 27.55 days.
I have detected this period in the Arctic ice data:
http://climategrog.wordpress.com/?attachment_id=757
The alignment of the this excentricity is called the line of apsides and it too rotates with respect to rest of the system with a period of 8.85 years
It really requires some mental gymnastics to try to visualise all this but it is not neither simple nor negligible, in view of the 40% change in tidal force.
Oh, and just for added fun that 40% goes up and down about twice a year ( in fact rather more than 6 months).
I think that’s what Clive’s plot was showing.

cd
February 10, 2014 2:51 am

Willis
The article seems rather terse. Could you answer a few queries:
1:
I’ve been listening to lots of stuff lately about tidal cycles. … So folks talk about those cycles, and the 9 year half-Saros-cycle, and the like. The 54+ year cycle gets a lot of airtime, because people claim it is reflected in a sinusoidal approximately 54-year cycle in the for example the HadCRUT temperature records.
There is no background literature provided, you have the reader at a disadvantage. Is there any that pertains to this data/approach.
2:
Your Fourier analysis plot is a bit unconventional (by my experience). Are your amplitudes computed as the magnitude of the complex form (sin and cos). It’s seems an unusual way to plot these; mixing frequency and time domain. I’m guessing you have simply converted wave numbers to their wavelength for ease of expression?
Have you looked at the phase spectra? Would this offer anything?
3:
I don’t understand your equation:
sqrt( sun_force^2 + moon_force^2 + 2* sun_force * moon_force * cos(angle))
I don’t get this. Surely you should just modulate the sun_force with the magnitude of the dot product (i.e. |cos(angle)|):
sun_force = sun_force * |cos(angle)|. Then:
F=sqrt(sun_force^2+moon_force^2);
Perhaps not but could you explain why?
4:
Finally, what is the point of the article? What is the take home message? And why is it important?
Is it that the 54 cycle point is lost do you mean there is meant to be one and you’ve showed there isn’t. I could be missing something but you don’t seemed to have shown this.

Greg Goodman
February 10, 2014 3:01 am

Mosh’ says: “that’s a man of his convictions.. Not.”
No that’s a man who is prepared to make a correction when he overstated the case in a published article.
Constast that to someone like lsvalgaard Vaghan Pratt who will argue till they’re blue in the face rather than admit he made a mistake. That kind of “conviction” I can do without.
Scafetta’s correction seems honorable. At least he has the humility to admit he overstated the case and correct it. That should be applauded, not used in a mud slinging exercise.
If you try to shoot down people every time they correct themselves you lessen likelihood of it happening.
That is just yahboo politics, not scientific debate.

Greg Goodman
February 10, 2014 3:06 am

Willis , are you able to provide a precise value for the peaks in fig2 ?
In particular the ones that look to be circa 27, 29 days and 13 months.

Admin
February 10, 2014 3:06 am

Scafetta could satisfy 99.9% of his critics with a full release of data and code in order to enable replication of his papers, which currently cannot be treated as much more than anecdotes. Then he could be actually shown to be right or wrong and the majority will go where logic goes. As long as he continues to evade his responsibility as a scientist, criticism will increase, not abate.

RichardLH
February 10, 2014 3:31 am

charles the moderator says:
February 10, 2014 at 3:06 am
“Scafetta could satisfy 99.9% of his critics with a full release of data and code in order to enable replication of his papers, which currently cannot be treated as much more than anecdotes.”
Well I have continuously shown that there is a ~60 year pattern to the data, with or without Scafetta data and code.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Extendedtempseries-secondpass_zps089e4c7d.gif
Now with added proxy data as well to satisfy Jai who is SO convinced that it does not exist as well 🙂 ).
This is just simple ‘Gaussian’ low pass filter stuff but it independently confirms at least part of his case.

Greg Goodman
February 10, 2014 3:42 am

AW says: Well, that frequency certainly took a beating.
Willis:”At this scale, any 9 or 18+ year cycles would be very visible … bad news. There are no such cycles in decomposition of the data.”
Once thing you may not be realising Willis, and relates to all the comments I left yesterday trying to explain the way cycles combine in what we may loosely call “beats” or modulation.
The point is the equivalence of modulation (two signals multiplied together) and two different cycles that are added.
Now fourier analysis, by definition only captures single frequencies of fixed amplitude. So if you have data with a modulation it can not detect it as such. Instead what you get in the spectrum is two cosines that , added together, mathematically equivalent to the modulated form and will reproduce it perfectly if added together.
This is the old half-the-sum * half-the-difference game again. (Talking in freq, not period).
Again you can see an example in my arctic ice plot.
http://climategrog.wordpress.com/?attachment_id=757
There is 4.31 year modulation but this does not show up in the spectral analysis as 4.31 years. It shows as a triplet of peaks at
p1=27.1256
pc=27.6006
p2=28.0939
The central peak may sometimes be negligible . It is p1 and p2 that represent the modulation that in reality is 4.31 years. ie in a totally different part of the spectrum.
Similarly when you look at charts of tidal periods these are also “fourier” components and may (will) add together to give long period cycles. Thus absence of long periods in the list does not mean there are not long period cyclic patterns in tides.
There is clearly some kind of modulation pattern in your figure 3
It looks pretty sinusoidal and constant across that data, so probably results from just two components.

RichardLH
February 10, 2014 3:51 am

Greg: Lief: Willis: Whoever…
This thing about adding or multiplying for frequencies. The true answer is that it is always both.
So we get FM radio type stuff with addition where the frequencies are a long way apart.
And we get moiré interference patterns where the two are closer together.
For frequencies that are neither obviously one or the other often both factors are visible quite easily.
Thus 60 and 4 gives 4, 56, 60, 64 and 240.
2000 and 4 gives 4, 1996, 2000, 2004 and 8000.

Greg Goodman
February 10, 2014 3:57 am

N. Scaffeta also used ephemeris data in one of his papers to look at how the moon affected Earth’s orbit of the sun. By comparing spectra of Earth speed relative to the sun and that of the Earth-Moon ensemble (speed of EM barycentre) he showed that there was a 9.1 year variation that was caused by the presence of the moon.
I thought that was pretty ingenious.

Greg Goodman
February 10, 2014 3:58 am

Richard, “So we get FM radio type stuff ”
frequency modulation is another can of worms entirely , is that what you meant?

February 10, 2014 4:27 am

So it was this “spring” tide and not CO2 that gave Hurricane Sandy that extra push to help flood NYC and NJ?:
http://news.nationalgeographic.com/news/2012/10/121029-hurricane-sandy-path-storm-surge-full-moon-nation-weather-science/
I thought it was CO2 and so did the President, the Governors, and Al Gore…(sarc)

February 10, 2014 5:13 am

Incidentally, I still think it should be abs(cos(theta)) because there are two spring tides every month. The graph shows only one spring tide per month.
Sun – moon – earth. Theta =. O. Cos(theta) = 1.0. New moon
Sun- earth – moon. Theta = PI. Cos(theta) = -1.0. Full moon
Neap tides occur when theta = pi/2 and 3pi/2
The tidal bulge on the opposite side to the moon is mainly caused by the centripetal force of the earth rotating around the barycenter like a pair of scatters in a spin. When the sun is on that side the solar tide then increases this effect further. So we get a second spring tide when theta = pi.
IMHO the second bulge is NOT caused by an increased gravity on the near side surface to that on the centre of the earth. It is a pure rotational effect.

February 10, 2014 5:25 am

Of course that should be “a pair of skaters in a spin”
How I hate auto-correction on iPads !

Greg Goodman
February 10, 2014 5:38 am

As Willis says, this is just the theoretical tidal force or tidal potential. It is not in any way a measure of tides or the movement of water that actually happens.
The force calculated here exerts a force on the oceans , where and how the water actually moves is a whole other storey, that has as much to do with the 3D shape of the ocean basins and coastlines as it has to do this the primary driving force.
The hypothetical “bulges” get amplifies as the enter shallow waters , reflect of irregular coastlines and flow back out to sea. The passage of the moon is constantly moving on both a monthly and annual scale. The resulting tides are so complex that they still can not be modelled in anything but the vaguest terms and we still rely on empirical charts specific to each geographical locality as Willis discovered in the Solomans.
In fact tidal patterns progress in all directions and there are some points on the global called amphidromes that do not have ANY tides at all. Others have four tides a day, others just one.
http://en.wikipedia.org/wiki/Amphidromic_point
What Willis has plotted is the _magnitude_ of the tidal force. What is not shown is its direction.
The sun moves from one tropic to the other and back again in a year. The moon follows this but in addition moves +/- 5 degrees either side in cycle that takes 27.2 days. This “draconic” month is again different from the 27.55 day period I mentioned above.
The draconic cycle is the 2 ascending and descending moon people often confuse as being the same thing as the visible waxing and waning cycle. 29.53 days average.
Now all this really matters if you want to talk about real influence on the tides because force is a vector, with magnitude and direction, not a scalar as Willis has plotted.
When the sun is at it’s most southerly point 23.5 S the moon can go 5.1 degrees further south. This means tides will be at their most displaced from the equator and there will be a minimum of the semi-diurnal and a maximum of the diurnal components.
Willis linked to this paper yesterday which suggest 18.6 years is the relevant long period not the “saros” cycle of 18.01 that Willis is focusing on here.
http://www.jstor.org/discover/10.2307/621006?uid=3738032&uid=2&uid=4&sid=21103363205771
18.6 is the period of the precession of the lunar nodes. This is what affects the “declination angle” or the height of the moon in the sky , ie time between the 23.5+5.1 degree extremes I mentioned above.
Because of the ‘push-pull’ nature of tides it is the magnitude of the declination angle that determines whether sun and moon tides are focused on equator or pulling out to N,S extremes simultaneously.
Thus the period of water being draw towards or out of the tropics will be 18.6 / 2 years.
That will not be included in Willis plots or his spectra since he has explicitly ignored the directional component of the resultant force (though he did correctly us it to sum the forces).
So Willis found a little peak around “8.7” years. I would suggest more detailed examination would reveal it is 8.85 , the precession of lunar apsides. He did not find 9.3 and that is to be expected as I said from that analysis.
So far so good. We have picture of what long periods may be produced. Next step is to see whether there is any evidence of them in climate data.

RichardLH
February 10, 2014 5:39 am

Greg Goodman says:
February 10, 2014 at 3:58 am
“frequency modulation is another can of worms entirely , is that what you meant?”
It was an observation that frequencies always both add and multiply.
We just use that fact in different ways at different times. It can be very difficult to spot that they are there at times as it often just ends up as spreading the peak rather than them being visible as separate frequencies – but the maths says they are both there all the time.

RichardLH
February 10, 2014 5:46 am

Greg Goodman says:
February 10, 2014 at 5:38 am
“As Willis says, this is just the theoretical tidal force or tidal potential. It is not in any way a measure of tides or the movement of water that actually happens. ”
Indeed. The plot is for the vertical component only and for a water only Earth.
As I tried to point out above, it is how all this, the tidal bugle in a Sea/Ocean basin coupled with the tangential vector, into a tidal flow that affects the water/air movement through the Cills and Straights North/South is likely to be the main factor of interest. And that is a very much slower and complex cycle than the daily tides.
That tangential vector is almost never discussed or mentioned.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Tidalvectors_zps4fd5800f.png

Greg Goodman
February 10, 2014 5:47 am

CliveBest: “The tidal bulge on the opposite side to the moon is mainly caused by the centripetal force of the earth rotating around the barycenter like a pair of scatters in a spin. When the sun is on that side the solar tide then increases this effect further. So we get a second spring tide when theta = pi.
IMHO the second bulge is NOT caused by an increased gravity on the near side surface to that on the centre of the earth. It is a pure rotational effect.”
I was of that impression too at one stage but no. You need to understand that tides are caused by gradient of gravitational field ( grad operator in 3D) and not by gravitational attraction. That is confirmed by the 1/r^3 dependence not 1/r^2. They are essentially equal except for minute higher order corrections. I went into that in some more detail above.
Centrifugal force would be much stronger in the case of the sun and it would be very obvious in relation to the lunar tides. Solar is about 1/4 of lunar because of inv. cube. An inv. sqr effect would stick out a mile.

RichardLH
February 10, 2014 5:52 am

Greg Goodman says:
February 10, 2014 at 5:47 am
“They are essentially equal except for minute higher order corrections.”
I believe that the true filed is slightly ‘egg shaped’, pointy end towards the Moon. The Solar one is more equal. AFIK.

Henry Bowman
February 10, 2014 5:54 am

Willis writes

Perhaps … but Longman’s paper appears to be an ad-hoc, empirical method. Nothing against that, and for 1959, it was state of the art … It contains a number of formulas which give close values empirically, but are merely good approximations and not solutions of the underlying equations.

I don’t agree with your assessment, but if you are interested in more modern methodology, I suggest you check out the software package TSoft, developed and maintained by the Royal Observatory of Belgium, continuing Melchior’s decades-long efforts to study tides.

Greg Goodman
February 10, 2014 5:58 am

http://climategrog.wordpress.com/?attachment_id=757
Here we have the anaomalistic lunar month in arctic ice extent. Modulation is detected as 4.31 years
http://climategrog.wordpress.com/?attachment_id=774
frequency spectrum of Indian ocean SST reveals a strong peak at 9.32 years.
Looks a lot like 18.6 / 2 years.
The Indian ocean shows temperature records quite different from the other main oceans that are connected north and south. Here the declination angle seems to produce a prominent cycle.

Editor
February 10, 2014 6:04 am

Normally, I’m hesitant to jump onto the “planetary influence” bandwagon, but…
I notice that in your “monthly” tidal forces graph, there’s a peak at just over 13 months. My first thought was the Chandler wobble http://en.wikipedia.org/wiki/Chandler_wobble but that’s 433 days, over 14 months, so it’s not the answer. Now let’s look at at some planetary orbital data http://nineplanets.org/data.html
Earth orbits Sun in 365.26 days
Jupiter orbits Sun in 4332.71 days
The “beat frequency”, i.e. time between conjunctions, is…
1 / (1/365.26 – 1/4332.71) = 398.89 days
Can you “zoom in” on your analysis and see if that period matches the peak just past 13 months?

cd
February 10, 2014 6:07 am

Greg Goodman
Now fourier analysis, by definition only captures single frequencies of fixed amplitude. So if you have data with a modulation it can not detect it as such.
Fig. 1 looks like a modulated signal of:
high frequency carrier (pure sinusoid) * long range variation (structural signal)
Surprisingly, the spectra does not seem to show the “modulation” fingerprint.
But great points all the same.

Coldlynx
February 10, 2014 6:10 am

Atmospheric tide:
“Atmospheric tides are also produced through the gravitational effects of the Moon”
http://en.wikipedia.org/wiki/Atmospheric_tide
Do not forget the smaller solar tide.
Add to that the earth axial tilt and get a tide induced movement of air towards the poles in summer and from the poles in the winter.
The largest daily horisontal tidal force are during sunrise which accelerate air eastwards. Small force but rather long time of acceleration for some hours every day. In NH summer northeast due to earth tilt. During sunset is the largest tidal force deaccelerating the same airmass northwest in NH summer. Net force north but since day is longer than night and the net movement of the atmosphere be northeast.
In winter will the morning horisonal acceleration be southeast and evening retardation be southwest. The net force south and net movement southwest due to longer nights.
This will have an impact on winds patterns and climate. Not big but the effect will be there.
The Coriolis effect is also a small force with huge impact.
http://en.wikipedia.org/wiki/Coriolis_effect

Greg Goodman
February 10, 2014 6:23 am

North Atlantic SST shows 9.066 as main peak:
http://climategrog.wordpress.com/?attachment_id=217
Cross-correlation of N.Atlantic and ex-tropical N. Pacific shows a strong peak at 9.06 years
http://climategrog.wordpress.com/?attachment_id=755
As detailed in the text with the plot this could be a combination of 18.6 / 2 and 8.85 years.
In contrast to the Indian ocean there seems to be both declination and aspides cycles at play here.
A similar frequency was recently reported by BEST team by looking at cross correlation of AMO and PDO. I preferred actual SST to the processed PDO “index” but essentially the same period is found.

Greg Goodman
February 10, 2014 6:26 am

cd “Surprisingly, the spectra does not seem to show the “modulation” fingerprint.”
You won’t see it _directly_ in a spectral analysis.
That’s whole point of my comment which you read but apparently did not understand.

Greg Goodman
February 10, 2014 6:29 am

walterdnes says: Chandler etc.
Not planets. Probably 14 lunations. 29.53*14 = 413. = 1.13 years.
I haven’t got Willis’ code load properly but may be he can provide a central value for that peak.

Greg Goodman
February 10, 2014 6:40 am

Richar: That tangential vector is almost never discussed or mentioned.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Tidalvectors_zps4fd5800f.png
I did not get your point last time you posted that.
The point is , even without looking at the tangential vector, for a high tide to happen water has to come from somewhere else. When you look at water movement it does well-up from the deeps it is mainly a horizontal movement of water.
To create a high tide, surface water comes in from all around.
If there are temperature differences in SST, movement like that carries thermal energy.
As declination angle pulls tides towards or away from the equatorial zones in a 9.3 year cycle this will displace large amounts of heat energy. It is easy to see why this period is recurrent basin wide SST records.

February 10, 2014 6:40 am

Greg,

You need to understand that tides are caused by gradient of gravitational field ( grad operator in 3D) and not by gravitational attraction. That is confirmed by the 1/r^3 dependence not 1/r^2. They are essentially equal except for minute higher order corrections. I went into that in some more detail above.

Yes I am well aware that tides are caused by the gradient of the gravitational field. Hence the 1/r^3 dependence. Hence the the reason the lunar tide is about twice the solar tide despite the sun being 27 million times the mass of the moon. You haven’t understood what I am saying
It is the tractional component of the gravitational force of the moon acting on the oceans which gives rise to a tidal bulge. The tractional gravitational component is the projection onto the spherical surface of the earth which increases with angular distance from the vector joining the moon to the center of the earth. This works out as 1/r^3 effective tidal force and explains the cause of the bulge on the surface facing the moon. However the bulge on the opposite side has a different origin. The centripetal force is caused by the rotation of the earth about the earth-moon barycenter (located 4000km from the centre of the earth) during the lunar month. The change in centripetal force across the spherical surface of the earth also leads to a 1/r^3 dependence. A point on the earth perpendicular to the moon-earth vector feels no centrifugal force. A point opposite the moon feels maximum centripetal force. Somewhere in the middle the ocean feels a component of centrifugal force that is parallel to the earth’s surface. This parallel component then leads to the tidal bulge opposite the moon.
The centripetal force of the earth’s orbit around the sun is much smaller as the pivot point is 93 million miles away and the angular velocity is much smaller.
I just don’t buy the argument that the difference in gravity between the lunar facing surface, the centre of the earth and the opposite facing surface causes the second bulge.

RichardLH
February 10, 2014 6:41 am

Greg Goodman says:
February 10, 2014 at 5:58 am
“The Indian ocean shows temperature records quite different from the other main oceans that are connected north and south. Here the declination angle seems to produce a prominent cycle.”
I suspect that this is because the tidal flow is limited by the West – East land block to the North. This severely limits the effects in the Indian Ocean. You also need to consider how the orbital inclinations of both Sun and Moon interact with the normal ‘vertical’ globe we tend to think of. The maximum, central point is always some form of elliptical line running across the surface. In the case of the Indian Ocean this falls on land a lot of the time.

February 10, 2014 6:42 am

Important paper on tidal influence on climate:
Ray, RD, 2007: Decadal Climate Variability: Is There a Tidal Connection?. J. Climate, 20, 3542–3560. doi: http://dx.doi.org/10.1175/JCLI4193.1

RichardLH
February 10, 2014 6:46 am

Greg Goodman says:
February 10, 2014 at 6:40 am
Richard: That tangential vector is almost never discussed or mentioned.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Tidalvectors_zps4fd5800f.png
“I did not get your point last time you posted that.”
Look again at the diagram. The tangential to the surface force varies very slowly. It is at an angle to the orbit and only changes with that. It does not follow the normal daily pattern. It is much slower and more likely to be the ~60 year interaction.
This is a force that is horizontal to the surface. One that is likely to affect flows of all sorts North-South.
Sure flows caused by different vertical effects in basin North – South will also be in there, but they are on a much faster Daily timescale.

RichardLH
February 10, 2014 6:59 am

clivebest says:
February 10, 2014 at 6:40 am
This is always how I have believed the two tides explanation was supported in Physics.
http://i.stack.imgur.com/aE7Gd.jpg
from
Physics Stack Exchange is a question and answer site for active researchers, academics and students of physics
http://physics.stackexchange.com/questions/46792/tidal-force-on-far-side

February 10, 2014 7:00 am

Greg,

What Willis has plotted is the _magnitude_ of the tidal force. What is not shown is its direction.

No – he has plotted the magnitude of the “sub-lunar” tide and has ignored the “antipodal” tide. In other words when there is a full moon with the moon is on the opposite side to the sun the tidal force is again at a maximum. What he has plotted is just one tide per day and ignored the second tide. This error is compounded because at full moon he has the solar tide subtracting from the sub-lunar tide , whereas the opposite is the case. This subtle effect is now due to the alignment of the “antipodal” tide with the sun’s tidal force.

Greg Goodman
February 10, 2014 7:04 am

CliveBest: “The eccentricity becomes a maximum when the semi-major axis of the orbit lines up with the sun. This happens every 205.9 days – more than half a year due to the precession of the orbit every 18.6 years. ”
There’s the answer to the “13mo” peak.
Twice that value is almost exactly the 14 lunations that I suggested. It’s the alignment of max eccentricity with the visual lunar phase. ie full moon and max eccentricity (closest approach “perigee”) being at max lunar+solar tidal force alignment.
I’m a little curious why this is showing as a separate peak since the individual components should already be present in the rest of the spectrum. This implies a non linearity.
Since the ephemeris is essentially empirically based, perhaps it is picking up some slight variation in the E-M orbit due to ocean movement.

RichardLH
February 10, 2014 7:08 am

clivebest says:
February 10, 2014 at 7:00 am
“No – he has plotted the magnitude of the “sub-lunar” tide and has ignored the “antipodal” tide.”
And only for a water only Earth. Also one that doesn’t matter where the spin axis is. The real Earth has both of the complications to add as well.

RichardLH
February 10, 2014 7:10 am

Greg Goodman says:
February 10, 2014 at 7:04 am
“This implies a non linearity.”
As I mentioned above – the tide is egg shaped which may well be what you are seeing.

February 10, 2014 7:12 am

Richard,
Yes – this is exactly right !

http://i.stack.imgur.com/aE7Gd.jpg

It is only the horizontal component of those vectors that is moving any water in the oceans.

dan
February 10, 2014 7:37 am

Generally agreed that the tide-stuff is “tiny” but depending on the context, “tiny” can still have implications. Curious of opinions…
http://solarcycle24com.proboards.com/thread/324/theory-solar-cycle-www-sibet

Greg Goodman
February 10, 2014 7:44 am

http://i.stack.imgur.com/aE7Gd.jpg
Where does that come from Clive? Is the ‘egg’ shape due to the addition of a centrifugal component?

Reply to  Greg Goodman
February 10, 2014 8:59 am

Greg,
Yes I think the egg shape is due to the combination of the centrifugal force of the earth’s orbiting the earth-moon barycenter and the vectoral sum of the lunar and solar tidal forces.
One clear climate effect of the month can be seen in measured TSI data- see http://clivebest.com/blog/?p=2996. The earth changes its distance from the sun by up to 8000km each lunar month. This change in net solar insolation induces a regular change in global temperatures of ~0.02C.

cd
February 10, 2014 7:47 am

Greg Goodman
That’s whole point of my comment which you read but apparently did not understand.
No a simple DFT of an AM signal gives a very characteristic spectral signal: symmetry about the peak for the fundamental frequency of the carrier (double sideband fingerprint). Rather elementary stuff really.
Understand perfectly – not so sure you do though.

Greg Goodman
February 10, 2014 7:52 am

“It is only the horizontal component of those vectors that is moving any water in the oceans.”
‘Only’ I don’t think so. It’s all part of the effect. If the perpendicular force was not pulling up, the horizontal force would be fighting terrestrial gravity to pile up the water. It needs to be viewed as a whole.
Since none of the happens anyway be cause we don’t not live on a water only planet it’s just a thought experiment to see how forces act. This only one part of the story of actual tides, it’s just initial driving tidal forces.

RichardLH
February 10, 2014 8:00 am

Greg Goodman says:
February 10, 2014 at 7:52 am
““It is only the horizontal component of those vectors that is moving any water in the oceans.”
‘Only’ I don’t think so. It’s all part of the effect. If the perpendicular force was not pulling up, the horizontal force would be fighting terrestrial gravity to pile up the water. It needs to be viewed as a whole. ”
Indeed. The combination is the thing. Vertical forces acting on a Basin/Ocean can only be supplied by water flowing in and out from somewhere. Some of it is East to West to be sure but some has to be North to South.
Which is why all of this is about tidal flow not tidal height.
And the point is that the tangential vector is at an orbital not daily modulation.
Think daylight and how it varies over the planet over the year. That is how the tangential vector modulates. At the North Pole for instance that vertical vector of the field only changes over a 12 month cycle, not a daily at all. At the equivalent of the Arctic Circle (not the real one because this is Moon orbit, not Solar) then it is all Tangential.
The further and further away from the poles you go, the more the Vertical, daily, component becomes important.
This is all very complex stuff and well beyond a simple JPL plot I’m afraid.

David L. Hagen
February 10, 2014 8:01 am

Willis and Charles the Moderator
Willis: Re: ” no data, no code, no science.”
Charles the Moderator: Re: “Scafetta could satisfy 99.9% of his critics with a full release of data and code in order to enable replication of his papers, which currently cannot be treated as much more than anecdotes.”
I understand Scafetta to say that he documents his use of publicly available data, and fully describes his method in his peer reviewed papers sufficient for others to replicate his results.
While I would encourage him to show his code as well, I thought data and a full published method to be sufficient for the scientific method.
Is the data or his method not sufficiently clear?
Now he may have errors in his software/calculations (I have found errors in my own code etc.).
His releasing his code would help others to see if there is or is not.
However, if its public data and clearly explained method, I do not see how you can fault him for that.
Per your link to New Scientist, “Sceptical climate researcher won’t divulge key program”

” emails between Benestad and Scafetta over the past week, in which Scaffetta repeatedly refused to provide the code. “If you just disclose your code and data, then we will manage to get to the bottom of this,” Benestad writes in one email. “I really do not understand why you are not able to write your own program to reproduce the calculations,” responds Scafetta.
In response to direct questions from New Scientist, Scafetta said the code in question had been submitted to a scientific journal and that if “the journal takes its time to publish it, it is not our fault”. Benestad says the code he is asking for relates to papers already published.

Charles “Scafetta could satisfy 99.9% of his critics” – hyperbola.
Unlikely satisfy climate alarmists –
And I have my doubts that even that would satisfy Willis.
In an alternate theory, QB Lu suggests halogenated hydrocarbons have a major contribution to earth’s climate. e.g.
COSMIC-RAY-DRIVEN REACTION AND GREENHOUSE EFFECT OF HALOGENATED MOLECULES: CULPRITS FOR ATMOSPHERIC OZONE DEPLETION AND GLOBAL CLIMATE CHANGE 2013

Greg Goodman
February 10, 2014 8:02 am

It needs to be viewed as a whole….
What Willis has calculated it seems is one point value along the axis. This is OK to give an idea of form but what is required to calculate the force is a 3 dimensional integral that would include all the forces at all angles.
I think what he has done is fine for the needs of looking at the cycles. E&EO

RichardLH
February 10, 2014 8:07 am

clivebest says:
February 10, 2014 at 7:12 am
“Richard,
Yes – this is exactly right !
http://i.stack.imgur.com/aE7Gd.jpg
It is only the horizontal component of those vectors that is moving any water in the oceans.”
Not strictly true. The lumps being pulled round twice daily have to be fed from somewhere and those big bits of land get in the way of a purely East – West movement.
(Interesting SF plot in there somewhere about a completely water based world with a few islands where the bulge has time to build to astonishing proportions 🙂 )

Greg Goodman
February 10, 2014 8:08 am

Richard, I now see what your “egg shape” comment is , since the tangential vector is slightly closer than the central section of the planet and the tangential components are not parallel.
This is what would be found by a full 3D integration and it what I earlier referred to as higher order effects.
Clive seems to be correct, in Willis’ R code the cosine can be negative.

RichardLH
February 10, 2014 8:10 am

Greg Goodman says:
February 10, 2014 at 8:02 am
“I think what he has done is fine for the needs of looking at the cycles. E&EO”
I would dispute that.
Please consider how the tangential vector can influence both tidal and atmospheric flows North to South.

Greg Goodman
February 10, 2014 8:14 am

cd “Surprisingly, the spectra does not seem to show the “modulation” fingerprint.”
“Understand perfectly – not so sure you do though.”
Ok. so what precisely are you expecting to see that would be the fingerprint? Numbers , frequencies and where you would expect to see them on which graph.
If you’re surprised it’s not there you must know where to look.

February 10, 2014 8:15 am

“Generally agreed that the tide-stuff is “tiny” but depending on the context, “tiny” can still have implications.”
tell that to the folks who believe c02 has no effect because its tiny

RichardLH
February 10, 2014 8:20 am

Greg:
Please consider how the two sectors marked in red and green vary in time over the appropriate orbital periods for both Sun and Moon.
The vertical component at the Pole is orbital not Earth rotation modulated.
The tangential component at the ‘Arctic Circle’ is also orbital, not daily.
The unmarked sector is all daily (with a small orbital in there as well)
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Tidalvectors2_zpsc9b57e6a.png
Now put this all on a tilted, rotating planet and you will see the sort of driving force complexity involved.
As you say this is just a cross sectional view. To move to full 3D and the add in the Geography along with the fluid mechanics…..
As I said above, anyone got a super-computer, a research budget lying around? Oil money …. PLEASE.

Greg Goodman
February 10, 2014 8:20 am

R: “I would dispute that. ”
Sorry, I’m presuming you’ve read the short-comings that I’ve also commented on in detail above and referred to with E&EO (errors and omission excepted) here.
I’ve already said Willis’ graph is only half the story because he does not use the direction of the resultant vector. That is the declination angle that is all important in relation to 18.6 , 9.3 and all the plots I have posted here showing physical evidence of these periods in climate data.

RichardLH
February 10, 2014 8:28 am

Greg Goodman says:
February 10, 2014 at 8:20 am
“Sorry, I’m presuming you’ve read the short-comings that I’ve also commented on in detail above and referred to with E&EO (errors and omission excepted) here.”
I was only objecting to your suggestion that it was “fine for the needs of looking at the cycles”.
I agree with all of your other points, though you did [lose] me at one point but I now think I see what you were getting at:-)

Gail Combs
February 10, 2014 8:50 am

I do not see anyone mentioning this paper:

The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change
Abstract
Variations in solar irradiance are widely believed to explain climatic change on 20,000- to 100,000-year time-scales in accordance with the Milankovitch theory of the ice ages, but there is no conclusive evidence that variable irradiance can be the cause of abrupt fluctuations in climate on time-scales as short as 1,000 years. We propose that such abrupt millennial changes, seen in ice and sedimentary core records, were produced in part by well characterized, almost periodic variations in the strength of the global oceanic tide-raising forces caused by resonances in the periodic motions of the earth and moon. A well defined 1,800-year tidal cycle is associated with gradually shifting lunar declination from one episode of maximum tidal forcing on the centennial time-scale to the next. An amplitude modulation of this cycle occurs with an average period of about 5,000 years, associated with gradually shifting separation-intervals between perihelion and syzygy at maxima of the 1,800-year cycle. We propose that strong tidal forcing causes cooling at the sea surface by increasing vertical mixing in the oceans. On the millennial time-scale, this tidal hypothesis is supported by findings, from sedimentary records of ice-rafting debris, that ocean waters cooled close to the times predicted for strong tidal forcing.
[Body of text]
…We propose that variations in the strength of oceanic tides cause periodic cooling of surface ocean water by modulating the intensity of vertical mixing that brings to the surface colder water from below. The tides provide more than half of the total power for vertical mixing, 3.5 terawatts (4), compared with about 2.0 terawatts from wind drag (3), making this hypothesis plausible. Moreover, the tidal mixing process is strongly nonlinear, so that vertical mixing caused by tidal forcing must vary in intensity interannually even though the annual rate of power generation is constant (3). As a consequence, periodicities in strong forcing, that we will now characterize by identifying the peak forcing events of sequences of strong tides, may so strongly modulate vertical mixing and sea-surface temperature as to explain cyclical cooling even on the millennial time-scale….

The entire paper is available at that address.

accordionsrule
February 10, 2014 8:52 am

Is it just me, or is Figure 3 undulating?
Must be a landlubber when even a tidal graph makes me seasick.

Tom In Indy
February 10, 2014 8:55 am

Steven Mosher says:
February 10, 2014 at 8:15 am
“Generally agreed that the tide-stuff is “tiny” but depending on the context, “tiny” can still have implications.”
tell that to the folks who believe c02 has no effect because its tiny

Mosh, I don’t think anyone is claiming that tides are the “control knob” of the earth’s climate, like the CAGW crowd claims CO2 is the climate control knob. Or, is the CAGW crowd not making that claim any longer? If not, then why are we debating climate sensitivity to man-made CO2 and destroying economies to reduce man-made CO2 emissions?

cd
February 10, 2014 9:04 am

Greg Goodman
so what precisely are you expecting to see that would be the fingerprint?
Side bands about the carrier frequency which we know in the case of Fig. 1. But then I’m not sure how/what he’s plotting in Fig. 2. If we assume that he’s simply converted wavenumber to wavelength then they’ll have to be inferred – but then I’m not sure what he has done (as stated originally).
It would be a lot easier to plot these as a function of frequency then we’d be sure to see the sidebands if present – given the times series. Plotting the “amplitude” on a log scale might help also. What is clear is that there IS amplitude modulation going on. And he’ll need to identify these if he wishes to properly decompose the signal.
Given that there is no drift in the data I’d:
Compute the autocorrelation using a window function and get the FFT from this. Start at the smallest window size to the largest. At each step you’ll be able to spot the carrier signal. Remember, Willis is only concerned with finding the fundamental frequencies.

Jim G
February 10, 2014 9:10 am

As pointed out by many, including the author of this post, the data, and therefore the point of the analysis, has no relationship to out 3 dimensional world. May I use the term “model” to describe it? I would name it the “ceteris paribus” model of tidal activity. It sheds little light on anything of significant import that can be tested in any way.

cd
February 10, 2014 9:13 am

Greg
To make clear the sidebands are symmetric, so if Fig. 2 is amplitude vs wavelength then this will not be the case hence the need to convert to frequency.

RichardLH
February 10, 2014 9:16 am

Nylo says:
February 9, 2014 at 6:39 pm
“Sorry but it is not 6h, By considering the year length of 365 days, you make an error of either 5h 48m 45.25s (if considering equinox to equinox, which is what interests us for the seasons) or 6h 9m 9.75s (if considering same orbital point). The leap year only corrects for 6 extra hours, which leaves an average error of 12m 14.75s per year. After 100 years, the error has grown to ~20.4 hours. We reduce it to ~-3.6 hours by deciding not to take a leap year every 100 years.”
You are indeed perfectly correct. When we get temperature data of sufficient length for this to become a significant factor, then a suitable correction will need to be added.

February 10, 2014 9:22 am

Wikipedia has also got it wrong http://en.wikipedia.org/wiki/Tide
So too has : http://physics.stackexchange.com/questions/46792/tidal-force-on-far-side
Here is someone who explains it properly. ( http://www.moonconnection.com/tides.phtml)

Water on the opposite side of Earth facing away from the Moon also bulges outward (high tide), but for a different and interesting reason: in reality, the Moon and the Earth revolve together around a common gravitational center between them, or center of mass. Here’s a rough but helpful analogy: picture yourself swinging a heavy object attached to a rope around your body as you rotate. You have to lean back to compensate, which puts the center of mass between you and the object. With the Earth-Moon system, gravity is like a rope that pulls or keeps the two bodies together, and centrifugal force is what keeps them apart. Because the centrifugal force is greater than the Moon’s gravitational pull, ocean water on the opposite side of the Earth bulges outward.
The same forces are at play as the Earth revolves around the Sun. The Sun’s gravity pulls ocean water toward the Sun, but at the same time, the centrifugal force of the combined Earth-Sun revolution causes water on the opposite side of Earth to bulge away from the Sun. However, the effect is smaller than the Moon, even given the greater mass of the Sun (greater mass means greater gravitational force). Why? Simply because The Sun is so far away — over 380 times farther away from the Earth than the Moon.

Greg Goodman
February 10, 2014 9:29 am

That’s interesting Clive. Could tie in with Scaffeta’s paper I mentioned above. He finds 9.1 years in JPL data that is attributable to the moon’s presence. I had not thought that it may be related directly to change in insolation but to distance. I knew the perihelion was notable but not the Earth’s orbit around the moon 😉
One main reason is probably that TSI is usually shown “corrected” for 1AU, ie this cycle is actively removed.
I think what you are plotting is a manifestation of the fine scale of what Scaffeta investigated. I also see the variations in TSI sometimes match your red line in amplitude other times its less or broken up. Symptoms of another cycle.
Obvious choice is the perigee cycle. 8.85 . I’ve already suggested several times the Scaffeta’s 9.1+/-0.1 is in fact 9.08 which is produced by superposition of 9.3 (declination / 2) and 8.85.
18.631 / 2 + 8.852591 => 9.078 modulated by 356 years.
Cross-correlation of N.Atl and N.Pac SST shows same thing.
http://climategrog.wordpress.com/?attachment_id=755
18.631 /2 = 9.3155
Indian Ocean:
http://climategrog.wordpress.com/?attachment_id=774
Good idea of Willis’ to start this thread, it’s bringing a lot of things together.

RichardLH
February 10, 2014 9:31 am

Gail Combs says:
February 10, 2014 at 8:50 am
“I do not see anyone mentioning this paper:”
I did reference Fig 1. from there above as to the very complicated state of the Moon/Earth gravitational interaction and asked if Willis was attempting to refute it.

RichardLH
February 10, 2014 9:34 am

clivebest says:
February 10, 2014 at 9:22 am
“Wikipedia has also got it wrong http://en.wikipedia.org/wiki/Tide
So too has : http://physics.stackexchange.com/questions/46792/tidal-force-on-far-side
Here is someone who explains it properly. ( http://www.moonconnection.com/tides.phtml)”
I believe that the ‘egg shaped’ resultant field is correct though.

Greg Goodman
February 10, 2014 9:44 am

“Here is someone who explains it properly.”
Properly because…? who are they apart form the provider of some naff app ? They don’t even say who they are beyond “moonconnection.com”.
I don’t even bother reading WP for shit like this any more because it’s like global bar-talk. Everyone’s an expert, and those that argue the longest prevail on WP.
Where did your egg plot come from earlier? Was that derived from “centrifugal” ideas or gravity gradient?
I may buy the idea that there is some inertial component but I want something solid with numbers. I thought that was the case a while ago but the relatively small solar tide argues against it.

dan
February 10, 2014 9:54 am

Way to not even look at the link and see what the hell was even being referred to, Mosh

RichardLH
February 10, 2014 10:09 am

This is probably the best reference for explaining the slight egg shape to the tidal bulges (one tide is larger than the other on most days)
http://co-ops.nos.noaa.gov/restles3.html
And this for explaining why it is not due to centrifugal forces 🙂
http://www.lhup.edu/~dsimanek/scenario/tides.htm

February 10, 2014 10:23 am

Greg,
Years ago I went through the calculations to “derive” the 1/R3 dependence. I also convinced myself that the differential centrifugal force on the opposite hemisphere to the moon was indeed the cause of the second bulge. I don’t have my notes here but will try and reproduce them.
One other known climate effect : Moonshine !
Don’t laugh – but reflected sunlight from the moon at night is the only direct energy source on earth. Globally this is expected to add vary about 0.004C of warming between new and full moon. What is even more interesting is the effect that the moon has in polar regions during the long dark winters. The warming effect is then proportionately much more, and lunar atmospheric tides bring in circulation in from higher latitudes. Any effect must depend strongly on the 18.6 year cycle as the tidal bulge moves to higher latitudes.

RichardLH
February 10, 2014 10:26 am

clivebest says:
February 10, 2014 at 10:23 am
“I also convinced myself that the differential centrifugal force on the opposite hemisphere to the moon was indeed the cause of the second bulge.”
You might want to re-think that explanation.
http://www.lhup.edu/~dsimanek/scenario/tides.htm
(I am sorry I picked the site I did for the egg shape – I did not check the text – only saw the image – bad boy!)

Reply to  RichardLH
February 10, 2014 11:10 am

Richard,
What I wrote was indeed wrong – sorry!
The centrifugal force is the same for all points on the earth including that at the centre of the earth. The gravitational force of the moon on the centre of the earth is exactly balanced by the centrifugal force. Oceans on the surface of the earth experience different gravitational forces according to their distance from the centre of the moon. These are now not in balance with the centrifugal force. The differential of this net force causes the tides. For the surface facing the moon gravity “wins” resulting in a bulge. On the other side the centrifugal force “wins” causing the opposite bulge.
This gives the correct description : http://co-ops.nos.noaa.gov/restles3.html
Clive

RichardLH
February 10, 2014 11:49 am

clivebest says:
February 10, 2014 at 11:10 am
“What I wrote was indeed wrong – sorry! …This gives the correct description: http://co-ops.nos.noaa.gov/restles3.html
Yes I know – our posts must have crossed.

Greg Goodman
February 10, 2014 12:18 pm

Thanks for the two links Richard.
This whole thing is very inadequate. the NOAA description is quite good but when they show a “centrifugal” force pointing towards the centre of rotation, I see we’re not out of the woods. That may work for the solid earth on the basis that its all connected. It does not work for the fluid part. BTW when you bring in one ‘fictitious force’ you usually need the other : Coriolis.
I prefer the lhup.edu presentation working in an inertial frame of reference.
Luckily, for the purposed of this thread we can tell the eggs to beat it.

February 10, 2014 1:56 pm

I was slow to come around to this super tide theory, don’t have much invested in it, but don’t see much reason to back off of it yet, because: 1) it depends on zonal tides, capable of moving water north and south; 2) the fortnightly zonal tide is the strongest tide, at least as far as LOD is concerned. See: http://hpiers.obspm.fr/eop-pc/index.php?index=realtime&lang=en
Choose LOD; don’t remove “tidal variations” except for comparison.
One reason zonal tide is so strong is that its bulge can easily keep up with a fortnightly gravitational pull, unlike diurnal or semidiurnal tides, whose bulges can only move a few hundred mph in the shallow ocean. The latter are limited to idiosyncratic oscillations governed by basin bathymetry. The fortnightly zonal tide is conspicuous by its absence on Willis’s chart.
–AGF

Greg Goodman
February 10, 2014 2:07 pm

” The fortnightly zonal tide is conspicuous by its absence on Willis’s chart.”
Indeed, and that’s because he dropped the direction part of the resultant vector he calculated and just plotted the magnitude of the tidal force. The zonal (north/south) flow is primarily determined by the declination angle, which as what produces the 18.6 year cycle.
Because of the presence of the ‘opposite’ tidal force as well, its the deviation from the equator that matters, resulting in 9.3 year variations in the zonal tides.
AGF, was it you I discussed this with last year on another thread about the Stuecker paper and you did some back of envelop calculations on heat transport?

Greg Goodman
February 10, 2014 2:26 pm

Thanks for the EOP link, useful tool.
However it looks like that is the anomalistic cycle that is coming up clearly. Plot for last 136 days and you get pretty clearly ten bumps, or 5 full cycles.
This appears to be perigee cycle not tides. Would you agree?

February 10, 2014 2:58 pm

Yes, GG, you witnessed my reluctant conversion, and yes the zonal tide you see is not very fortnightly. –AGF

Greg Goodman
February 10, 2014 3:18 pm

Unfortunately I can’t get Willis’ code to load properly. Maybe he’ll pop in later to correct it.
It would be interesting to plot the deviation of the resultant force vector’s angle from the equator.
That will be similar to the lunar declination angle but taking into account sun’s contribution too.
Cross-correlate that with the Indian ocean SST and it may start to get interesting.

February 10, 2014 3:25 pm

Willis Eschenbach says:
“However, after three Saros cycles, the three bodies line up again (of course), but this time the points under the earth are (again approximately) the same. So regarding your question, viz:
How long does it take for the Moon to return to the same point in the sky at the same time of month, year, etc.
… the answer is, three Saros cycles.”
The exeligmos cannot occur at the same time of year as the cycle is not a whole number of years, but the eclipse will be at a similar Earth location. One Saros is 6585.32 days so one eclipse occurs ~120° ahead of the previous on the Earth’s surface, so it takes three Saros cycles for an eclipse to reoccur at the same surface location.
I would have looked at Lunar precession rather than eclipse cycles, not that I can see it forcing climate cycles.
I’m curious about the 13.44 month spike in your analysis (lunar phase perigee cycle), surely there is a king tide at half of that frequency as alternate full and new Moon coincide with lunar perigee?

Greg Goodman
February 10, 2014 3:32 pm

“…. surely there is a king tide at half of that frequency as alternate full and new Moon coincide with lunar perigee?”
cliveBest has pointed out that Willis should have done abs(cosines) in his code but Willis hasn’t been by since to comment on that.

charles the moderator
February 10, 2014 3:49 pm

David L. Hagen,

I understand Scafetta to say that he documents his use of publicly available data, and fully describes his method in his peer reviewed papers sufficient for others to replicate his results.
While I would encourage him to show his code as well, I thought data and a full published method to be sufficient for the scientific method.
Is the data or his method not sufficiently clear?

That is almost verbatim the same excuse used by CRU to avoid FOI requests before Climategate. And no, no one I know of is able to replicate his work. Until you apologists drop your double standards and apply ethics equally to all sides, your hypocrisy will continue to rule the day.
It is a scientist’s job to make it as easy as possible for critics to scrutinize their work. This is how science grows and self-corrects. Science is not a bunch of trade secrets.
As long as Scafetta refuses to produce data and code, his work is nothing more than clever, albeit kinda boring, anecdotes.

February 10, 2014 5:49 pm

Greg Goodman says:
February 10, 2014 at 2:26 pm
This appears to be perigee cycle not tides. Would you agree?
===============================================================
Back to the keyboard. Not sure what you’re getting at. Perigee is neither zonal nor fortnightly. Declension is both. That is, perigee could affect diurnal earth and sea tides over a 4 week period, while the zonal bulge both grows and moves poleward according to lunar declension. So now it’s a matter of lining up the LOD graph with declension data. Haven’t done that. –AGF

February 10, 2014 6:20 pm

Perigee calculator here: http://www.fourmilab.ch/earthview/pacalc.html
Declination here (astrology no less): http://www.astropro.com/features/tables/cen21ce/mo-dcl-2013.html
And I see what you mean. The declination frequency modulates a perigee amplitude. Or something like that. –AGF

Jeff Alberts
February 10, 2014 6:27 pm

Willis Eschenbach says:
February 9, 2014 at 7:03 pm

Sparks says:
February 9, 2014 at 6:40 pm

As a result, I could care less what you personally think.

So you DO care then.

Gail Combs
February 10, 2014 6:33 pm

RichardLH says: @ February 10, 2014 at 9:31 am
I did reference Fig 1….
>>>>>>>>>>>>>
I saw your figure 1 but wanted to make sure the link to the whole paper was available. (It is a long thread)

February 10, 2014 6:52 pm

Willis, how much grant money or “big oil ” money do you receive for your substantial work.
It must take a lot of time and much work to do what you do. Do you have a website with a donate box just in case you are not receiving compensation for the work that you do??
Even though there seem to be a lot of posters that question your work, I believe most respect what you do.
How do you think that this fascinating article you posted relates to “climate” or “global warming” claims? Does it relate at all to climate – tidal cycles?

February 10, 2014 8:50 pm

I notice in Figure 1 that the minimum combined tidal forcing will be shifting position to where the minimum is going to start at the beginning of winter season. Is there going to be consequences from that alignment?
Also, in taking note of the 8.75 year ‘tiny’ cycle, I am reminded of a 100 year temperature chart someone had posted several weeks ago. In that chart, which showed US temps if I remember right, the center of the chart from the mid 40s till the mid 70s showed a steadily rising then descending trend. Either side of that time period showed ‘pulses’ of approximately 8 to 9 years. There were 3 pulses that were clear to see, both before and after the 1940s to 1970s period. I had asked the author ‘what is the cause of the pulses?’, to which he replied that he had no idea. I cannot remember which post this was on, but I will look back at my comments to find it.

Jeff Alberts
February 10, 2014 9:32 pm

So I fear that as is quite common in English, the proponents of logic are on the losing side of the vote. English is not bound by rules, Jeff. It is bound only by how people use it, and often, that is not logically at all.

I so love it when people defend how wrong they are. It’s not an English rule, it’s a logical statement. “Could care less” is logically different from “couldn’t care less”. There was nothing wrong with the grammar, just with your logic. But if you want to just be like the rest who say the opposite of what they mean, so be it, you’re well on your way to being a world-class Climate Scientist (TM). I can still point it out. Me, I prefer to say what I mean.

Curt
February 10, 2014 10:40 pm

Jeff – You really need to learn about irony, and of the Yiddish contribution to American English (which is where the ironic “I could care less” comes from).

Greg
February 10, 2014 11:46 pm

Willis: “And in any case, your claim that it should be abs() is just plain wrong … check any text on vector addition. However, my guess is you’ll never admit you are wrong …”
No Willis, you’re missing the point. While you picked up the factor or two error you did not comment on abs() except to say “we’re both wrong” without explaining why you thought Clive was wrong.
Your vector calculation is spot on and no-one is saying otherwise. The point is that because the gravity gradient causes TWO “bulges” that are diametrically opposed you need to ADD new moon orientations AND full moon orientations in the same way.
The simplist way to do that would be to do abs(cosines) instead of using its signed value.

Greg
February 11, 2014 12:01 am

“Is the effect large? Probably not, or we’d have seen the evidence.”
http://climategrog.wordpress.com/?attachment_id=774
This is why the direction of the vector you calculated is important.
Greg:” Willis , are you able to provide a precise value for the peaks in fig2 ?
In particular the ones that look to be circa 27, 29 days and 13 months.”
Willis: “Yes.”
Very amusing! Please do so then. To two decimal places if that is possible. And please add the 8.x year peak to the shopping list. 😉

Greg
February 11, 2014 12:21 am

Willis: “Say what? That makes no sense at all. I have not calculated the “vertical component” of the tidal field. ”
Maybe Richard was not clear by what he meant but you are missing the point.
The vector you calculate is just a special case, the force along the line between the Earth and moon centres. That only has a vertical component and you are plotting its scalar magnitude. Fine.so far.
However, it should be noted the gravity acts at all points on the ocean not just along the axis between the two. Water is not ‘sucked up ‘ by this straight line force as much as it is drawn in from all sides by the tangential force. This is what Richard is trying to say.
Your calculation is probably sufficient to look at timing ,so it’s not a problem, but Richard’s point is a key to understanding tidal forces and their effects.
You noted from your fishing experience that there is huge horizontal displacement of water in tides. This is why, it’s the horizontal component. Though we usually measure the height, the main effect of tides is horizontal movement.
It is important to realise that water does not come up, it comes in from all sides. It is primarily a surface effect. And that is all important if we want to consider its effect on SST and energy transportation.

Greg
February 11, 2014 12:49 am

W. Clive, I fear I don’t know what you mean by the “eccentricity values of the moon relative to the earth-moon barycentre”. As far as I know, the eccentricity of the moon stands on its own, it’s not “relative” to anything.”
Since the moon revolves around the barycentre that would be the most suitable choice of coordinate frame to select on the JPL site. You could of course use any coordinates you like and calculate the eccentricity which is still eccentric however you measure it.
What Clive is saying is that it is highly variable, not a nice stable ellipse with the barycentre at one focus of the ellipse.
Perhaps try not taking everyone’s comments as an attack that has to be fended off. It was a great idea to post this article, there is a lot of cyclomania going about so taking a critical look is a very good idea. But you admit you’re learning some of this as you go along and others are trying add to that process.
I’m going to try to get the R code to run but what would be informative is to plot the N/S component of the force vector. That should give some indication of the force likely to cause horizontal transport of surface water in and out of the tropics.
This can be done by the vector “dot product” with (0,0,1) , the unit vector towards the north pole, basically the sine of its angle with respect to the equator.

Greg
February 11, 2014 1:16 am

Willis, with the fix you sent me I’ve got the code running, Thanks.
tideforce=sqrt(sunforce^2 + moonforce^2 + 2*sunforce * moonforce * cosines )
You’re not actually doing the vector addition, you are (correctly) finding the magnitude of the vector addition directly without actually doing the addition. I had not dug into the code before since I don’t try modding code before I know I can run it.
I’ll see whether I can come up with a code fix (though working in R gives me a rash).
Without worrying about the implementation can you see the point of ensuring the vectors are always adding not subtracting?

Greg
February 11, 2014 1:45 am

>>
[ANSWER: Thanks, Clive. Turns out we were both wrong. As someone else pointed out, I left out a “2” in the formula, which should have been:
“sqrt( sun_force^2 + moon_force^2 + 2 * sun_force * moon_force * cos(angle))”
>>
The correction was not correct. The latter term should 2 * sun_force * moon_force * cos(angle)* sin(angle) this can be simplified to :
1* sun_force * moon_force * sin(2*angle)
using the trig identities I linked for you yesterday:
http://www.trans4mind.com/personal_development/mathematics/trigonometry/sumProductCosSin.htm#Products
see eqn 6.4 and put x=y
2*cos(x)*sin(x)=sin(2x)
====
Now if my R is correct this could be corrected by
cosines=rowscalars/(sundist*moondist)
sines=sin(2*acos(cosines))
then
# MAGNITUDE OF (add forces as vectors)
tideforce=sqrt(sunforce^2 + moonforce^2 + sunforce * moonforce * sines )
The spectra come out very similar but have a little group of peaks around 13-14 days (which makes sense) and the circa 11.5 and 13.5 mo peaks are equal in size.
I’ll see if I can do a mod to get new and full moons to add in the same sense..

Greg
February 11, 2014 1:49 am

BTW the 8.x years has gone! I said that was a bit odd earlier. One mystery less.

Greg
February 11, 2014 2:01 am

Here is a line get the size of the vector addition to always add , use modsincos instead of your original cosines.
modsincos= sin(acos(cosines))+cosines
main difference in spectrum is we now have 13-14 day tide variation and 27 day is now about as big as 29day.

Greg
February 11, 2014 2:07 am

Damn it, I called it modsincos and forgot to mod it !
modsincos= abs(sin(acos(cosines))+cosines)
27 day is now biggest which makes a lot more sense.

tallbloke
February 11, 2014 2:26 am

Greg says:
there is huge horizontal displacement of water in tides. This is why, it’s the horizontal component. Though we usually measure the height, the main effect of tides is horizontal movement.
It is important to realise that water does not come up, it comes in from all sides. It is primarily a surface effect. And that is all important if we want to consider its effect on SST and energy transportation.

Greg gets it. I’ve mentioned horizontal tidal components on WUWT many times to Leif, and he’s always blanked it. The vertical component of the tide on the Sun from Jupiter is around 1mm (due to the Sun’s enormous self gravity and the distance), but the horizontal component is much more extensive.
However, the tidal force is small compared to the forces passed back to the Sun from the planets via resonant harmonics carried by the interplanetary magnetic field as well as by the gravitational field. Willis seems to think the study of interplanetary harmonic resonance is ‘numerology’. But then, he doesn’t seem to be aware of the extensive literature on this subject in the astrophysics journals.

Greg
February 11, 2014 2:35 am

OK I’ve had strong coffee and hopefully have finished making typos in the equation 😕
modsincos= abs(sin(acos(cosines))*cosines)
The resulting plot and spectrum looks like this.
http://oi61.tinypic.com/2iihjkn.jpg

RichardLH
February 11, 2014 2:38 am

Willis Eschenbach says:
February 10, 2014 at 6:02 pm
“Say what? That makes no sense at all. I have not calculated the “vertical component” of the tidal field. I have calculated the SIZE, aka the AMPLITUDE, aka the STRENGTH, of the tidal force … and that is a scalar.
So it can’t be the “vertical component” of anything, it doesn’t have a direction.”
I rather do understand exactly what it is you have plotted and have equally rather obviously failed to convey the limitations of what has been done and how it can be improved.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Tidalvectors2_zpsc9b57e6a.png
The above is a plot of the ‘tide rising force’ from Wiki that will allow me to describe better what has been done and what is missing. You have plotted the magnitude of the single vector that is pointed to the ‘Satellite’ in the above diagram. That is perfect valid and correct from the data that you have obtained.
However your plot is a 1D line through the slightly more complex reality of what is going on.
I order to move to 2D (and then on to 3D) all the other vectors need to be considered. In particular the vectors in the Green and Red sections above.
These two web sites go into a lot more detail of the vectors, the changes involved and the causation of the two tides.
http://co-ops.nos.noaa.gov/restles3.html
http://www.lhup.edu/~dsimanek/scenario/tides.htm
If you now re-read what I said earlier about vertical and horizontal and consider the description as from being someone who is standing on the globe in the diagram when making the description you may better understand what I was trying to describe.

RichardLH
February 11, 2014 2:42 am

Willis Eschenbach says:
February 10, 2014 at 6:18 pm
“…
This is just simple ‘Gaussian’ low pass filter stuff but it independently confirms at least part of his case.
Since he has not revealed his data or code, we have no clue what “his case” might actually contain once it is opened … so far he has no case, he just has advertising materials.”
He himself acknowledged here on WUWT that my independent discovery of an ~60 year cycle in the temperature data was one of the results that he had concluded was present by a different route.
I have no knowledge as to if his claim of attribution is valid but to would appear that a simple ‘Gaussian’ treatment of the temperature data confirms his figure as being present.

RichardLH
February 11, 2014 2:45 am

Gail Combs says:
February 10, 2014 at 6:33 pm
“I did reference Fig 1….
>>>>>>>>>>>>>
I saw your figure 1 but wanted to make sure the link to the whole paper was available. (It is a long thread)”
No problem. It is a very important point and I have asked on a couple of occasions now if Willis is attempting to refute it, in whole or in part.

RichardLH
February 11, 2014 2:49 am

Willis Eschenbach says:
February 10, 2014 at 7:55 pm
“What I have plotted is the tidal force, the actual amount of combined tidal pull exerted by the sun and moon.”
You have plotted a single vector from the full set as described by the “Tide Generating Force” as it is more normally called in scientific literature. c.f. Wiki and the urls I have quoted previously.

RichardLH
February 11, 2014 2:52 am

Willis Eschenbach says:
February 10, 2014 at 8:22 pm
“because the relationship above means that at the poles, when the sun never rises, the full moon never sets …”
Now stop for just a moment and consider how this relates to the tides raised by the bodies in question at the points you stand on the Earth. Light and Gravity do follow similar paths you know 🙂
You own words this time.

RichardLH
February 11, 2014 3:02 am

Greg says:
February 11, 2014 at 2:35 am
“modsincos= abs(sin(acos(cosines))*cosines)
The resulting plot and spectrum looks like this.
http://oi61.tinypic.com/2iihjkn.jpg
Is the R too long to post here? Or would dropbox and the like be a better place to share it from (if you wish to share).

RichardLH
February 11, 2014 3:05 am

Climate Scientist: I want a tool to examine Climate Temperatures.
Geek: How do you define Climate?
Climate Scientist: Longer than 30 years.
Geek: So you want a tool that will show how the planet’s temperature responds in periods of more than 30 years?
Climate Scientist: Yes.
Geek: Well basic theory says that a Low Pass filter with a corner frequency of 15 years will do exactly what you want.
Climate Scientist: But that’s not complicated enough and anyway that does not show me what I like to see. It says that there are natural oscillations in the signal and my theory says they don’t exist.
Geek: ??????????

RichardLH
February 11, 2014 3:06 am

Oops – sorry wrong thread 🙂

Greg
February 11, 2014 3:45 am

“Is the R too long to post here? ”
Willis already provided his code at the top. I just added a couple of lines.

Gail Combs
February 11, 2014 4:21 am

RichardLH says: @ February 11, 2014 at 2:45 am
In response to: Gail Combs says: @ February 10, 2014 at 6:33 pm
>>>>>>>>>>>>
I am ‘computer challenged’ so all I can do is read and try to follow what is said.
For the others who might be following this thread still, this is another visual aid:
https://en.wikipedia.org/wiki/File:Moon_trajectory1.svg
It helps to not think of the moon as ‘circling the earth’ but as following in a slightly different orbit around the sun compared to earth and the two planets as ‘dancing’.

Greg
February 11, 2014 4:24 am

BTW there was a stray line in Willis’ code. The fix is to comment it out.
# oldmai=par(“mai”)
thanks , Willis.
In resumé. sines below corrects the maths of what Willis intended to plot, modsincos accounts for the fact there are two tidal bulges and new moons need to produce the same effect as full moon.
cosines=rowscalars/(sundist*moondist)
sines=sin(2*acos(cosines))
modsincos= abs(sin(acos(cosines))*cosines)
then
# MAGNITUDE OF ( forces added as vectors) per Willis post , but with correction
tideforce=sqrt(sunforce^2 + moonforce^2 + sunforce * moonforce * sines )
# MAGNITUDE OF ( forces added as vectors, accounting for “opposite bulge”)
tideforce=sqrt(sunforce^2 + moonforce^2 + 1*sunforce * moonforce * modsincos )
The resulting plot and spectrum for latter case looks like this.
http://oi61.tinypic.com/2iihjkn.jpg

RichardLH
February 11, 2014 4:26 am

Gail Combs says:
February 11, 2014 at 4:21 am
“It helps to not think of the moon as ‘circling the earth’ but as following in a slightly different orbit around the sun compared to earth and the two planets as ‘dancing’.”
And, having once collided, are now very slowly drawing themselves apart to eventually resume their independent paths 🙂

RichardLH
February 11, 2014 4:28 am

Greg says:
February 11, 2014 at 4:24 am
“The resulting plot and spectrum for latter case looks like this.”
For the single vector as described in my posts above, that is correct. Hardly the whole picture is it? What about the Poles?

Gail Combs
February 11, 2014 4:31 am

RichardLH says: @ February 11, 2014 at 3:05 am
I am sure HarryReadMe would fully appreciate that.

RichardLH
February 11, 2014 4:34 am

Gail Combs says:
February 11, 2014 at 4:31 am
“I am sure HarryReadMe would fully appreciate that.”
Well when I came to look at the BEST database I began to understand the frustrations he felt 🙂

Greg
February 11, 2014 4:55 am

http://clivebest.com/blog/wp-content/uploads/2014/02/plot.png
New plot looks to be the same as CliveBest’s one.

Greg
February 11, 2014 5:02 am

“For the single vector as described in my posts above, that is correct. Hardly the whole picture is it? What about the Poles?”
OH no. But one thing at a time. At least the [math] is [now] correct and the opposite bulge is take care of. Now I need to work out if the z component of this data is Earth NS or the normal to orbital or whatever ….
Then get the direction of the vector as well as its size , project the NS cmpt and we may start to see the rest of the storey.

Greg
February 11, 2014 5:05 am

maths is now correct….

RichardLH
February 11, 2014 5:20 am

Greg says:
February 11, 2014 at 5:02 am
“Then get the direction of the vector as well as its size , project the NS cmpt and we may start to see the rest of the storey.”
1D to 2D to 3D. And then time/Lat-Long three vector contour plot. And that is before we add in Geography. And fluidics!…….
Where’s that super-computer.

pochas
February 11, 2014 5:25 am

RichardLH says:
February 11, 2014 at 5:20 am
“Where’s that super-computer.”
We’ve got ’em, but they’re too busy collecting data on American citizens and running useless computer models.

RichardLH
February 11, 2014 5:33 am

pochas says:
February 11, 2014 at 5:25 am
“We’ve got ‘em, but they’re too busy collecting data on American citizens and running useless computer models.”
“Programming – Modelling the World inside a Computer” – with apologies to Larry O’Brien.

pochas
February 11, 2014 5:40 am

I wonder what shape a sphere of water would assume in orbit (assuming it could remain liquid). I would guess it would be deformed by the gravity gradient in a radial direction but also sheared in the orthogonal direction because particles further away from the sun have lower orbital velocity.

RichardLH
February 11, 2014 6:06 am

pochas says:
February 11, 2014 at 5:40 am
“I wonder what shape a sphere of water would assume in orbit”
Add together as many of these diagrams as you need for the objects concerned, scaled appropriately for masses and distances.

RichardLH
February 11, 2014 6:07 am
Greg
February 11, 2014 6:12 am

1D to 2D to 3D. And then time/Lat-Long three vector contour plot. And that is before we add in Geography. And fluidics!…….
Hey we’re not trying to model tides planet wide, just look for repetitive patterns in the driving forces.
I’m fairly sure once we extract the direction as well it will be informative.

RichardLH
February 11, 2014 6:17 am

Greg says:
February 11, 2014 at 6:12 am
“Hey we’re not trying to model tides planet wide, just look for repetitive patterns in the driving forces.”
If the long term deltas in the gravitation field vectors affect flow through, say, the Fram or Bering Straights, then we are looking for repetitive patterns in those most definitely.

RichardLH
February 11, 2014 6:27 am

Greg: P.S. That should be ‘directions’.
This is a 3D field in time at any spot on Earth. N-S, E-W and Up/Down. For both Sun And Moon. And spin axis related – not just orbital plane.

Greg
February 11, 2014 6:50 am

N-S, E-W and Up/Down.
All the sun/moon movements are at least an order smaller than the Earth rotation period, so I think E/W is a lot less important.
The arctic triplet showing ascending/descending lunar cycle affects ice raises the question of how that driver may vary over longer periods or interact with something else.
http://climategrog.wordpress.com/?attachment_id=757
Whether this atmospheric storms, cloud or Fram Straight flow would be good to know.
I think it was the Day paper that Willis lined a day or two ago that said there was a 15mm 18.6 year tide in Arctic. Most of that must go in and out of Fram Str.
14,056,000 km² x 15mm x SHC brine / 9.3 = ???
http://arctic-roos.org/observations/satellite-data/sea-ice/temperature-salinity-and-volume-fluxes-in-the-fram-strait
http://arctic-roos.org/observations/satellite-data/sea-ice/images/Fig_3_Mean_AW_temp_AW_inflow_1997-2008.jpg/image_large
In flow of atlantic water seems to have peaked in 2005 with temp dropping since 2007: which is when the melting trend started to ease up.

RichardLH
February 11, 2014 6:56 am

Greg says:
February 11, 2014 at 6:50 am
“I think it was the Day paper that Willis lined a day or two ago that said there was a 15mm 18.6 year tide in Arctic. Most of that must go in and out of Fram Str.”
I know. Multiply that 15mm up down by the area of the Artic Ocean and you have fairly non-trivial force to consider, even over 18.6 years. As I tried hard to bring to Willis attention in my posts above.
Then HE pointed out that Sunlight varies on a slow timescale in the Arctic bit failed to see the relevance of that to tidal vectors here on Earth!
And this is without considering the 4 year cycle for Solar (aka Leap Year). That is not a direct divisor of 18.6 so…..

RichardLH
February 11, 2014 6:58 am

Greg:
One simple plot that may well bring a lot more light to this long term periodicity is to do a plot from the North Pole. Up-Down and towards the Moon.

tallbloke
February 11, 2014 7:00 am

RichardLH says:
February 11, 2014 at 6:17 am
If the long term deltas in the gravitation field vectors affect flow through, say, the Fram or Bering Straights, then we are looking for repetitive patterns in those most definitely.

North Atlantic SST exhibit a ~74 yr period which ties with a Lunar cyclicity:
http://tallbloke.wordpress.com/2009/11/30/the-moon-is-linked-to-long-term-atlantic-changes/

Jeff Alberts
February 11, 2014 7:16 am

You are right, Jeff. What I said isn’t logical in the slightest. However, that also doesn’t matter in the slightest, because English isn’t logical. All that counts is, do people understand perfectly what you mean? That’s what is important to people, are they understood? And since people do understand it, that’s why you are losing the fight, as grammar Nazis almost always do—the usage of “I could care less” is increasing. Eventually, it will be like “ravel” and “unravel”, totally unremarkable despite being totally illogical
Now, you can make your perfectly logical objection for the next fifty years … me, I prefer to ride the horse in the direction it’s going. People will continue to use logically incorrect statements as long as everyone understands what they mean … and I suspect that there will be people complaining about it forever, endlessly saying correctly but vainly, It’s not logical, it’s not, it’s not …
But if you’d like something new to complain about, how about the term “dust”? What’s wrong with that? Well, “dust” as a verb means to remove dust from (“dust the furniture”), or to add dust to (“dust the cake with flour”) … how logical is that?

So many strawmen, so little time. Did I mention ravel, unravel, or dust? You don’t follow your own rules of argument. Please quote where I mentioned those words.
Instead of just saying “I misspoke, my bad”, your defense is “a million wrongs make a right.”
By your “logic”, we can just toss out anything said in English, since English isn’t logical.
If your horse is riding off a cliff, I suppose you’ll just go over with it.
Am I picking a nit? Yes, absolutely. But when you present your views to the readers of the world, many of whom won’t be native English speakers, wouldn’t it be better not to confuse people with errors like that?

dan
February 11, 2014 7:55 am

I hear ya, w…Mosh’s reply conveniently left out the link I included and he used the comment to compare electromagnetism to co2’s warming impact, which is mere wordplay to say see, apples and oranges are both fruit, so nevermind that the rind is entirely different, just bite in…I digress…
—-
Generally agreed that the tide-stuff is “tiny” but depending on the context, “tiny” can still have implications. Curious of opinions…
http://solarcycle24com.proboards.com/thread/324/theory-solar-cycle-www-sibet
——-
Might just be a good exercise in curve fitting, but the concept of the planets modulating tides on the sun to an extent (i.e. motion around barycenter) in turn having an (albeit minor) impact on the progression of the sunspot cycle seems to make some sense. Having a bunch of planets, especially the large ones, come into an out of phase resonance and retarding the cycles to an extent could have an impact on the field strengths, no?
If not, where else would these longer cycles of the sun be coming from? Seeing what happened to the jet stream after the sunspot funk, this idea makes sense to me. Merits, issues?

JBP
February 11, 2014 8:08 am

Charles-the-moderator.
I feel for you. The barycentric shift of the conversational center-of-mass at times seems to produce an antipodal harmonic that focuses soley on pronouns such as ‘I’, ‘you ‘ and ‘his’ (such as ‘I’ think ‘you’ did not understand ‘his’ methodology, therefore you are a moron). I’d imagine for you this must be difficult to accurately address with the poor and primitive data filtering you’re employing (and refusing to disclose I might add).
I’d suggest employing the Heumner-Yuing ‘personal attiribution invariant filter’** (second order, obviously) on comments. This could produce a similar, if not identical result to the bottom plot of figure 2 of Willis’ original post. Of course, upon publication, you dare not to be obtuse and refuse to provide to all of us commenters your data, equations and assumptions for peer review.
Other than that, great post Willis and all you crazy scientists.
Is modeling the Sun/Earth/Moon, with details focused on the earth’s water layer just beyond the realm of feasibility for current technology? I know that there are climatic models that, I am assuming, must have a very high degree of fidelity. Why not also for this gravitational exercise?
**Heumner-Yuing; http://www.sciencemag.org/content/343AE/6172A4/RE599H.full

RichardLH
February 11, 2014 8:12 am

Greg says:
February 11, 2014 at 6:50 am
“14,056,000 km² x 15mm x SHC brine / 9.3 = ???

In flow of atlantic water seems to have peaked in 2005 with temp dropping since 2007: which is when the melting trend started to ease up.”
The problem is that these data sets are just too short to draw any real, long term, cyclic conclusion from them.
The data series TB linked to is much longer and therefore, in the long term cycle sense, more useful. And that fits rather well considering I didn’t even know it existed!

February 11, 2014 8:51 am

For those who don’t like math:
1. Earth tide amplitude is a large fraction of that of sea tides, and of course involves no horizontal flow–only slight displacement. Solar tides are analogous to earth tides.
2. The earth’s hydrosphere being shallow, makes for greater displacement than with earth tides or solar tides. Bathymetry may amplify the flow (funneling).
3. There are at least two conceivable mechanisms for connecting supertides to weather a) vertical mixing, b) poleward flow of warm water.
4. The east/west tidal (equatorial) tidal force according to WE’s analysis produces no supertides.
5. This E/W (equatorial) tidal component does not directly produce polar flow, but can only lead to vertical mixing.
6. The polar component may produce both polar flow and vertical mixing.
7. The equatorial tidal force is the the result of longitudinal orbital parameters: a) lunar phases; b) eccentricity of the lunar orbit; c) eccentricity of earth’s orbit.
8. The polar tidal force is the result of variable lunar declination, that is, the angle of the moon’s position relative to the earth’s equator. This varies according to a) the moon’s revolution around the earth, crossing the celestial equator fortnightly; b) the 18.6 year precession of the lunar orbit, which is inclined 5 degrees from the ecliptic (the plane of the earth’s orbit around the sun). Earth’s equator makes a 23° angle with the ecliptic; over an 18.6 year period the lunar orbital declension of 5° is alternately added and subtracted from the earth’s 23°, leaving a total variation of 18° – 28° over the 18 year cycle. The polar solar tide is strongest near solstice. Other much longer Milankovitch cycles add slightly to the polar tidal component.
9. The polar tidal force must then be combined with the equatorial (or longitudinal) tidal force to yield the resultant polar tidal component, which is at a maximum when: a) the moon is at perigee, b) the moon is new or full, c) the moon is at maximum declension of 28° (in the current epoch), d) earth is at solstice, e) earth is at perigee. Of course this supertide arrangement can only be approximated to varying degrees.
10. The extent to which such supertides affect weather and climate, while not zero, remains unknown.
Feel free to criticize. –AGF

RichardLH
February 11, 2014 8:57 am

Willis: I have just realised why there is no long term component in your Fig 2. You have plotted the vector magnitude along the line Earth-Moon axis. Which is to say, you have set the vector to follow the Saros cycle and thus concluded the Saros cycle does not exist!
Well relative to itself – it wont!
Please re-plot for two cases, the North Pole and a point on a circle at 60 degrees North so as this then has at least some relationship to here on a real Earth as opposed to some mythical, all water, non-rotating planet.

tallbloke
February 11, 2014 9:00 am

RichardLH says:
February 11, 2014 at 7:11 am
Tallbloke:
That fits surprising well!!!
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zps0436b1f2.gif

It’s not too surprising we find out more from people like Harald Yndestad who have been studying this stuff for many years than we do from instant experts who *know for sure* there’s nothing interesting in lunar celestial data beyond short timescales.
Once the declination cycle starts interacting with geographical features, ice cover levels and the ~55-66yr cycle confluences, a lot of permutations are coming into play.

RichardLH
February 11, 2014 9:44 am

Tallbloke:
“Once the declination cycle starts interacting with geographical features, ice cover levels and the ~55-66yr cycle confluences, a lot of permutations are coming into play.”
Because we only have 2 cycles at ~60 years (TWO that’s in coin toss land!!!) the precise length and height of the various components are very hard to judge.
It could well be 55:65:75 in a 1:1:1 mix, possibly even randomised between half cycle mixtures of each as nature often does in a semi-ordered, chaotically implemented long term series, and it could still all be cyclic and driven by orbits in the end.
So many possible combinations and so little real, high quality, data.

RichardLH
February 11, 2014 10:36 am
RichardLH
February 11, 2014 11:38 am

Willis Eschenbach says:
February 11, 2014 at 11:04 am
“I haven’t drawn any big conclusions from that, other than that people who claim the 54-year cycle of tides is related to the ~60 year pseudo-periodicity in the HadCRUT data don’t understand the nature of the 54-year cycle … nor did I before I started this analysis. I thought it was a 54-year sine- or approximately-sine wave, like we see in the HadCRUT data. I found out it’s not. That’s valuable information.”
Only along the single 1D vector that is Earth centre – Moon centre. The actual vector that defines the Saros cycle itself. And then you find only the reflected residuals of that cycle in your plot and wonder why?
Let me give you a mental/physical picture that may stretch your mind more.
Go outside on a nice clear night. Lie on your back looking up at the stars. Align yourself so that the Milky Way is a horizontal line across your vision, toes pointing ‘sort of’ Northish or Southish as required.
Now watch carefully for a few minutes where the Milky Way crosses the Earth horizon and see just how you and the Earth ‘fall’ through the Universe, for tonight at least. It changes night to night 🙂
Then stop thinking about just turning round and round like a top and wonder.
P.S. You did get that about North Sea and Global temperatures tracking Lunar periods that TB posted didn’t you ?
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zps0436b1f2.gif

February 11, 2014 11:45 am

RichardLH says:
February 11, 2014 at 11:38 am
============================================
You could fit a hundred graphic arguments like that on the head of a pin. –AGF

Greg Goodman
February 11, 2014 11:45 am

For anyone still having problems seeing how short period variations can add together and produce long period modulation patterns, I’ve plotted the following example
18.631 / 2 + 8.852591 => 9.078 modulated by 356 years.
http://climategrog.wordpress.com/?attachment_id=775
Yes, you only see one line right? They are mathematically IDENTICAL.
and that combined frequency is very, very close to what I found in NH SST data:
http://climategrog.wordpress.com/?attachment_id=755
Now that could just be coincidence but I doubt it.
The Indian ocean does not have this mix, just 9.329 (cf 9.3155)
http://climategrog.wordpress.com/?attachment_id=774
If we do the same process with 9.08 and 10.4 it gives a modulation frequency of 143 years so the “beat” period of each bulge in amplitude is 71.5 . So it is possible for an interplay of lunar and solar forces to produce the kind of long cycles seen in the climate record.
The actual period will be as variable as the solar cycle length is variable, it is not a stable 10.4 years.
The lunar frequencies are clearly present in the ocean basins. The next step is see how it relates in phase and try to work out a possible mechanism.

February 11, 2014 11:46 am

“Geek: How do you define Climate?
Climate Scientist: Longer than 30 years.”
wrong. that’s not the definition of climate.
30 years is an arbitrary number pulled out of hat used to calculate “normals” for particular weather variables.
some climate scientists recognize that the climate doesnt actually exist as an entity.. its just anoter word for long term stats– where long term is defined opportunistically.

RichardLH
February 11, 2014 11:48 am

agfosterjr says:
February 11, 2014 at 11:45 am
“You could fit a hundred graphic arguments like that on the head of a pin. –AGF”
But you can’t ignore them if they come from a simple low pass/bandbass filter. You can draw all sorts of lines. This is what the data draws all on its own if you quieten down the ‘noise’.

Greg Goodman
February 11, 2014 11:48 am

“You could fit a hundred graphic arguments like that on the head of a pin. –AGF”
Agreed, far too vague. Almost as tenuous as the long term rise and ln(CO2 ) – well almost.

RichardLH
February 11, 2014 11:50 am

Greg Goodman says:
February 11, 2014 at 11:45 am
“and that combined frequency is very, very close to what I found in NH SST data”
And supported by the paper TB linked to.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zps0436b1f2.gif

Greg Goodman
February 11, 2014 12:03 pm

I see 18.0 and 18.6 in that model , where do you see 9.08?

February 11, 2014 12:05 pm

Hagen
“I understand Scafetta to say that he documents his use of publicly available data, and fully describes his method in his peer reviewed papers sufficient for others to replicate his results.
While I would encourage him to show his code as well, I thought data and a full published method to be sufficient for the scientific method.
Is the data or his method not sufficiently clear?
################################
1. scaffetta claims to use publically available data. So Did Jones. Don’t you remember how people supported Willis, Steve, and I when we pressed Jones to release the data that he ACTUALLY used. Don’t you remember the support we got when we demanded more than a link to the data he purported to use? Don’t you remember that we wanted to see the data that he ACTUALLY used rather than merely taking his word for it.
2, His method is not fully described. Now, Jones made the same argument. McIntyre tried to replicate Jones method AS DESCRIBED and he could not. Mac requested code. Jones said no.
When I read the climategate mails we found out WHY Mac could not replicate. Jones left a step out of the description. In his mail to mann he explained that he knew why mac could not replicate his results. Jones recipe wasnt perfect.
Now to Scaffetta. In the first place gavin and benestad could not replicate Scaffetts results from the description in the paper.
Two things could be true
1. the description is inadequate
2. they screwed up.
To settled matters they requested code. Scafetta refused. Benestad has a long history of sharing code I might add. In any case at this point McIntyre and readers at Climate Audit tried to
replicate. They could not. Scaffetta came to climate audit and played some games.. refuse to give the code, refuse to provide any assistence in replication. He does not want people to check his work OR to build on it if it is correct.
There is no scientific justification for this behavior. You defend him to your detriment.

Reply to  Steven Mosher
February 11, 2014 12:13 pm

What Mosher said about Scafetta

RichardLH
February 11, 2014 12:09 pm

Steven Mosher says:
February 11, 2014 at 11:46 am
“Geek: How do you define Climate?
Climate Scientist: Longer than 30 years.”
“wrong. that’s not the definition of climate.
30 years is an arbitrary number pulled out of hat used to calculate “normals” for particular weather variables.
some climate scientists recognize that the climate doesnt actually exist as an entity.. its just anoter word for long term stats– where long term is defined opportunistically.”
All right, if you want it another way (that is slightly less catchy – why do you think slogans were invented)
Greater than decadal, less than multi-decadal. Where DOES Weather stop and Climate begin?

RichardLH
February 11, 2014 12:13 pm
Greg Goodman
February 11, 2014 12:14 pm

Where DOES Weather stop and Climate begin? It depends how long the “pause” lasts 😉

RichardLH
February 11, 2014 12:16 pm

Greg Goodman says:
February 11, 2014 at 12:14 pm
“Where DOES Weather stop and Climate begin? It depends how long the “pause” lasts ;)”
Well my 15 year S-G projection say its over already ;-). Mind you, S-G is almost as unreliable as LOWESS. Helps if you do have a factual, full kernel, backbone to compare its parameters to though.

Greg Goodman
February 11, 2014 12:24 pm

Mosh’ says: “To settled matters they requested code. Scafetta refused. …. There is no scientific justification for this behavior. ”
I agree. I don’t understand why he’s not being more open.
What result was it that they could not replicate?

RichardLH
February 11, 2014 12:28 pm

Greg Goodman says:
February 11, 2014 at 12:24 pm
“I agree. I don’t understand why he’s not being more open. ”
+1

RichardLH
February 11, 2014 1:50 pm

Steve:
Climate Scientist: I want a tool to examine Climate Temperatures.
Geek: How do you define Climate?
Climate Scientist: Longer than 10 years.
Geek: So you want a tool that will show how the planet’s temperature responds in periods of more than 10 years?
Climate Scientist: Yes.
Geek: Well basic theory says that a Low Pass filter with a corner frequency of 15 years will do exactly what you want.
Climate Scientist: But that’s not complicated enough and anyway that does not show me what I like to see. It says that there are natural oscillations in the signal and my theory says they don’t exist.
Geek: ??????????

Greg Goodman
February 11, 2014 5:13 pm

Richar, what’s this 4y thing you’ve mentioned a couple of times?

Greg Goodman
February 11, 2014 5:48 pm

“Because these waves are generated by tides, they occur at tidal frequencies and are called internal tides. ”
I’ve been saying for some time that El Ninjo/Ninja cycle is slow, basin-wide, deep water tides on the thermocline.
http://media.eurekalert.org/multimedia_prod/pub/web/68404_web.jpg
If you estimate the density difference at the thermocline and compare to that between air and water at the surface , the equivalent major resonance at the surface (12h tide) becomes a couple of years.
Because of the feeble density difference it would cause massive but very very slow waves. That cross-section looks to fit the bill. There is also a brief animation that I’ve linked in the past that clearly shows the Pacific Ocean thermocline moving like a giant wave. Can’t recall who provided that just now.

Greg Goodman
February 11, 2014 5:51 pm
Greg Goodman
February 11, 2014 5:55 pm

BTW the first one is just a simulation , see bottom of page for data derived anims.

February 12, 2014 12:43 am

I have a derivation of the tidal “force” acting on the oceans.
see here
Net force per unit mass = 2GmRcos(theta)/r^3 where m is the mass of the moon, r is its distance from earth, and theta is the angle away from the central point of the bulge.
Notice that there are 2 equal and opposite bulges theta = 0 and theta = pi.
Tides can only exist between 2 bodies in orbit. So the earth is only effected by the sun and the moon. Jupiter for example has no tidal effect on the earth. Tides result from an imbalance in the gravitational force and the orbital centrifugal force acting on the oceans at the surface.
All planets have a tidal effect on the sun.
There is also an exact solution for the earth tides without approximations (phi etc.) but the formula is very complicated. This contains vertical components which increase towards the poles and corresponds more to the egg graph shown previously.

RichardLH
February 12, 2014 1:41 am

Willis Eschenbach says:
February 11, 2014 at 5:34 pm
“You’ll be telling me next these don’t exist either.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zpsd17a97c0.gif
What does that have to do with what Mosher said? If you disagree with someone, QUOTE THEIR DANG WORDS like I asked.”
Steve:
“some climate scientists recognize that the climate doesnt actually exist as an entity.. its just anoter word for long term stats– where long term is defined opportunistically.”
I would have thought that both you and he would have recognised what I was talking about. The long term stats bit and observing a regular pattern to the data.
I was (and am) suggesting that a simple treatment of the data says that it has a cyclic nature, with an obvious periodic structure around ~60 years. In the long term, statistic sense.

RichardLH
February 12, 2014 1:45 am

Greg Goodman says:
February 11, 2014 at 5:13 pm
“Richar, what’s this 4y thing you’ve mentioned a couple of times?”
The simple observation that the Sun only returns to the same point in the sky, at the same time of day, one the same day of the year ever 4 years. It is why we have Leap Years.
On the intervening years a different part of the Globe is under the Sun at any given ‘noon’ say so you would expect to find a very low level 4 year signal in the data, land and ocean being so different. I have done a ‘4 year normal’ treatment of the daily CET data set and found something that could be just low frequency noise but could also be this 4 year pattern.

RichardLH
February 12, 2014 1:50 am

Willis Eschenbach says:
February 11, 2014 at 5:45 pm
“I don’t get this. People in climate science use all kinds of low-pass filters. I use them all the time, generally Gaussian or lowess because they’re well-behaved.
What I don’t do is use the smoothed data for my statistical analysis. You can create totally fictitious correlations that way.”
The point is that people DO use filters for Day, Month, Year and even Decade as you mention. All I am doing is extending that concept very slightly to 15 years and I get accused of all sorts of malpractice.
The statistic analysis I am using at the present (though it can get a higher statistical value if required) is the most basic of statistical comparison, Graphical. You know Broad Street Pump handle and all that. The very earliest days of statistics. Still a valid methodology even today.
Correlation of waveform to waveform.

RichardLH
February 12, 2014 1:54 am

Willis Eschenbach says:
February 11, 2014 at 5:45 pm
“Nor do I look at a couple of what look like cycles and say OMG, the cycles are inherent in the data.”
Now you do me a great disservice. I do NOT draw any conclusions – only observations.
If YOU see a ~60 pattern to what the data itself draws then it is up to YOU to say why it is present. Or come up with good reasons why it is just all co-incidental.
Explanations – not hand waving.

RichardLH
February 12, 2014 1:59 am

Willis Eschenbach says:
February 12, 2014 at 1:04 am
“Horizontal flow rate, 83, metres/hour, or
0.05, miles per hour, or
0.08, km per hour
Now, does this mean that there is no horizontal flow from the tides? Absolutely not. Instead, it shows that the cause of the horizontal flow in the open ocean is not the ocean flowing to fill or empty the tidal bulges—it is the fact that in the image above, the earth is rotating with a surface speed of about a thousand miles an hour …”
And if the world were indeed completely covered in Oceans you would be correct. Unfortunately it is not. The affects of land, reducing depth, narrow straights, basins and all the rest modifies this in a very dramatic way.
The multipliers thus created make that 0.3m, deep ocean wave into something that can be awesome to behold. 10’s of meters high. And vast flows in and out through straights. Some very important ones of those being North-South restrictions.

RichardLH
February 12, 2014 2:05 am

Willis Eschenbach says:
February 12, 2014 at 1:44 am
“Tidal forces exist between the near and far sides of any two objects whether in orbit or not.”
The forces involved are a lot more complex that the single, ID, Earth- Moon vector you have potted.
You also have not yet addressed the observations about the full ‘Tide Generating Force’ vector map and the Wood et al paper mentioned previously and the also fact that your vector actually follows one component of the Saros Cycle and thus tries to compare itself to itself – you will only ever see the residuals, not the whole picture.

Greg Goodman
February 12, 2014 2:06 am

“Note that a planet free-falling into a sun may be torn apart by tidal forces before hitting the sun, despite the fact that it may be neither rotating nor orbiting the sun.”
Good illustration. Even NOAA get into the centrifugal trip. However, once you stop your frame of reference rotating and and introduce _fictitious_ centrifugal forces to make newtonian equations still work you also need to introduce Coriolis forces. I have NEVER seen that done.
The first of the two links Richard provided seems the better approach. Accept the fact the E-M system is revolving and apply a straight-forward forces.
I think the problem here is that since real tides are so far removed from all this talk of ‘bulges’ that none of it can be verified. People (especially academics teaching the stuff) are free to spout any hotch-potch “theory” of tides because it’s largely non verifiable.

RichardLH
February 12, 2014 2:10 am

Clive Best says:
February 12, 2014 at 12:43 am
“I have a derivation of the tidal “force” acting on the oceans.”
A very nice formula for the 2D vector map.
The complication that needs to be added to this is the fact that the rotational axis of the Earth is not aligned top bottom to that diagram.
So you then need a Lunar Month and Solar Year orbital calculation (along with delta changes to those) added to the above to get how that vector map actually plays out. Now it is starting to get really messy – and we still are on a totally water covered globe!

RichardLH
February 12, 2014 2:14 am

Willis Eschenbach says:
February 12, 2014 at 2:09 am
“First, you showed a graph, saying Mosh will be claiming that “these” don’t exist. You don’t say what “these” are. It’s a graph of smoothed climate, one that’s been shown dozens and dozens of times.”
No – its a description of the frequencies involved in the storage and release of energy in the system over long periods of time.
This ‘smoothing’ thing is how people slide past that true, physics based, observation.
“And from that, we’re supposed to guess that you were referring to Mosh’s statement that 30 years is an arbitrary limit, and that climate is just the long-term stats about weather? Really?”
That was, and is, a separate point. I have now moved it to ’10 years or so’ without changing the wording that much. Same message though.
Short filters = good.
Long filters = bad.
Talk about discrimination.

RichardLH
February 12, 2014 2:15 am

Willis Eschenbach says:
February 12, 2014 at 2:09 am
“Yes, that’s the result of a simple analysis as you say—you think you see regular cycles in the data.”
I observe that the data draws an apparently cyclic pattern. Does the line wriggle? What do you think is the cause? Why can you see it there anyway?

RichardLH
February 12, 2014 2:20 am

Willis Eschenbach says:
February 12, 2014 at 2:09 am
“Don’t you realize that cyclomaniacs have been making your same claim for decades? ”
I’ll thank you not to say/jibe that I am a cyclomaniac.
I am an engineer. Drawing engineering observations. The data and summaries of the data only. These patterns whatever they are need explaining. Go for chance if you like. You cannot just say ‘they don’t exist’ which was the main point of the Geek – Climate Scientist conversation in case you hadn’t noticed.

RichardLH
February 12, 2014 2:25 am

Willis Eschenbach says:
February 12, 2014 at 2:09 am
“We’re not that much into simplistic explanations around here. In part this is because more sophisticated and detailed examination of the data shows that natural cycles emerge for a while, seem like they are permanent, then fade out and are replaced by other cycles”
Prepared to ignore these simple observations however.
The high quality data sets that would allow for full examination of the exact periods, magnitudes, numbers, interference, etc. of the very likely more than one cycle (if any exist) are along way into the future. As Nate Drake PhD said – we need 300 years of high quality data to be SURE that a ~60 year cycle is present. You think I can’t do stats? I only too well know the risks that just 2 (TWO – that’s in coin toss land) apparent cycles in the data provide.
I am not prepared to just say, oh well – we will have to wait ’till we have enough data before we address these issues, that’s all.

RichardLH
February 12, 2014 2:33 am

Willis:
By the way – I can tell that you sailed the Southern Ocean with its great depths and steep islands. Me – I sailed Poole Harbour with its shallow, narrow entrance and incredible tidal flows.
Just a different perspective is all 🙂

RichardLH
February 12, 2014 2:42 am

Clive Best says:
February 12, 2014 at 12:43 am
“Jupiter for example has no tidal effect on the earth.”
It does have a slight effect on the Moon’s orbit though. It ‘pushes’ it up and down against the orbital plane (or so I believe). I will see if I can find the reference for it on the ‘net.

Reply to  RichardLH
February 12, 2014 7:05 am

Jupiter has a gravitational effect on the moon and on the earth but not a tidal effect on either.
There seems to be a problem of definition as to what is meant by tidal force. If you fall into a black hole feet first then you will be stretched apart by the gravitational attraction being greater on your feet than on your head. Is that a tidal effect ?
I would argue that this isn’t the same effect as the lunar and solar tides on earth where the bodies are in orbit. The difference in gravitational force between the surface and the centre of the earth could only really explain one lunar tide – not both. Arm waving about the earth moving away from the ocean on the far side simply doesn’t add up, and can’t explain why the two tides are equal. Only including the centrifugal force can you properly explain the second tide.

RichardLH
February 12, 2014 3:00 am

Willis Eschenbach says:
February 12, 2014 at 2:48 am
“Dear heavens, Richard, find the supporting documents before making the claim. You say you are a scientist …”
The Internet is a big place and I read this quite a few years ago. I failed to record exactly where it was that I read it and Google has not proved very helpful so far but…..

RichardLH
February 12, 2014 3:10 am

Willis Eschenbach says:
February 12, 2014 at 2:45 am
“So your point is that we don’t have enough data to say whether there are actually cycles in the data … but by god, that’s not going to stop you from speculating …”
Not speculation – observation. They are different you know.
“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts”
All I ever do is draw attention to the facts.
“So now you pop up, squint at the data, and say well, we don’t have the data to show it, but by gum, I think there’s a cycle of sixty years or so in there … take a number, Richard. Your claims have been anticipated. And discussed. And rejected. See Riding A Pseudocycle, we’ve been over all of this, you’re late to the party.”
Thank you for the jibe. I long ago recognised not to rise to such bait.
Please tell me why the apparent ~60 cycle is visible in the data. That the data itself draws. Go on, stop avoiding it.
It is all just chance? The fact that both in satellite, thermometer and proxy data there are natural periodicities of similar length and magnitude?
That have multiple observations from multiple sources to back them.
Tide gauges
Polar Vortex
Fish
PDO
Tornadoes
AMO
Stadium Wave
North Atlantic Temperatures
and the list goes on.
All chance? I think Sherlock would disagree.
And that ‘single 1D vector’ observation and Wood et al you are so quick to ignore – whilst you’re at it.

Greg Goodman
February 12, 2014 3:23 am

A key point to visualising it is to resist the temptation to see the earth _rotating_ about EMB as well as revolving around it.
The solid earth has to revolves as one body and all minute elements make the same circular path, not some bits on the surface going with a big radius and some near the EMB with smaller ones.
The centripetal force that acts on the solid earth is its net gravitational attraction acting through it’s centre of mass. ( A point mass is a reasonable approximation for the E-M separation).
The wet shell of water gets distorted like Willis’ planet falling into the sun. It gets stretched by the divergence of the gravity field.
Each drop of water experiences a centripetal force that is the gravity it experiences. Less gravity, less centripetal force, larger radius.
If the gravity field fell off uniformly (constant grad) the wet shell would be an oblate spheroid. Since it is 1/r^2 it is egg-shaped.
No centrifugal or Coriolis needed.
We also notice that the instantaneous “centripetal” forces are towards the centre of the moon and only slightly divergent not the the centre of the revolution : EMB. the solid earth can be approximated as a point mass but the oceans are fluid.
The watery shell would be stretched and ripped apart like Willis’ falling planet were it not constrained by the earth’s gravity as well. However, that does not prevent horizontal movement only radial movement.
The water is relatively unconstrained to move where the forces are tangential.
At this point we have to let the Earth start spinning again and realise that the volume of water is not a floating shell but is getting pulled along with the continents. It is ultimately stopped by how far it can get in the six hours of rising force before it gets pulled back the other way or bounced around by a coastline.
At that point all bets are off. It gets so fiendishly complicated and we may as well try to model the climate system from first principals, which would be an insanely futile exercise as we all know.
So what did we get for all that?
No Coriolis , no centripetal, slight egg-shaped and tidal forces having mainly horizontal effects on the wet shell.
It does not seem to me that the slightly lower back tide every 12h matters. However, maybe the separation of semi-diurnal to diurnal as we move away from the equinox could be a factor. The ‘far side’ in this case being N/S and the moon basically following the sun on it’s annual trip.
Now bigger S bulge , smaller N bugle would imply a mass (hence energy) transfer across the equator. That is just an annual cycle along with the seasons however, the magnitude of that transfer will vary depending upon the various lunar cycles like the distance of perigee (40% variability in tidal force) and its timing w.r.t the annual seasons. ie is the N/S flow adding to the seasonal change or opposing it.
eg when the closest perigee happens in the NH, is the sun down under or is it NH summer?
All these phases just slides around in relation to each other so will produce progressive cycles.
since we don’t understand the real tides well enough to model them we’ll just have to look for physical evidence of lunar periods and then try to find a physical explanation.
http://climategrog.wordpress.com/?attachment_id=774
http://climategrog.wordpress.com/?attachment_id=755
I think there’s a prima facea case to answer. Someone now needs to have a closer look at Indian Ocean which seems to be the least complicated and strongest lunar-like signal.

RichardLH
February 12, 2014 3:29 am

Willis:
Try
http://mb-soft.com/public/tides.html
for a full mathematical treatment of the single 1D vector that you have plotted along with much other useful information including a calculation of the exact difference between front and back tide as well as observations on how this simple calculation is only a small part of the much bigger picture when plaid out here on Earth.
Interesting observations on the possible explanation for the Moon and who we got where we are today also.
http://mb-soft.com/public/moon.html

Greg Goodman
February 12, 2014 3:31 am

“Jupiter for example has no tidal effect on the earth.”
Well I just stated looking at radial speed of earth from sun ( r dot in the ephemeris data ) and it looks like one of the few strong peaks is almost exactly the period of Jupiter. there’s also a tiny blip from Venus.
Now I don’t know what that about, maybe its more to do with how it affects the Sun’s motion than the earth directly. Just a curiosity since I have not looked at it any more than that.

RichardLH
February 12, 2014 3:49 am

Greg Goodman says:
February 12, 2014 at 3:31 am
“Now I don’t know what that about, maybe its more to do with how it affects the Sun’s motion than the earth directly. Just a curiosity since I have not looked at it any more than that.”
I don’t have the data, skills, (or Google power apparently) to press this further. I believe that the Jupiter orbit in resonance plays with the Moon’s orbit. I think that this was in an up-down relative to the orbital plane (as the Moon’s orbital plane is slightly out of line to the Sun – Earth orbital plane) but it could be in-out.
My problem is that this was a long while ago and Google lists Jupiter’s Moons way above the Earth’s Moon in its listings. It will be somewhere down in the hundreds of urls – if there at all.

E.M.Smith
Editor
February 12, 2014 5:32 am

@Willis:
My “somebody found something” was just a summary statement of what those papers, that I did cite, found. Complete with who and what. From the “tell ’em what you told them” pattern. A “wrap up line”.
You have chosen to make a big point about a small number, but not address that the small number matters enough that historical records of eclipse locations and dates do not match what is “postdicted” by the orbital models used by the same folks who send rockets to the moon. It does matter that they left something out of the rocket model.
Oh, and predicting an orbit a week in advance is much much simpler than getting it right over a 1500 year period (as evidenced that the actual eclipses didn’t match the model). Even then we used ‘mid course corrections’ as a fix.
In short, a model used to run rockets over a few months span is not the same as reality or as what happens over decades. When looking at decade to century and longer scales, that matters.
OK, you have chosen to close your eyes rather than look at more data and other POV. Fine with me. I have no axe to grind here. Just thought you might enjoy comparing your stuff with the stuff in the papers and I was giving a couple of ideas of where to look. Your response is that I ought to go look. Well, it’s your posting, not mine… I’m not interested in being adversarial over this stuff, but your responses are increasingly so. ( I understand. Really I do. I found myself becoming defensive and adversarial defending postings and had to actively defend against it.)
Best of luck, and remember that the moon orbits the sun, and the earth has lesser influence. We are a binary planet system in mode of behaviour. This, too, matters.

cd
February 12, 2014 6:05 am

RichardLH
For the purposes of the piece would Willis’ simple model not suffice – just for fun. I know what you’re saying, and one could go further, for example the Earth’s density is not homogeneous creating slight variations in Earths own gravitational field across its surface. But at what point do you stop. The reductionist approach is to start as simple as possible – he’s done that not as complicated as possible otherwise you’d never start.
I don’t think Willis has shown what he set out to (personal opinion) but one has to start somewhere. Again, I think he need only add in the caveats you have raised.
I think the biggest problem facing Willis’ approach is that the signals are AM signals – as Greg pointed out earlier. The fundamental frequencies will not be immediately obvious from a simple Fourier approach.
A possible solution, although laborious:

for each window size
{
for location step window size
{
autocorrelation;
FFT;
output location and spectra;
}
}

Should be able to work out the fundamental frequencies from this approach.

RichardLH
February 12, 2014 6:18 am

Willis:
If you don’t get it yet – let me out it into language that an (ex?) rocket scientist might understand better.
On one hand you have a model/parameters for a generic elliptical orbit. On the other you have the need for knowing the possibilities of radio transmissions with a fixed bean, vertically angled radio from Cape Canaveral with a craft in that same orbit.
You rather do need a few more calculations that you have to hand so far.

Greg
February 12, 2014 7:53 am

CB:” Jupiter has a gravitational effect on the moon and on the earth but not a tidal effect on either.”
Indeed , way too far for an inv cube effect. However, it is one of factors causing all the complex variations in the lunar , so if there’s a lunar effect , it’s a player in that. It also a major player in the way the sun revolves amount the SS barycentre . We orbit the sun so get the same treatment.
It is quite feasible for there to be a Jupiter signal in climate.
“Only including the centrifugal force can you properly explain the second tide.”
I believed that to be the case a couple of years ago. But I’m pretty sure it’s incorrect now.
I made quite a detailed comment on this above. Perhaps you could comment on that if you see a flaw in the logic.
I would invite you to think this trough in the proper inertial frame without fictitious forces and see whether you come to the same conclusion. If you want to stick to a rotational frame of reference you need to apply Coriolis forces too. Not sure how that shapes up but it’s not simple nor whether its worth the head-scratching.
Unless I missed something of significance above, it actually seems simpler to treat it w.r.t. an inertial frame.
Let me know if you differ.

Greg
February 12, 2014 8:04 am

“I would argue that this isn’t the same effect as the lunar and solar tides on earth where the bodies are in orbit. ”
In a mathematical sense you could say falling into the sun is an orbit with infinite period.
What about a highly eccentric orbit like Haley’s comet?
Does it have to be a closed orbit ?
As soon as two bodies are close enough to interact the same laws should apply.
It may seem a bit contrived to call falling into a star an “orbit” but I’m not sure it changes the grad of the field. If you agree with bidirectional stretch in one case it should also apply to a stable orbit.
Now we cannot verify ocean tides which are incalculable. But the theory should be verifiable on solid bodies like the moon and probably the effect on solid earth.
The back-tide due to sol would be very different in the two cases due to the large separation, so presumably this aspect is readily verifiable.

RichardLH
February 12, 2014 8:22 am

Clive Best says:
February 12, 2014 at 7:05 am
“Jupiter has a gravitational effect on the moon and on the earth but not a tidal effect on either.”
If Jupiter alters the Moons orbit then that is a multiplier of the Jupiter effect here on Earth. If, say, the Moon’s orbit was to change 1 or 5 degrees N-S over time. Then that would affect how the vector field that the Moon exerts or Erath by a similar change also.
I don’t think anyone is expecting direct action. It is the indirect that matters. Sort of like servo action rather than direct.
The question is if this delta is so small that it is in the dust or not.

February 12, 2014 8:25 am

Willis Eschenbach says:
February 12, 2014 at 1:44 am
One other interesting thought came across my mind in contemplating all of this … suppose the sun was less bright, but this was balanced by the earth being only half the distance from the sun. In that case, we’d be just as warm, but the tides would be eight times as high as they are now … yikes!
=====================================================================
Back when the moon was near the Roche limit tides were worse than that. But that is a rather unstable situation: George Darwin calculated that the tidal braking effect is proportional to the sixth power of the distance, so the moon quickly quit spinning, and quickly moved away from the earth, while the earth quickly slowed down. The hypothesis being that formerly a day and month were of equal period. (Of course the tides would not begin till these periods became unequal.) Tides were stronger too back when lungfish evolved, and may have provided critical stimulus for the evolution of lungs. Before fish made their way to fresh water they were first stranded in hot, murky, oxygen depleted tidal pools, then rivers, then lakes. Then some fresh water lineage took its lungs back to the sea, and within a few million years most ocean fish had lungs, until reptiles went to sea and replaced the surface breathers (and displaced the coelecanths). –AGF

cd
February 12, 2014 8:42 am

Greg
This is all getting pedantic.
In a mathematical sense you could say falling into the sun is an orbit with infinite period.
This sounds very technical but could be just waffle. In all practical sense, if you’re being pulled toward something then by definition you’re not in orbit – escape velocity etc. And if it is falling then one thing is for sure it isn’t infinite.
Does it have to be a closed orbit ?
It has a closed orbit.
As soon as two bodies are close enough to interact the same laws should apply.
This is nonsense. The ultimate effect of gravity on two bodies whose gravitational fields interact can be quite different: moving toward one another or one is relatively fixed and other not.
It may seem a bit contrived to call falling into a star an “orbit” but I’m not sure it changes the grad of the field
It sounds wrong. All this is getting quite pedantic but the point being made originally was correct but as I say pedantic. I think we need a physicist that deals with this to clear it up as it all sounds like semantics and arm waving.
For me the term tidal suggests a periodicity – as in tidal harmonic rather than a change in gravitational pull across something (which is basically everything). This periodicity, as mentioned by others, can be the result of elliptical orbits or the spinning of a body in orbit or even a falling object (as long as it spins while falling).

RichardLH
February 12, 2014 8:59 am

cd says:
February 12, 2014 at 6:05 am
“For the purposes of the piece would Willis’ simple model not suffice – just for fun. I know what you’re saying, and one could go further, for example the Earth’s density is not homogeneous creating slight variations in Earths own gravitational field across its surface. But at what point do you stop.”
For a non rotating or water only Earth – sure it is fine.
That is just such a LONG way from reality that it is just a child’s toy.
Just try to do a plot from the North Pole and see just how non-trivial this all really is.

Reply to  Willis Eschenbach
February 12, 2014 10:10 am

Willis,
You and I have a gravitational influence on Pluto but not a “tidal” influence on Pluto. Just because there is a formula for tides on earth: 2 * G * m1 * m2 * r / d^3 doesn’t mean it that it can be applied universally. Tides are not a fundamental law of nature.
When Greg says that a star or person in free fall into a black hole temporarily experiences tides he is correct. However, permanent tides can only apply to objects in orbit around each other. Orbits conserve angular momentum by balancing gravity against a “centrifugal” force.
A hammer thrower is also in balance until he lets go of the hammer !

RichardLH
February 12, 2014 9:38 am

Wilis:
Still no plot from the North Pole? Such a simple question really.
No plot from the Shetlands? Should be a matter of seconds surely.
Still no understanding that, for this to have any bearing on Climate reality, it is tidal FLOW that is the real question – not tidal height. And the flows N-S through the various Straits not in the deep ocean. Driven by the basin tide heights either side on a titled, rotating Earth as well as the tangential to the surface gravitational vectors at the same Latitude.

February 12, 2014 9:51 am

Greg Goodman says:
February 12, 2014 at 2:06 am
“I think the problem here is that since real tides are so far removed from all this talk of ‘bulges’ that none of it can be verified. People (especially academics teaching the stuff) are free to spout any hotch-potch “theory” of tides because it’s largely non verifiable.”
=======================================================================
This is more true of semidiurnal tides than of zonal tides, else how do you explain the c1ms fortnightly, reversible deviation in LOD?

Greg Goodman
February 12, 2014 9:54 am

Richard, while poking about with numbers I’ve just found this. It look like you were correct about some resonant linkage between moon and Jupiter.
http://eclipse.gsfc.nasa.gov/LEcat5/figure.html
saros cycle=18.0308
2/( 1/8.85259 + 1/18.0308 ) = 11.8749
pJ = 11.8624
I looks like the moon has locked into an orbital resonance (not uncommon in solar system).
I’d suspected something there’d be some link to J in all this but never had any reason to spend time looking. I just stumbled across it while doing some other calculations.
The saros represents Earth-moon-sun alignments that Willis started off on this thread. 8.85 is the precession of the plane of the lunar orbit. It is usually stated that this precession is due to torque exerted by the sun on the E-M “gyroscope” angular momentum. But this must at least mean that Jupiter has enough influence to lock it in.
So that’s the proof of what I suggested to Clive earlier. That J may have an indirect effect via the moon, even though it’s tidal effect is negligible.
The other part of that combo , the modulation freq, has a period that I’ve often seen pop up in spectra but I had not idea of the cause.
2/( 1/8.85259 + 1/18.0308 ) = 34.782
Looks like that’s a lunar signal too.
This is rather cool since just a couple of days ago I was wondering why the precession didn’t just keep speeding up if it constantly had a torque applied by the sun. I meant to look into it but then forgot.
🙂

Greg Goodman
February 12, 2014 10:04 am

“I’ve shown above that Greg’s claim, which tallbloke merrily endorses without doing the math, is simply not true.”
“Run the numbers first, folks … it prevents you from being embarrassed by your claims.”
w.
What the hell do you think your water planet calculations have to do with reality of how earth tides work. Since no one in the world can model tides your suggestion “run the numbers” is pretty dumb. You’d do well to take you own advice on that one.
Since your last comment to me on the other thread was “Piss off you idiot” I think you’d better wind you neck in a bit.
You’ve indicated in personal communication that you don’t want to talk to me, which is fine, so don’t come in here and start making jibes.

RichardLH
February 12, 2014 10:05 am

Greg Goodman says:
February 12, 2014 at 9:54 am
“Richard, while poking about with numbers I’ve just found this. It look like you were correct about some resonant linkage between moon and Jupiter.
http://eclipse.gsfc.nasa.gov/LEcat5/figure.html
saros cycle=18.0308
2/( 1/8.85259 + 1/18.0308 ) = 11.8749
pJ = 11.8624
I looks like the moon has locked into an orbital resonance (not uncommon in solar system).”
Yea. Someone who is better than me with Google 🙂
All I ever claimed was that other planets alter the Lunar orbit. Not that any have any direct effect on tides here on Earth.
If the orbit changes – the tides change. Like a servo rather than a direct pull. Direct tidal influence. That’s a straw man if I ever saw one.

Greg Goodman
February 12, 2014 10:06 am

“I’ve shown above that Greg’s claim, which tallbloke merrily endorses without doing the math, is simply not true.”
“Run the numbers first, folks … it prevents you from being embarrassed by your claims.”
w.
What the hell do you think your water planet calculations have to do with reality of how earth tides work. Since no one in the world can model tides your suggestion “run the numbers” is pretty dumb. You’d do well to take you own advice on that one.
Since your last comment to me on the other thread was “*iss off you idiot” I think you’d better wind you neck in a bit.
You’ve indicated in personal communication that you don’t want to talk to me, which is fine, so don’t come in here and start making jibes.

RichardLH
February 12, 2014 10:08 am

Willis Eschenbach says:
February 12, 2014 at 9:53 am
“Not only that, but the horizontal component of the tidal force is never that large”
Remind me again where on the [Earth’s] surface the greatest tidal FLOWS occur? What Latitudes?

Greg Goodman
February 12, 2014 10:09 am

“Yea. Someone who is better than me with Google :-)”
I didn’t Google it, I did it all by myself 😉

RichardLH
February 12, 2014 10:15 am

Willis Eschenbach says:
February 12, 2014 at 10:06 am
“If you want a plot of tidal effects from the north pole or the Shetlands, you know what to do, Richard … pull your thumb out of your fundamental orifice, stop whining about how I’m not doing what you want me to do, make your own fricken’ plot, and explain what you think it means.
Because I’m assuredly not fool enough to do your work for you …
w.
PS—I wrote this post to say folks, before you make your claims, do the math … and in response, you ask me to do your math for you.
Miss the point much, Richard?”
No I don’t miss your name calling either.
You started this thread partially as I can best tell in response to my posting an observation that the DATA shows some form of periodicity.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/HadCrutMonthly11560Lowpass_zpsf542092e.png
Then you put together a toy example that had no real merit and claimed it proved your point.
I am just observing that until you bring your toy example down to a real, on Earth, example it is just that – a toy.
Climate is not related to some abstract 1D vector that actually follows part of the Saros cycle it is trying to (not) display. It is rotating, 3d, messy and a lot more complicated.

RichardLH
February 12, 2014 10:16 am

Greg Goodman says:
February 12, 2014 at 10:09 am
“I didn’t Google it, I did it all by myself ;)”
Bow, Bow.

RichardLH
February 12, 2014 10:20 am

Willis:
If you still don’t get it shall I repeat it in capitals?
TIDAL FLOW – NOT – TIDAL HEIGHT.

RichardLH
February 12, 2014 10:33 am

Willis Eschenbach says:
February 12, 2014 at 10:06 am
“In my world, you’re a star, right up there with the rest of the folks that are too lazy to do your own math and want me to bail you out of your terminal innumeracy … ”
Ironic isn’t it. On one hand you complain you don’t like the maths I do (because the averages are just TOO long don’t u know) then you think that toy orbital maths makes it all better.
Duh!

RichardLH
February 12, 2014 11:28 am

Willis Eschenbach says:
February 12, 2014 at 11:17 am
“You need to show that my calculations are wrong, not simply to point to an area with high tides and say See! Big tides! Willis wrong!”
Straw man alert. I’ve never claimed that.
I have claimed that your toy 1D vector is not a good representation of the complexities of Earth-Moon tidal interactions.
I have pointed out that the Earth’s rotational axis is not aligned with your toy 1D vector.
I have pointed out that your toy 1D vector actually follows one of the parts of the Saros cycle (the Moon) so it will not display some (most?) of its effects on points on the Earth’s rotating surface.
I have pointed out that the vertical vector at the ‘pole’ is an orbital periodic, not a daily one.
I have pointed out that a circle at 60 degrees to the orbital plane has no vertical component at all.
I have pointed out that Wood et al says you are wrong (at least in part).
You respond with – well my maths is correct.
It is but that doesn’t make it any less of a toy.

Greg Goodman
February 12, 2014 12:01 pm

Willis. I’m not interested in arguing about whether you understand amplitude modulation or not . Been there and it didn’t work. You find communication with me unpleasant and I likewise, don’t appreciate being told to “*iss off” . So don’t start again.
End of story.
You are of course quite correct 8.85 is the precession of apsides not the nodal precession.

RichardLH
February 12, 2014 12:07 pm

Willis Eschenbach says:
February 12, 2014 at 11:23 am
“A clue about the context would be useful here, Richard, which is why I ask folks to quote what they object to.
Clearly you think that tidal flow, and not tidal height, is … well … it is … clearly you think FLOW NOT HEIGHT is very important for some unknown reason.
What that reason might be, however, surpasseth all understanding …”
I suppose it is too much to expect that people actually read, understand and/or remember what is or has been said, or do I need to repeat myself always so the context is blindly obvious?
Tidal flow will assist or oppose the transport of cold water/ice/brine south and warm water north through the Fram Straits and over the Cills at the Greenland /Scotland ridge, etc.
http://www.ifm.zmaw.de/mitarbeiter/detlef-quadfasel/projects/overflow-over-the-greenland-scotland-ridge/
This flow is derived, in part anyway, from the differential tidal height in the basins concerned. The other part is from the tangential vectors that come at 60 degrees to the orbital plane. (Oh, and the thermohaline circulation as well.)
As the vector circle that is drawn on the Earths’ surface is modulated by the Saros cycle (see eclipse which is the 90 degree vector point then add 60 degrees to get to the ‘no horizontal – all tangential’ vector circle) and this wanders all over the Earth’s surface this turns into a very non-trivial question really quickly.
Now we are playing in an Earth related 3D space, not the rather pointless 1D vector you have drawn so far.
And then we get the multiplier effect from shallower oceans, any additional air pressure variations and we might, just might, be close to how we could find some long term pattern in the other data that matches what the data says is there in the temperature record.
Good luck on all that. The high quality data that might just support or refute the question is only some 40-50 or so years long at best and does not cover all of the parts in question fully to any real depth (pun).
I am not trying to be difficult. You call me names all the time. I respond simply and, I hope, clearly. You then say ‘well I can’t be bothered to read all you write but regardless I’ll tell you what I think anyway – and your wrong’.
Makes for a difficult conversation.

RichardLH
February 12, 2014 12:11 pm

Willis Eschenbach says:
February 12, 2014 at 11:45 am
“Never said it was a representation of the tides or the tidal interactions. Never said it predicted or calculated the tides. In fact, I never said it was a vector, nor did I calculate a vector, that’s just your overheated imagination at work.
I calculated a scalar, the amplitude of the tidal force. I was clear about what I was calculating, which was the size of tidal force exerted by the combination of the sun and the moon.”
Yes. The scalar that is the magnitude of the two 1D vectors that are pointing directly at the ‘satellite’ in the combined vector maps of two external bodies caused by merging two of these pictures at http://en.wikipedia.org/wiki/File:Field_tidal.png, one each for Moon and Sun.

RichardLH
February 12, 2014 12:14 pm

Willis: To be crystal clear. Your scalar is the magnitude of the vector sum of the two 1D vectors in the two combined images. Get it now?

RichardLH
February 12, 2014 12:20 pm

Wllis: Bye the bye. What is your explanation for the wriggles in the lines at
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zpsd17a97c0.gif
Chance or something else?

RichardLH
February 12, 2014 12:24 pm

Willis: EDIT:
(see eclipse which is the 90 degree vector point then add 60 degrees to get to the ‘no VERTICAL – all tangential’ vector circle)

Greg Goodman
February 12, 2014 12:37 pm

“I calculated a scalar, the amplitude of the tidal force.”
And you made an error copying the maths. I posted a correction here
http://wattsupwiththat.com/2014/02/09/time-and-the-tides-wait-for-godot/#comment-1564669
You will obviously want to check that where ever you get your formulae from.
That corrects your maths but that would still mean you are subtracting moon from sun at full moon as CliveBest pointed out. The tidal force you derived acts in opposite directions on opposite sides of the earth so it is wrong to subtract them.
I suggested a further mod to get tides to add correctly unless you see some value in adding opposing forces in a way that does not affect tides. Though that probably qualifies as cycle mania.
http://wattsupwiththat.com/2014/02/09/time-and-the-tides-wait-for-godot/#comment-1564688
You seem pretty keen on correcting everyone else’s errors but not your own.

February 12, 2014 1:26 pm

It was here that Goodman baptized me with gatorade: http://wattsupwiththat.com/2013/05/26/new-el-nino-causal-pattern-discovered/#comment-1323875
…where I finally estimated a 20km tidal sea displacement, after arguing like Willis that tides don’t move currents horizontally. My initial mistake was not realizing that shallow oceans (3km) don’t behave anything like totally fluid planets. Considerable fluid displacement is involved in raising sea level one part in 10k. Even so, Keeling and Whorf consider this largely incapable of affecting climate, and suggest that vertical mixing is the mechanism to appeal to:
http://www.pnas.org/content/94/16/8321.long
–AGF

Greg Goodman
February 12, 2014 2:31 pm

Thanks AGF, this needs something like your estimations. What period tide was the 20km for was that the baisc diurnal / semi-diurnal?

February 12, 2014 2:50 pm

That was fortnightly, but I don’t put much stock in it–I should have used triangles. I’ll go home and see if I can improve on it. –AGF

Greg Goodman
February 12, 2014 4:26 pm

Here’s my attempt at ‘bulges’ without the need for fictitious forces (approach recommended by one of Richard’s links).
http://climategrog.wordpress.com/?attachment_id=776
The variation in gravitational attraction leads to slightly different radius of revolution each side of the earth.

1sky1
February 12, 2014 5:48 pm

The astronomical tides have been thoroughly studied scientifically for centuries. Of all the geophysical variables, they are consequently one the easiest to model sucessfully, providing very reliable long-term predictions with just a score of constituents.One thing for certain: there’s no physical oceanographer who would in the inane discussion here.

Greg Goodman
February 13, 2014 12:46 am

1sky1: “The astronomical tides have been thoroughly studied scientifically for centuries. Of all the geophysical variables, they are consequently one the easiest to model sucessfully”
But the models are empirical, geographically specific prediction tables. That is fine for maritime needs which are the principal need.
The question here is whether there could be an inter-annual or decadal scale horizontal displacement of water mass that could transport climatologically significant amounts of thermal energy.
Are you aware of a model that successfully models that?

RichardLH
February 13, 2014 1:47 am

Willis Eschenbach says:
February 12, 2014 at 7:49 pm
“I don’t have a clue what a “1D” vector is, Richard. I’ve never even heard of such a creature.
I do know that I used 3D vectors, as I show in my code … so no, I don’t “get it” in the slightest.
And no, talking about “1D vectors” is not only not “crystal clear”, it’s not clear in the slightest.”
I rather gathered that. As the Universe is a 3D space which you are attempting to model and forces in 3D spaces are modelled best by vectors I would have thought it would have been obvious that you can go from 3D to 2D to 1D by removal of X, Y and reduction to Z as effectively you have done.
Your scalar is the gravity field (never goes negative), a pure 1D vector is the effect of that field on a body (can go negative as it has a direction i,e. towards Sirius). A rotating 1D vector along a line, say, from Moon to Earth is very similar to a scalar in that, in my universe at least, it can never go negative (bodies crash into each other first)..
Shall I leave it to the most appropriate and detailed answer from
http://physics.stackexchange.com/questions/35562/is-a-1d-vector-also-a-scalar
—-
Whether a quantity is a “scalar” or a “vector” (or something more exotic) is a question of what representation of the group of isometries it resides in. For n-dimensional Euclidean space, this is the group O(n). For n=1, O(n) has just the elements 1 and -1. A vector acts nontrivially under -1, while a scalar is unchanged.
Speaking more broadly, we can consider antisymmetric tensor fields (sections of the exterior powers of the tangent bundle). The top exterior power, the so-called tangent frames (or if you prefer their duals, the volume forms), are in bijection with the group of scalars if our space is orientable. That is, fixing an orientation (which is a global section of this bundle) O, every other top rank tensor is of the form f(x)O for some scalar function f. If we’re in Euclidean space, only the parity transformation -1 can act nontrivially on one of these. It acts trivially if the dimension is even, so scalars are top tensor fields in even dimensions and psuedoscalars are top tensor fields in odd dimensions.
—-
May I make a recommendation, when people use words you don’t understand but they seem fairly confident in, plug the words in question into Google and chose what you consider to be the most authoritative source. Then ask if that is what they mean or are they or you just plain lost.
Do I need to explain about Cartesian coordinate systems and Rotating reference frames as well?

RichardLH
February 13, 2014 1:50 am

Willis Eschenbach says:
February 12, 2014 at 7:51 pm
“Wllis: Bye the bye. What is your explanation for the wriggles in the lines at
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zpsd17a97c0.gif Chance or something else?
Something else.”
And your choice from the almost infinite list of ‘Something else’ things it could be? Go on, make a decision for once.

RichardLH
February 13, 2014 2:11 am

Willis Eschenbach says:
February 12, 2014 at 8:02 pm
“quote my words.”
and then
“Richard, you seem to think that a) I read your posts with any regularity”
So as far as I can tell you are so certain that you are right – you don’t bother to read what others have written in any great detail or attempt to understand what they are saying – even if they are as polite as they can possibly be.
You just press on with – “I know that what your saying is wrong – no argument or logic involved to back up your opinion – you’re just plain WRONG. I say so”
P.S. I am a engineer and scientist. My family has been for generations. I grew up being taught logical explanation, thinking and engineering, in multiple disciplines. I studied and have worked in that most logical of professions, computing, my entire working live. I hold a degree or two in that profession, with gold knobs on to boot. I do not believe in anything that does not have a logical, deductive and practical explanation. I remain curious though. Trying to find good solid reasons and explanations for what I see. I try not to ignore those things that do not fit with what I currently understand. I seek answers. Scientific answers.

cd
February 13, 2014 2:15 am

Willis
I don’t have a clue what a “1D” vector is, Richard. I’ve never even heard of such a creature.
In the context being discussed – Richard can correct me if I am wrong – a 1D vector, as with all vectors has direction and magnitude, but the 1D vectors directions is either +/-. Obviously when you go to higher dimensions you need to define the direction with more directional components. So in this sense – in the way you are dealing with the output: F – he is correct. And yes you do use vectors defined in 3D dimensions but you’re essentially adding their magnitude (see adding vectors) to give you magnitude and sign (1D direction). You’re not expressing the result in terms components x, y, z – end your not analysing the 3D vector.
Personally, I think it is a rather academic point given what you’re trying to do. For me the major issue with your approach is that your dealing with an AM signal (quite clearly from Fig. 1 for example) as pointed out by Greg some time ago.

cd
February 13, 2014 2:18 am

RichardLH
Sorry just saw your response at February 13, 2014 at 1:47 am. Had the page open without refreshing before posting.

RichardLH
February 13, 2014 2:19 am

Willis: P.S. One of my role models whose career path I have sort of tangential followed by chance is Tommy Flowers. Ever heard of him?

RichardLH
February 13, 2014 2:21 am

cd says:
February 13, 2014 at 2:15 am
“In the context being discussed – Richard can correct me if I am wrong”
Cartesian coordinate systems and Rotating reference frames just about covers it 🙂

RichardLH
February 13, 2014 2:32 am

Greg Goodman says:
February 13, 2014 at 12:46 am
“But the models are empirical, geographically specific prediction tables. That is fine for maritime needs which are the principal need.”
Actually, if you think about it, the work done by Willis is indeed that which would mostly be required by someone condition to think in a Southern Pacific environment. Deep Ocean, Steep to islands. Tidal forces mainly governed by that ~0.3m rise or as Wiki has it
http://en.wikipedia.org/wiki/Tide
—-

Amplitude and cycle time
The theoretical amplitude of oceanic tides caused by the moon is about 54 centimetres (21 in) at the highest point, which corresponds to the amplitude that would be reached if the ocean possessed a uniform depth, there were no landmasses, and the Earth were rotating in step with the moon’s orbit. The sun similarly causes tides, of which the theoretical amplitude is about 25 centimetres (9.8 in) (46% of that of the moon) with a cycle time of 12 hours. At spring tide the two effects add to each other to a theoretical level of 79 centimetres (31 in), while at neap tide the theoretical level is reduced to 29 centimetres (11 in). Since the orbits of the Earth about the sun, and the moon about the Earth, are elliptical, tidal amplitudes change somewhat as a result of the varying Earth–sun and Earth–moon distances. This causes a variation in the tidal force and theoretical amplitude of about ±18% for the moon and ±5% for the sun. If both the sun and moon were at their closest positions and aligned at new moon, the theoretical amplitude would reach 93 centimetres (37 in).
Real amplitudes differ considerably, not only because of depth variations and continental obstacles, but also because wave propagation across the ocean has a natural period of the same order of magnitude as the rotation period: if there were no land masses, it would take about 30 hours for a long wavelength surface wave to propagate along the equator halfway around the Earth (by comparison, the Earth’s lithosphere has a natural period of about 57 minutes). Earth tides, which raise and lower the bottom of the ocean, and the tide’s own gravitational self attraction are both significant and further complicate the ocean’s response to tidal forces.

—-

RichardLH
February 13, 2014 2:46 am

Willis Eschenbach says:
February 12, 2014 at 8:02 pm
“So you’ve never fished in the Bering Sea, then?
Well, I have. Tides are large up there. And I can assure you that anywhere near the coast, there is huge horizontal movement with each tide. And yes, it mixes the water, and will mix it more if the tides are higher.”
And that same higher flow caused by the tides in restricted spaces such a the Fram Strait and the Greenland-Scotland ridge will augment or prevent the flow of cold/warm water though those gaps.
Which is all I have been trying to point out.
And then wondering if that higher flow has any longer term pattern to it and thus modulates the Thermohaline circulation in a way that we could see in Climate temperatures.
At least one paper in the literature seems to backup that way of thinking.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zps0436b1f2.gif

RichardLH
February 13, 2014 4:15 am

Willis: You still haven’t addressed in the Wood et al paper (see full ref above) is wrong, in full or in part.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/GravitationtidalcyclesfromWoodetal_zps27a493b4.gif

RichardLH
February 13, 2014 4:56 am

For those interested on why I regard Tommy Flowers as being a very important and almost completely overlooked Engineer in history

Lorenz (Tunny), Flowers and Tutte, their use of graphic analysis and pure logic and science should serve as an example to us all. IMHO.

February 13, 2014 7:20 am

Willis Eschenbach says:
February 12, 2014 at 9:53 am
“I’ve shown above that Greg’s claim, which tallbloke merrily endorses without doing the math, is simply not true.”
=================================================================
The link you provide within that sentence may work for you but it doesn’t work for me. Other than that I stand corrected, within limits. We are agreed that horizontal tides on the sun are insignificant, and that in the straits of our ocean they can be considerable. The question is the deep ocean. I gather from your post on vertical mixing that you accept it as a possible mechanism for tidal influences on weather. But two or three questions remain unresolved: are east/west or north/south tidal currents capable of any but trivial influence on weather, and do “supertides” play any role in climate through whatever mechanism? I’m not going to humor you by pretending that the primary purpose of your post had any chance of succeeding considering the half-arsed way you went about it. We still need numbers on deep zonal flow rates, and we still have reason to believe that supertides might affect climate through vertical mixing. –AGF

February 13, 2014 7:29 am

1sky1 says:
February 12, 2014 at 5:48 pm
The astronomical tides have been thoroughly studied scientifically for centuries. Of all the geophysical variables, they are consequently one the easiest to model sucessfully, providing very reliable long-term predictions with just a score of constituents.One thing for certain: there’s no physical oceanographer who would in the inane discussion here.
==================================================================
A more naive claim we could not hope to find. Local tides can never be modeled theoretically, but only individually and observationally. The universally applicable tidal components must be determined at each gauge on a case by case basis. Anyone foolish enough to think he can pop over to some bay with no nearby gauges and predict the tides, well for one thing, he has never tried it. –AGF

RichardLH
February 13, 2014 8:27 am

agfosterjr says:
February 13, 2014 at 7:29 am
“Anyone foolish enough to think he can pop over to some bay with no nearby gauges and predict the tides, well for one thing, he has never tried it.”
Or to try and attempt to discover (or disprove) any long term pattern in tidal flows through a Strait that might (just?) be influenced by similar long term patterns in the Lunar Orbit 🙂

RichardLH
February 13, 2014 9:32 am

Willis Eschenbach says:
February 13, 2014 at 9:05 am
“The fact that you didn’t realize what I’ve done, and that rather than ask questions you’ve invented your own fantasy about a 1-D vector, should give you some pause … however, I doubt if it actually will …”
The fact that you will not admit that the scalar magnitude that you display is in fact a calculation of the vector sum of the 3D space in which it resides into a 1D vestor….might give you some pause as well.
Did you miss that question posed to http://physics.stackexchange.com/questions/35562/is-a-1d-vector-also-a-scalar about just the question you posed about the terminology I used?

RichardLH
February 13, 2014 9:34 am

Willis Eschenbach says:
February 13, 2014 at 9:22 am
“Given that, your slimy comment about whether I understand Cartesian coordinates is just more of your unrestrained ugliness.
As to your childish insistence that I give a reason for the exact shape of the smoothed temperature measurements of the last couple centuries, I’ll pass, thanks. Some of us are wise enough to know some of what we don’t know … and one of the things that no one on this planet knows is the answer to your question.
We don’t know why the temperature rose in the thirties or why it dropped in the sixties, Richard, and your puerile claim that you know the answer, and that it’s all a bozo-simple sine wave of unknown origin, is merely a mark of your naiveté … and one which I am unwilling to emulate.”
Big with the slurs… short with the explanation…or logic it would seem.

RichardLH
February 13, 2014 9:40 am

Willis Eschenbach says:
February 13, 2014 at 9:31 am
“Like Richard, you seem totally ignorant of the difference between a “1-D vector”, a term which I’ve never seen anyone use but which you describe as a signed number, and the MAGNITUDE OF A 3-D VECTOR”
OK – Once more as an attempt to covey to you what everybody else seems to grasp at the drop of a hat.
Your scalar value is the magnitude of the force along the single line (vector) that is represented by the reduction of the 3D Cartesian vector space into a single number/line/vector as evidenced by the line (rotating vector) between the Earth’s and Moon’s central points.
Are you trying to be deliberately obtuse or just failing to understand simple terminology?

RichardLH
February 13, 2014 9:42 am

Willis Eschenbach says:
February 13, 2014 at 9:35 am
“Nor do I follow random internet hints from random internet popups. That’s a fools game—I don’t let people like you send me on some freakin’ snipe hunt for some guy I’ve never heard of.”
I know. It is painful to watch. The lack of your curiosity as to what other peoples ideas and concepts are. You ALREADY know it all. What ELSE could there be to discover.

richardscourtney
February 13, 2014 9:49 am

Willis Eschenbach:
You being an American, I am not surprised you are unaware of Tommy Flowers MBE.
But you being you, I think you will want to know of the lowly post office engineer who designed and built the first programmable electronic digital computer. Wicki gives a good introduction to him, and I really do think you will want to read it.
http://en.wikipedia.org/wiki/Tommy_Flowers
Richard

RichardLH
February 13, 2014 9:51 am

Willis:
You do get that I rather do understand COMPLTELY what you have done and what it shows don’t you?
That I am just pointing out that there are significant deficiencies (not mathematical errors) with the very limited point of view it represents.
That what it shows is such a simple, almost trivial, toy that it can never be used to address the real questions that somehow it is supposed to magically refute.

RichardLH
February 13, 2014 9:57 am

richardscourtney says:
February 13, 2014 at 9:49 am
“You being an American, I am not surprised you are unaware of Tommy Flowers MBE.”
I deliberately did not bring any such prejudicial, racial, comments when I raised his name, as that is not the way I construct an argument.
I admire the man for what he and Tutte did and the way they did it. That is all (and all that is needed). A very quiet man who started a revolution that we still use today, everywhere.

RichardLH
February 13, 2014 10:02 am

Willis:
“Whether a quantity is a “scalar” or a “vector” (or something more exotic) is a question of what representation of the group of isometries it resides in. For n-dimensional Euclidean space, this is the group O(n). For n=1, O(n) has just the elements 1 and -1. A vector acts nontrivially under -1, while a scalar is unchanged.”
is obviously beyond you then.

richardscourtney
February 13, 2014 10:08 am

RichardLH:
I take severe exception [to] your post at February 13, 2014 at 9:57 am which suggests I made “prejudicial, racial, comments”. I DID NOT!
I am willing to accept your withdrawal of your offensive remark and your apology for it.
Richard

RichardLH
February 13, 2014 10:09 am

Wllis:
In case you missed it
Cartesian coordinate systems and Rotating reference frames just about covers it 🙂

RichardLH
February 13, 2014 10:13 am

richardscourtney says:
February 13, 2014 at 10:08 am
“I take severe exception ti your post at February 13, 2014 at 9:57 am which suggests I made “prejudicial, racial, comments”. I DID NOT!
I am willing to accept your withdrawal of your offensive remark and your apology for it.”
I apologise if I gave you any offense. None was intended at all.
I believe that suggesting, even indirectly, that because someone who is American and therefore would not have heard of someone who is British has the characteristics of a racial slur. That is, American’s have in the past been observed, incorrectly, to have a very parochial view of the world.
I try very hard never to use such constructs when making my arguments.
Again, sorry if I offended in any way.

RichardLH
February 13, 2014 10:19 am

Willis:
From the Wiki link I posted.
“which corresponds to the amplitude that would be reached if the ocean possessed a uniform depth, there were no landmasses, and the Earth were rotating in step with the moon’s orbit.”
Your calculation is the magnitude that would apply under the above statement – ALONE. That is its deficiency.
To get a real world implementation of the effect of the forces so generated I will add the ret of the WIkI entry.
“Real amplitudes differ considerably, not only because of depth variations and continental obstacles, but also because wave propagation across the ocean has a natural period of the same order of magnitude as the rotation period: if there were no land masses, it would take about 30 hours for a long wavelength surface wave to propagate along the equator halfway around the Earth (by comparison, the Earth’s lithosphere has a natural period of about 57 minutes). Earth tides, which raise and lower the bottom of the ocean, and the tide’s own gravitational self attraction are both significant and further complicate the ocean’s response to tidal forces.”

RichardLH
February 13, 2014 10:22 am

Willis Eschenbach says:
February 13, 2014 at 10:14 am
“So you say there are “deficiencies”, but not mathematical errors, in my calculation of the tidal force? ”
You created the straw man of mathematical errors which I never posted about.

RichardLH
February 13, 2014 10:26 am

Willis:
“Whether a quantity is a “scalar” or a “vector” (or something more exotic) is a question of what representation of the group of isometries it resides in. For n-dimensional Euclidean space, this is the group O(n). For n=1, O(n) has just the elements 1 and -1. A vector acts nontrivially under -1, while a scalar is unchanged.”
The 3 dimension Euclidean space can be reduced to a 1 dimension Euclidean space and converted to a rotating reference frame as you have done. The scalar so produced is then the magnitude of the forces involved, the vector is the line along which those forces react. Can I get it any clearer?

RichardLH
February 13, 2014 10:34 am

Willis Eschenbach says:
February 13, 2014 at 10:14 am
“In any case, I haven’t solved the Dirac Conjecture in the head post, so is that a “deficiency” as well?”
Add all the straw man you like. I will not get cross – or distracted.

RichardLH
February 13, 2014 10:43 am

Willis Eschenbach says:
February 13, 2014 at 10:37 am

“Richard, what on earth are you talking about? That wiki quote is about the AMPLITUDE OF THE TIDES, and what I wrote this post about was the MAGNITUDE OF THE TIDAL FORCE.”

The Wiki is about the outcome (i.e. amplitude) of the effect of the magnitude of the tidal force as it applies to the Oceans.
Indeed if we are only discussing the abstract quantity of magnitude without relating to the outcome on the Earth’s oceans then what are we talking about?
Surely is the possible effects on Climate that this is all about, isn’t it?

RichardLH
February 13, 2014 10:58 am

“I’ve been listening to lots of stuff lately about tidal cycles. These exist, to be sure. However, they are fairly complex, and they only repeat (and even then only approximately) every 54 years 34 days. They also repeat (even more approximately) every 1/3 of that 54+ year cycle, which is 18 years 11 days 8 hours. This is called a “Saros cycle”. So folks talk about those cycles, and the 9 year half-Saros-cycle, and the like. The 54+ year cycle gets a lot of airtime, because people claim it is reflected in a sinusoidal approximately 54-year cycle in the for example the HadCRUT temperature records.”
In order to understand how the long term deltas in the tidal forces may, or may not, effect the “HadCRUT temperature records” then consideration has to be made how such changes in the forces play out on the worlds oceans (and possibly atmosphere). This is a complex subject involving as it does geographical restrictions and fluidic flows that will be difficult to determine from just a simple treatment of the changes themselves. [The fact that Earth’s rotational period, spin axis, and the orbital periods and planes are not aligned but] are elliptical and precessing makes this even more complicated.
Small orbital changes may also be brought about by other planetary influences that may amplify such tiny factors when applied here on Earth in the longer term.

RichardLH
February 13, 2014 11:10 am

Edit:
…The fact that Earth’s rotational period, spin axis, and the orbital planes are not aligned…

RichardLH
February 13, 2014 11:11 am

ReEdit: Damn it.
…The fact that Earth’s rotational period, spin axis, and the orbital periods and planes are not aligned…

RichardLH
February 13, 2014 11:53 am

Willis Eschenbach says:
February 13, 2014 at 11:15 am
“Now, I’ve spent a good chunk of my life at sea. Like most seamen, I’m fascinated by the tides. I fished night-times for some years, and there’s nothing like working outside on the ocean all night every night to put a man in touch with moon and the tides. I’ve watched the tidal winds roll in the mouth of the bay and up the river, and I’ve calculated my fishing times to take advantage of that wind. And as I said, I was forced by circumstances to generate my own tide tables ”
I am a sailor as well. Sailed a lot along the South Coast of England in everything from Enterprise Dingy to 34ft deep sea craft. In all sorts of tides and weather..
“So I’m keenly aware of the larger contexts you raise—of the tides resulting from the tidal forces discussed above, and of the effects of the tides on the climate. I’ve written entire posts on those subjects.”
Me too. (though I’ve written no posts 🙂 )
“However, this is not one of those posts about the tides, or about tidal effects on the climate. This post reflects my ongoing struggles to understand those underlying tidal forces that create the tides. How are the variations in those tidal forces not a legitimate subject, and indeed a fascinating subject, for discussion in and of itself?”
It is, but without the context of how this relates to the effects of those forces on the climate kinda abstract.
“For example, as I said above, I had thought that the 54-year repeating tidal cycle was a long, slow sine wave of the amplitudes of the tides. And as a result, I had thought such a cycle might be related to inter-decadal changes in the global surface temperatures.
But that turned out not to be the case at all, as Figure 3 makes clear. There is no long, slow 54-year sine wave in the tidal data, that was just my misunderstanding.”
If looked at from the aspect of low latitudes only, sure.
Consider your own observation about the Sun and the Poles. Up there things are a bit different. Tides, like daylight, are on a much longer period. 6 monthly in fact. A world away from stuff at the Equator. (or should that be half a world 🙂
There, given the non-alignment of spin axis to Moon orbit. things may well change in the 54 year cycle you seek.
Which is why I suggested that you plot this from the North Pole as well.
In between we will get a mix of 6 month and daily in greater and greater proportions as we head South.
Things also change at 60 degrees to the orbital plane. Here the resultant vector is all tangential to the surface. No vertical component at all.
This all mixes together to make the outcome a lot less simple than I think you see.
“Well, there may or may not be a cycle there, but it’s not related to the 54-year tidal cycle.”
I do wish I had your easy outlook on life. I see a much more complex and possibly interesting picture, that’s all.
See my other post for why.

cd
February 13, 2014 11:57 am

Willis
Ignorance? Embarrassing myself – that really is sweet. I’m not the guy trying to decompose an amplitude modulated signal using a Fourier Transform and then embarrassingly trying to state the law.
I generally try to speak to those in the manner they speak to me. A 1D vector – which you haven’t heard of HAS magnitude and direction +/-!!!! If it isn’t direction then it isn’t a vector. Pick up a math dictionary before spouting nonsense. If your vector is always +ve then it is only ever in one direction with a given magnitude. If you want to know what a 1D, 2D, 3D, 4D vector is do a search on elementary kinematics.
On a general point there seems very little point in empty gestures such as providing links to code and data if you just shout everyone down every time they try to explain something to you.

RichardLH
February 13, 2014 12:09 pm

Some inks for those who like to understand the complexities on things in general. BBC Science so not just some random urls 🙂
BBC Science of ‘The Code’ aka Mathematics as applied to the World around us
Numbers

Shapes

Predictions

cd
February 13, 2014 12:30 pm

RichardLH
Willis has form in this. As far as I can tell he learns a new type of analytical method and then – and hats of to him – he quickly grasps a working knowledge of it and then applies it to just about anything he can get his hands on. We all do this but whereas most of us might temper our enthusiasm by accepting that these are typically highly nuanced areas of science/maths, Willis takes to his word processor writes an article based on this shallow knowledge proclaiming some new insight (I’m sure sometimes he does find some) while dictating how it should’ve been done by all those who went before. Anyone to suggest that he might be wrong are not tolerated – see his reaction on 1D vectors.

RichardLH
February 13, 2014 12:33 pm

cd says:
February 13, 2014 at 12:30 pm
“Anyone to suggest that he might be wrong are not tolerated – see his reaction on 1D vectors.”
I come not to criticise – but to explore. Curiosity, always curiosity.

cd
February 13, 2014 12:52 pm

RichardLH
Don’t take this the wrong way but your posts can be a little “smarter-than-thou” – probably because you are to most ;). I enjoy WUWT, not out of curiosity but rather sincere interest in what information is provided. But it gets a bit out of hand some times as blogs do and you sometimes get a lot of flack. For example, I think my post touched a nerve as Willis clearly thinks he is above me. He seems unaware that the type of operation he is doing between two vectors produces another vector with magnitude and direction and just because he choose not to express it in one or more Cartesian coords he sees it as just a number, but of course it’s still a vector (+ve going one way and -ve going another way relative to fixed point; akin to displacement in kinematics). But again it’s all rather academic.
I watched your piece on Tommy Flowers. Very interesting. Many an unsung hero. I wonder if he has failed to get the recognition because he didn’t go through the academic route. Obviously brilliant man. How did you hear about him?
Out of interest, feel free not to reply, but are you in industry/academia?

cd
February 13, 2014 12:58 pm

Oops should have been “…distance of motion in 1D kinematics”

RichardLH
February 13, 2014 1:01 pm

cd says:
February 13, 2014 at 12:52 pm
“Don’t take this the wrong way but your posts can be a little “smarter-than-thou” – probably because you are to most ;).”
I am sorry. I never try to be cleverer than anyone else. Everybody has insights that others miss. Happens to me all the time. I can overlook the most obvious of conclusions. Always curious about what I DON’T see.
“I watched your piece on Tommy Flowers. Very interesting. Many an unsung hero. I wonder if he has failed to get the recognition because he didn’t go through the academic route. Obviously brilliant man. How did you hear about him?”
Well I just may have had a hand in producing the next generation of some of the stuff he did for blank spaces on the map……
“Out of interest, feel free not to reply, but are you in industry/academia?”
Retired from both at present. Not likely to stay that way for long 🙂

cd
February 13, 2014 1:15 pm

Richard
Thanks for replying. I wasn’t suggesting you were meaning to be condescending you just talk like a “proof” sometimes when making a technical point ;).
<Tommy Flowers
I’m quite interested in the guy. I write scientific software for a living and work with a lot of really “geeky” guys. No one seems to have heard of him. Either that means they aint as geeky as I think they are (although I’m sure they are) or this guy has been really treated badly by history. His generosity to his coworkers when he got that rather modest prize speaks volumes of his character too.
As for retired, I have yet to meet an academic,with a passion for the subject, that has ever really retired. It sounds as if you are getting itchy feet.

RichardLH
February 13, 2014 2:10 pm

cd says:
February 13, 2014 at 1:15 pm
“Thanks for replying. I wasn’t suggesting you were meaning to be condescending you just talk like a “proof” sometimes when making a technical point ;).”
Difficult to pitch it right without being face to face.
“<Tommy Flowers. I’m quite interested in the guy. I write scientific software for a living and work with a lot of really “geeky” guys. No one seems to have heard of him. Either that means they aint as geeky as I think they are (although I’m sure they are) or this guy has been really treated badly by history. His generosity to his coworkers when he got that rather modest prize speaks volumes of his character too."
The problems with dealing with those blank spaces on the map. You can get yourself into positions where what you do makes you invisible by necessity.
He was in such a position (as was Tutte). What they did with pattern analysis and simple circuitry blows your mind when you consider what they achieved. They figured out something neither of them ever saw, and unwrapped it in their mind. Saved in the process upwards of a few million lives into the bargain. And never even got a footnote in history (or nearly so – getting into the Royal Academy is not a small achievement but who ever even heard of them today).
"As for retired, I have yet to meet an academic, with a passion for the subject, that has ever really retired. It sounds as if you are getting itchy feet."
That curiosity will keep me looking, regardless of what I do.

1sky1
February 13, 2014 5:02 pm

Greg Goodman says:
February 13, 2014 at 12:46 am
“The question here is whether there could be an inter-annual or decadal scale horizontal displacement of water mass that could transport climatologically significant amounts of thermal energy.”
The short answer is that ocean currents transport water mass turbulently, whereas tides and other longwaves merely put water mass into an irrotational, coherent orbit of limited dimension. Thus there is scant basis for expecting any significant tidal heat transport or downward mixing outside the confines of coastal waters and estuaries. Why should anyone model such a physical implausibility?

RichardLH
February 13, 2014 5:11 pm

1sky1 says:
February 13, 2014 at 5:02 pm
“The short answer is that ocean currents transport water mass turbulently, whereas tides and other longwaves merely put water mass into an irrotational, coherent orbit of limited dimension. Thus there is scant basis for expecting any significant tidal heat transport or downward mixing outside the confines of coastal waters and estuaries. Why should anyone model such a physical implausibility?”
I rather think you have never been to the Islands off Scotland and seen the tidal races that form there. Just where all that nice warm North Atlantic Drift is heading Northwards to the Arctic over the Greenland – Scotland ridge.
You might have a slightly different approach to Tides then.

1sky1
February 13, 2014 5:27 pm

agfosterjr says:
February 13, 2014 at 7:29 am
“Anyone foolish enough to think he can pop over to some bay with no nearby gauges and predict the tides, well for one thing, he has never tried it. –AGF”
Anyone presuming that I claimed such simply cannot read. FYI, I successfully predicted tides at a number of project sites, using as few as a dozen constituents

RichardLH
February 13, 2014 5:48 pm

1sky1 says:
February 13, 2014 at 5:27 pm
“Anyone presuming that I claimed such simply cannot read. FYI, I successfully predicted tides at a number of project sites, using as few as a dozen constituents”
Want to give me a read for the Faroe Bank Channel? Percentage depth variation would be nice and a 120 year period if you can.

cd
February 13, 2014 11:32 pm

Willis
After cooling down a bit I read your response to me again. I get the feeling you thought I was being patronising and perhaps I was. I was only trying to explain what a 1D vector was and we seem to be talking cross-purposes. If I can try this again but in the context of your work:
Your magnitude is the “size” of a resultant vector from a vector operation between two vectors. If you’re only interested in the magnitude which you are then (right?) its still a 1D vector with magnitude and direction. In more precise terms:
Take a vector V with 3 elements: i, j, k (to avoid necessity of Cartesian convention as it could exist in any reference frame), its unit vector v and magnitude M:
V = vM
Now V has 2 elements: i,j and unit vector v (2 elements as well) with magnitude M:
V = vM
Now V with 1 element: i and unit vector v (1 element also) and magnitude M:
V = vM
In short, we now have split the vector into its directional component v and size M.
The 1D case is a special one as v is a unit vector v.i = -1/1, therefore:
V = vM = (-1*M) or M.
What you have done is found the magnitude of the 3D vector. Its implicit now that magnitude refers to the size of the vector as defined in that direction (the 3D vector), which can now be used as a unique 1D reference frame:
v.i is always equal to -1 or +1. Magnitude is always >=0.
You see V only has magnitude M in the given coordinate frame, and with direction -1/+1 ( a vector), which is only true in the reference frame defined by the 3D vector! In short your quantity cannot be described fully by magnitude only, without its directional component (M therefore is not a scalar).

cd
February 14, 2014 12:13 am

Willis forgot to state that your quantity is expressed as a Force (Newtons) which is by definition a vector quantity.

Carbomontanus
Reply to  cd
February 14, 2014 12:48 am

This cannot be true.
Pressure is defined as force per area, newtons pre square meters.
Force being a vector does violate the principle of fpressure being a magnitude acting in all directions.
The same discussion can be carried out with Voltage and Tension.
conclusion: cd has quite obviously not conscidered the general case here.

RichardLH
February 14, 2014 1:47 am

cd says:
February 13, 2014 at 11:32 pm
“What you have done is found the magnitude of the 3D vector. Its implicit now that magnitude refers to the size of the vector as defined in that direction (the 3D vector), which can now be used as a unique 1D reference frame: ….In short your quantity cannot be described fully by magnitude only, without its directional component (M therefore is not a scalar).”
What you are basically describing is how you transform a fixed 3D Cartesian vector space into a single relative rotating reference space with a single magnitude and a single direction that is defined by the line as it rotates and along which that magnitude operates.
So you have swapped from an Inertial reference frame using parameters dictated by the JPL tables to an abstract Earth-Moon oriented rotating space.
In fact what you really want is a Earth spin axis/rotationally oriented rotating space so that you can properly observe the effects of both Sun and Moon somewhere on the Earth’s surface.
It’s all down to where you stand and what trajectory you follow as you watch the almost infinitely complex dance of the others.

RichardLH
February 14, 2014 2:14 am

Carbomontanus says:
February 14, 2014 at 12:48 am
http://answers.yahoo.com/question/index?qid=20081220120251AAtaYz4
What is the force of gravity in newtons ?
the equation used is
F = mg
where F is the force in newtons
m is the mass in kg
and g is the gravitational field intensity, which on earth is 9.8N/kg
=9.8N
Now run that by me again?

cd
February 14, 2014 2:16 am

Carbomontanus
Force is a vector quantity, it has magnitude and direction. For example, an oblique force to a plane creates a different stress tensor than if applied normal to the plane.
Pressure is a scalar quantity (it doesn’t have direction), there is an equivalence with Force (units: N) because pressure is essentially force per area (units: N/A) but they are not the same type of quantity. In short, you can describe pressure completely by its magnitude, with force you need direction as the measure is for a particular reference frame, in a given direction.

RichardLH
February 14, 2014 2:16 am

Carbomontanus says:
February 14, 2014 at 12:48 am
What is the force of gravity in newtons ?
http://answers.yahoo.com/question/index?qid=20081220120251AAtaYz4
the equation used is
F = mg
where F is the force in newtons
m is the mass in kg
and g is the gravitational field intensity, which on earth is 9.8N/kg
=9.8N
Now run your answer by me again?

cd
February 14, 2014 2:54 am

RichardLH
So you have swapped from an Inertial reference frame using parameters dictated by the JPL tables to an abstract Earth-Moon oriented rotating space.
That was the point of the comment to illustrate to Willis why he is referring 1) magnitude of a vector not a scalar quantity, that he seems to be assuming and 2) how his 3D case can be simplified to a 1D vector. Perhaps I misunderstood your original point which started all this.
I think for the purposes of his article an inertial reference frame is sound. I’m sure, as evidenced by the fact that the Moon is moving further from us and that the Earth’s spin is slowing down that this not correct and that there are other external factors affecting the system but again I think this is rather academic. I’m not arguing against the need for your proposed reference frame – but even that’s just for starters, where do you stop? I know the approach you’re proposing is used throughout geophysics, at the scales I work at there is never any need.

RichardLH
February 14, 2014 3:24 am

cd says:
February 14, 2014 at 2:54 am
“I know the approach you’re proposing is used throughout geophysics, at the scales I work at there is never any need.”
I think you are missing the important point I was trying to make.
The rotating vector that has been created is, in itself, following one of the parts of the Saros cycle it is attempting to demonstrate.
The Earth-Moon vector is one vector in the Saros cycle. The other is the Sun-Earth vector.
To be a treatment of what happens at the Earth’s surface (and hence be something that could or could not affect Climate) you need to swap to a Earth rotational space.
Then, and only then, do you need to add in the geography and fluidics.

RichardLH
February 14, 2014 3:39 am

Edit: Make that
…following the parts of…

cd
February 14, 2014 3:53 am

RichardLH
Are you saying that we use a point on the Earth as a rotating reference frame. Are you then saying we measure the temporal shift in the magnitude of the gravitational pull from the Moon and the Sun in the vectors defined between our stationary point (on the surface) and the Moon and Sun (which of course are also changing relatively)?

cd
February 14, 2014 4:08 am

Sorry Richard that should’ve been “fixed point” rather than “stationary point”.

Greg
February 14, 2014 4:12 am

1sky1: ” tides and other longwaves merely put water mass into an irrotational, coherent orbit of limited dimension. ”
That sounds a little like one Paul Vaughan’s science-like sound bites. Like most of Pauls comments it sounds impressive but does not actually convey anything useful. Perhaps you could rephrase it.
Ocean currents convey huge ammounts of thermal energy and a measured reduction in the flow of the gulf stream was a climate panic from an earlier generation (until they measured it again and it had gone back up).
What I’m trying to establish is whether harmonic interference patterns from the various fluctuations in lunar and solar forcing maybe modulating what is currently measured as “ocean currents”.
Now lunar distance whose direction of closest approach varies on an 8.85 year cycle is clearly a factor as is it’s declination angle, which varies in orientation over 18.6 years. There is also the repetition of 3D alignment of sun-moon-earth every 18.03 years.
What Willis attempted to calculate was the magnitude of the tidal force vector. That is once important factor , the other is it’s direction, the combined result of solar and lunar declination.
I say “attempted” because although he did a valid calculation for the individual sun and moon tide raising forces, he forgot that they each act in both directions (creating opposite bulges) so when he uses the (also incorrectly calculated) magnitude of the vector sum he is subtracting full moon luanr tides from the solar tide instead of adding.
I have provided corrections for his vector magnitude error and a modification to correctly add full-moon tides. He has adopted neither but if anyone wants, he have provided full Rcode to reproduce his graphs and spectra (which is exeamplary practice) and anyone can drop in the two-line mods I’ve posted.
Willis: “But that turned out not to be the case at all, as Figure 3 makes clear. There is no long, slow 54-year sine wave in the tidal data, that was just my misunderstanding.”
Sadly Willis you are talking way above your pay grade on all this. You have a very poor understanding of spectral analysis an how to interpret it’s results. Not only is the spectrum you posted wrong because you made a two mistakes in the maths , you still don’t get the reason long cycles, formed interaction for close short cycles, will not be seen in a Fourier spectrum.
I’m genuinely sorry that I’ve failed in my attempts to explain to you how that works.
Figure 3 has a small blip and 8.x years. That is a result of your getting the vector magnitude formula wrong. Once corrected it too disappears. None of which proves there are no long term variations arising from combined effects of the sub annual cycles.
The other problem with the spectral plots is that they are dominated by very strong diurnal and semi-diurnal tides and R scales accordingly. Any small amplitude peaks would not be visible the way it is plotted. That does not mean that a small tidal force acting in the same direction for 9y then back again could not be transporting significant amounts of heat.
This is where some experience in spectral analysis is useful. Just because there’s a FFT package for R does mean anyone knows how to use it. It is like the swamp of foetid misinformation that results from clicking on “linear trend” in excel without the slightest understand of whether it is a reasonable model for the data or whether it means anything at all. Most people seem to assume that there is some fundamental truth in a “trend” and it must correct “because the computer did it”.
So it was a good idea Willis starting this analysis and would give us some information if only he would correct his maths and replot the graphs. But he is drawing conclusions that are not justified on the basis of what is shown here.

Greg
February 14, 2014 4:31 am

Too much is being made of this 1D vector thing.
A scalar is a tensor of rank zero , a single quantity. A vector is rank 1, it requires two quantities to specify it , magnitude and direction. A matrix rank 2 etc.
Whatever coordinate system is used is largely irrelevant. A vector in three dimensional space can be represented as (x,y,z) or (r,theta,phi) etc. R in this case is an unsigned magnitude. The angular coords will determine if it is pointing ‘backwards’, not R.
Since we are not considering a one dimensional space I don’t see any point in discussing 1D vectors, though they could exist in a 1D space.

RichardLH
February 14, 2014 4:38 am

cd says:
February 14, 2014 at 3:53 am
“Are you saying that we use a point on the Earth as a rotating reference frame. Are you then saying we measure the temporal shift in the magnitude of the gravitational pull from the Moon and the Sun in the vectors defined between our stationary point (on the surface) and the Moon and Sun (which of course are also changing relatively)?”
Precisely that.
If we take, say, a point on the Earth’s surface like the Faroe‐Shetland Channel, then how the two vector sum plays out on that point over the whole of the Saros cycle and its multiples will likely to be of great importance.
By the way, you may also need to consider that most overlooked part of this whole picture, the Internal Tide. The thing that can move the thermocline up and down up 10’s of meters for the pitiful 0.3 meters of air/water interface we so avidly notice.
And how that interrupts (or not) the mixing flow of less than 0 degree C water with the greater than 6 degree C water across that particular interface or the 10 degree C differences it can cause at beaches locally and elsewhere and the like on a hourly basis.
I rather do think that you will not get that level of detail from a simple, JPL, plot but I’ve been wrong in the past.

RichardLH
February 14, 2014 4:44 am

Greg says:
February 14, 2014 at 4:31 am
“Since we are not considering a one dimensional space I don’t see any point in discussing 1D vectors, though they could exist in a 1D space.”
I sort of agree. In fact the 1D vector of which Willis only plotted the magnitude (i.e. the scalar part) tracks the mid point of the vector sum between the Moon and Sun.
As the actual trajectory of this vector in any case is not relative to any actual point here on the planet’s surface it is kinda irrelevant.

RichardLH
February 14, 2014 4:58 am

Greg says:
February 14, 2014 at 4:12 am
“This is where some experience in spectral analysis is useful. Just because there’s a FFT package for R does mean anyone knows how to use it. It is like the swamp of foetid misinformation that results from clicking on “linear trend” in excel without the slightest understand of whether it is a reasonable model for the data or whether it means anything at all. Most people seem to assume that there is some fundamental truth in a “trend” and it must correct “because the computer did it”. ”
Now you have touched on one of my “bete noir” points (pun).
The operation of long cycle frequency analysis if using an FFT in the presence of large proportions of noise and a short sample length.
What the noise does is effectively add a vertical line through which the FFT can track thus creating a band, not a line, for resolving. Once you get close to or below a single cycle sine wave (or cos) through that broad band of possible choices the number of those choices climbs dramatically. Such that any possible peak can be spread out over a very wide possible bandwidth.
The addition of noise and low cycle counts in the sample period in question makes FFTs fairly useless as a tool for longer wavelength analysis IMHO. I am sure you will disagree but I do have to make my point.
As to OLS trends, well that is mainly a tool of statisticians (cue quote originally about experts). If it is used, at least use it to determine a curve rather than a straight line. A continuous function not a discrete one. And then S-G rather than LOWESS.
It’s all rather like counting squares on a graph paper rather than switching to integrals 🙂
Linear Trend = Tangent to the curve = Flat Earth.

cd
February 14, 2014 5:00 am

Greg
The point goes all the way back to Willis’ seemingly turning his eye up to the notion of a 1D vector. I tried to explain that what he was discussing was indeed the magnitude of a vector and how one could express a vector quantity in 1D (direction: -ve/+ve and magnitude); I wasn’t suggesting that what he was doing but Richard was talking at quite a high level. Willis then threw his toys of the pram because a mere pedant like me dare tell him something.
The angular coords…
Angular coords, let’s just stick to Cartesian coords (and yes I know there is a direct equivalence).
will determine if it is pointing ‘backwards’, not R.
Again, this has all been said.
Since we are not considering a one dimensional space I don’t see any point in discussing 1D vectors, though they could exist in a 1D space.
Agreed, it is immaterial, but with the caveat that a 1D reference frame can be defined in a 3D space; that was the point of my last post in order to help explain how a 1D vector might be used in the current context. Ultimately, Willis missed the point I made and seemed to be conflating, or at least assuming I was conflating, the directional component (+ve/-ve) with the magnitude.

cd
February 14, 2014 5:10 am

Richard
Thanks for getting back. I understood the point you were making.
I just think given the distances from the Earth to the Moon and to the Sun, that any change in the magnitude and direction of the vectors would be so small (that between those form a surface point and those from the the center of gravity), that it would be just as easy to treat the Earth, and all points on its surface, as sharing a single point. I can see for local variations then your approach would be essential but Willis is looking at a global scale.
Again, one could go further, and say the magnitude of the vectors will be affected by local geology and crustal thickness. In which case you’ve just added complexity.

RichardLH
February 14, 2014 5:50 am

cd says:
February 14, 2014 at 5:10 am
“I can see for local variations then your approach would be essential but Willis is looking at a global scale.”
As am I. It is all about what you use as a reference frame. Everything on this planet moves relative to an Earth based rotational frame that revolves once a day (approx). So in order to understand how external influences, such as gravity from the Moon or Sun, can alter what happens here you need to resolve those factors into the reference frame in question. Until you do you are dealing with some abstract, non resolved rotational frame that has no bearing on how things affect (or don’t) things here on Earth.
Latitude has an important part to play here. In the same way that sunlight alters differently as you move to or from the Poles, so does gravity and the tides. 6 month daylight/night = 6 month high and 6 month low tides. 12 hour daylight = 2 * 6 hours high and low tides.
Month != Day.
If you have not even resolved that simple difference I don’t see how you can draw any meaningful conclusions from the rest.

RichardLH
February 14, 2014 6:17 am

CD:
By the way the Arctic Ocean Area is 14,056,000 km². The tidal rise/fall is only some 15mm but most of that goes in and out through the tiny gaps that are the Fram & Bering Straights. That is some multiplier. As a percentage effect against the Thermohaline flow I suspect it is non-trivial. But it is only 15mm – how COULD that possibly be important in any way?
See http://www.esr.org/AOTIM/arctic_detail.html
It is all about where you stand and what you look at.

RichardLH
February 14, 2014 6:23 am

CD:
As an example of the short term tidal flows we have that might be of interest try
http://i29.photobucket.com/albums/c274/richardlinsleyhood/ArcticOceanBarotropicTides_zps6665ba65.png
the figure out that we have NO long term variability data, Saros Cycle or not, that says how this varies with time.

cd
February 14, 2014 6:46 am

Richard
Ah, I see where you are coming from now. Sorry I thought you were trying to look for “oscillations” in tidal force in a similar sense to Willis. You are looking at the effects of these tidal forcings on the atmospheric/ocean system. Then I guess you are completely right.
Ultimately, and correct me if I am wrong, you’re suggesting that to do this properly you need to discretising the Earths surface into a grid (and maybe even the atmosphere and oceans into cellular grids). Compute the tidal force at each point (rotating reference point) and then “modulate” the computed tidal forcings according to whatever local controls affect it. Then you’re in a state to examine/predict how the tidal force affects the climate. At even modest resolutions this would require a lot of CPU, physical storage and memory to do…phew!
That sounds like the way to go but it is a big ask for a blogger.
C.

RichardLH
February 14, 2014 6:53 am

cd says:
February 14, 2014 at 6:46 am
“That sounds like the way to go but it is a big ask for a blogger.”
Doing it just for the gravity field deltas alone in 3D/time is fairly non trivial. Doing it with the geography and fluidics becomes significantly greater.
Hence the request for s super-computer and the belief that a simply JPL plot does not do the problem justice.
It dismisses it almost to the point of deliberate ignorance.

RichardLH
February 14, 2014 7:10 am

CD:
Willis came into this post, at least in part I believe, to dismiss my observations that there is some sort of nearly regular pattern to the temperature data.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/Fig8HadCrutGISSRSSandUAHGlobalAnnualAnomalies-Aligned1979-2013withGaussianlowpassandSavitzky-Golay15yearfilters_zps670ad950.png
I have in fact posed that this variation might, just might, be Lunar/Solar gravity field related with some form of Saros cycle sub-component to it.
The JPL plot was his, fairly crude, attempt to put a stake through its heart so all could rest assured that there was nothing there to frighten the children.
In fact all it has done is provide support from Tallbloke of a temperature variation in the literature that has previously linked North Atlantic sea temperature to a Lunar cycle.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/200YearsofTemperatureSatelliteThermometerandProxy_zps0436b1f2.gif
Still looking for some funding and a super-computer to allow further investigations 🙂

cd
February 14, 2014 7:43 am

Richard
I can see what you’re doing. Unfortunately you have such a short data set.
Have used the residual temperatures after fitting say a 2nd order polynomial. It might be easier to see correspondence when you plot both data sets together when the trend has been removed.
How does your data set map with shifts in PDO polarity.
As for super computers you can rent processing time on remote systems via Amazon (it’s not too expensive). If you can parallel code your stuff then you’ll effectively have a super computer.

RichardLH
February 14, 2014 8:08 am

cd says:
February 14, 2014 at 7:43 am
“I can see what you’re doing. Unfortunately you have such a short data set.”
The perennial cry of anyone doing serious examination of the data available. Still – work with what we have.
“Have used the residual temperatures after fitting say a 2nd order polynomial. It might be easier to see correspondence when you plot both data sets together when the trend has been removed.”
Now you ask the two things I most hate.
Curve fitting and trend removal.
I stick with full kernel filtering of the data to be absolutely certain that I am making no assumptions.
I only added the S-G on because Nate Drak PhD decided to put me down by using it (see the Nature Missing Heat thread for how that all came about). Nasty – hissy – spity argumentative style so I credit him with his PhD he was unwise enough to put it on the table during that bun fight).
I hate estimation. You make an assumption that then determines what you see. You can never be sure after that if what your seeing is what’s there or it is what your assumptions says is there.
Trend removal is likewise. The methodology you use to remove a trend just makes too much pre-decision about what you’ll find later.
I have the same (or similar) figures everywhere I run a 15 year corner low pass on the data sets. AMO, PDO, HadCrut, GISS, even UAH and RSS if you allow the shortness of the data set to not be an obstacle (needs some kernel widening so I remain cautious on that as a definitive conclusion).
I am currently wading through proxy data sets to add them to the mix. The ~60 year picture is ‘sort of’ visible in those as well. So many proxy sets, so much work to do.
Now ~60 years could be anywhere from 55 to 75 and I wouldn’t worry. 2 cycle counts is just too short to call it even to that level of accuracy. And that would assume only one component to look for.
Yndestad’s et al work seems to be interesting. A nice long sea temp data set to work with. Another paper or two to go on the pile.
Computers are not really the problem. I use that as a foil. Drawing together all the data sets into a single format is the larger challenge to make a real 200+ year comparator. That is turning out to be a useful tool to compare suggestions to. Slightly longer than the data sets used for most people to get to a conclusion they draw. Allows for seeing how those claims fit against just a slightly longer baseline. Small enough backwards in time to have less error propagation in them as well. If proxies fit an overlap period to 1850 then 1800 should be no great push.
Then and only then might it be possible to do the 3D/time gravity plots and start doing a meaningful comparison.

Greg Goodman
February 14, 2014 8:57 am

“The addition of noise and low cycle counts in the sample period in question makes FFTs fairly useless as a tool for longer wavelength analysis IMHO. I am sure you will disagree but I do have to make my point.”
Not at all, I agree with the gist of it. “Useless” is overstating the problem but that’s were understanding and experience comes in. No just pressing the FFT button in your software.
Since the dataset is a time window on the real events and often we need to further distort with a window function (or “taper”) the longer periods coming out are very uncertain. That’s one of the reasons why I usually work with dT/dt when doing FFT on climate, and also to remove the autoregressive nature of the data.
On the typically 150y kind of data we have I tend to concentrate on <22y as useful range , there's frequently notable energy around 34 but it shifts a lot due to this problem.
If you try FFT on data with an upward trend you're going to get a lot of spurious bumps. FFT requires "stationary" data , ie no upward trend in the mean and no cycles close to the window length. Window fns help with the latter but you need to be careful.
Once you get around 10y periods you are on much firmer ground.
This is one of the few areas where I think the data if fairly immune to the blatant manipulation, it would be far to complicated to fabricate and trick it do fit the agenda anyone may want to insert to "save the planet".
I have however, found that hadSST messes with 9 year peaks. Probably a result of the iterative running means, "anomaly" reference periods and monthly sub-sampling without anti-alias….. it's a mess.
Despite it's obvious bumps and warts, I stick to ICOADS which is nearer to real data.
If I saw a 60 year peak in FFT from 150 y dataset I'd probably conclude it was between 50 and 70 and would expect to be change dramatically depending on which window fn I chose.

RichardLH
February 14, 2014 9:33 am

Greg Goodman says:
February 14, 2014 at 8:57 am
“Not at all, I agree with the gist of it. “Useless” is overstating the problem but that’s were understanding and experience comes in. No just pressing the FFT button in your software.”
Yes I know – I try to stay within my areas of confidence and not stray too far out of my comfort zone.
“If I saw a 60 year peak in FFT from 150 y dataset I’d probably conclude it was between 50 and 70 and would expect to be change dramatically depending on which window fn I chose.”
Given the cycle counts involved and, as far as I can see this is not even symmetrical, longer ‘positive’ than ‘negative’ at present, I would agree.
The problem I have is that it is precisely this area that my 15 corner CTRM (my terminology for your 3RM you used) shows that there is something there.
Below 15 years there are a lot of potential cycles from 4 years or so and all the way up to 15. That definitely in FFT territory which I suspect you will be much better experienced to determine than I.

RichardLH
February 14, 2014 9:37 am

Edit: shorter‘positive’ than ‘negative’ (Approx 55-60 years top, 65-70 year bottom).

Greg Goodman
February 14, 2014 10:12 am

I’ve been digging out some more accurate numbers for the astronomical values (hard to find accurate and consistent values once you ask for 5 sig.fig).
As Willis astutely noticed there was a small discrepancy between the harmonic result of adding 18.03 and 8.85 . I did not pay too much notice because of the accuracy of the starting numbers did not seem to warrant it and Jupiter, while being the king of the planetary gods, is not alone in the skies.
I didn’t follow how Willis got his 500 years or whatever value, but astronomic cycles are pretty steady and so it’s fair to look at how long it would take to the two cycles to drift out of phase. Willis seems stuck on “beats”
http://en.wikipedia.org/wiki/Beat_%28acoustics%29
The beat period is the time it takes the cycles to go from being in phase to being in anti-phase, ie half the full cycle.
The following figures should be accurate to at least 6 sf. I haven’t cropped them until the end to avoid introducing further rounding errors.
pSaros= 18.0310284658705
pApsides=8.85259137577002
days_per_year = 365.25636
print 2/(1/pApsides+1/pSaros)
pApSaros=11.8749876715626
As I noted that is very, very close to Jupiter’s sideral orbital period. (fixed stars).
pJ= 4332.589 / days_per_year # = 11.861775658061
Now looking as W. did at how long these cycles take to drift in phase and come back into phase:
print 2/(1/pJ-1/pApSaros) = 21322 years
http://en.wikipedia.org/wiki/Apsidal_precession
“These two forms of ‘precession’ combine so that it takes over 21,600 years for the ellipse to revolve once relative to the vernal equinox” [Note this is the Earth’s apsides (perihelion/aphelion) now, not the the lunar perigee cycle. ]
Now that Jupiter causes some of the irregularities in the lunar orbit is not contentious. So the initial result did not surprise me that much . It seems too close to be pure coincidence.
For the second number, it will be very sensitive to errors in original data because it is the reciprocal of a very small difference term. So some care is needed.
What I find most surprising about this is that it seems to imply that the link between the luni-solar “saros” period and the lunar apsides only depends on Jupiter whereas I would expect a very minor influence from the other planets too.
Now I’m sure someone is going to start wailing about numerology because I have not suggested a direct physical mechanism. But since no one on earth can solve a three body problem and this involves four bodies, that is rather an unrealistic demand.
The best we can do is observe and analyse to see if we can increase our understanding.
Now even if this is one huge coincidence , a cruel trick played on us by the white mice to study how humans react when they throw shit like this at us, it could explain where “jupiter-like” frequencies come from if they are found.
In fact, I’d be pretty surprised that someone who is will up on astronomy doesn’t point out this was noticed long ago. Richard said he’d heard of a resonance but could not remember where.

RichardLH
February 14, 2014 10:36 am

Greg:
I am certain that until someone (me?) gets round to doing a full global 3d vector/time map of how the Moon/Sun Saros cycle field plays out here on the Earth’s surface none of us knows if this will prove to be interesting or just a goose chase.
The main problem is not really with the surface tide, even if is amplified to some extend by sloping sea floors, but the Internal tide. This is where it gets really interesting as it is this sub-surface tidal interface that has the most chance of augmenting/preventing North/South water exchange. And it has a significantly larger tidal range than the surface one does. 10’s of meters, not the 0.3 meters or so. Difference between air/water and water/water intefaces.
The volumes, temperature differences and the relatively small vertical sections through which all this happens are ripe for casual interactions that may well not show at first glance.
And there may be nothing there anyway!
But everywhere I look there are things that say something natural is happen at these timescales and with a significant peak to peak range. Something like 20-30% of the total range seen so far in the high quality data.
You just can’t overlook that! Well I can’t anyway.

Greg Goodman
February 14, 2014 11:16 am

What’s this vector map you want to see?
Willis has extracted ephemeris data for both sun and moon position in xyz . Though he did not calculate the resultant vector explicitly , that’s trivial.
I think the along axis vector is a reasonable estimation of the combined force , at least from the point of view of looking at variations in amplitude over time. It’s probably not too far off as an estimation of magnitude either. Obviously, even if you sum all points across the earth the resultant vector will be along E-M axis.
neither would it be too hard to do an 2D integral across theta,phi if you really wanted to. Just do a bit of trigonometry to get and expression for the force at one point in terms of the angles.
Adding a few lines to Willis code should produce a graph of what you want.

RichardLH
February 14, 2014 11:44 am

Greg:
A few moments of Google and thinking means that it all would be a pointless exercise anyway, but thanks for the offer. I started out with a ‘well someone must have done this before so…” and soon came to realise why this would have all been futile.
Just the principal lunar semi-diurnal also known as the M2 (or M2) tidal constituent (from Wiki) looks like this when actually you do the ‘how does the Earth actually respond to the tidal vector field’ question.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/M2_tidal_constituent_zps8ce22394.png
Now with the best will in the world no JPL plot is going to get to that!
And this (with a ~60 year time component added to get the series) is what is really needed! A movie of how that changes.
And look where one of the big red patches is, just below the important Greenland – Scotland ridge.
Not affect Climate indeed. Head post dismissed with one image.

RichardLH
February 14, 2014 11:58 am

Greg: Add to that I love to see this as a 4 * 18.6 year movie as well
http://i29.photobucket.com/albums/c274/richardlinsleyhood/ArcticOceanBarotropicTides_zps6665ba65.png

Greg Goodman
February 14, 2014 12:16 pm

Oh yeah, the naive idea of tidal bulges is bullshit in terms of what really happens.
Oh the first graph you linked you can see the amphidromes I mentioned recently . The tides actually rotate about these points that have near ZERO tidal amplitude 24/7.
The first amphidrome to be discovered was the one about half between California and Hawaii IIRC.

RichardLH
February 14, 2014 12:53 pm

Greg:
I just spent way to much time trying to get Willis to see that his view of the world was so narrowly focused that it had no real meaning and did not stop to think of how to put my overall point of view into a single image.
I think both of those two images (expressed as 4 * 18.6 year movies) pretty well sums up what could be of interest to Climate and why it has never been done yet.
To prove (or disprove) what I see as a possibility – just a possibility at this point in time – will take a little more than an overly simplified JPL plot.
Still it has given me the chance to refine what I say and how I say it so not everything was a waste of time.
Bye the bye, do you mind if I (re)use those two frequency plots from the Running Means thread in some work I am doing? I’ve stuck a copyright and ref url on the image so there is no doubt as to origin and copyright.

RichardLH
February 14, 2014 1:37 pm

Willis Eschenbach says:
February 14, 2014 at 1:00 pm
“Next, you and Richard both seem to think I’m talking about a 1-D vector. As near as I can tell, what you mean by that is a signed number, with the sign (+ or -) giving the direction, and the magnitude being the value of the number.”
Think of it being like a piece of string (a vector/line/or whatever else you wish) pointing along the balance point (in vector space) between the lines linking the centre of the Earth to Moon and Sun.
That whirling, changing line is what you have then plotted the height of the force on. The magnitude of the vector sum your transpositions have given you.
Of course that whirling piece of string cuts through the Earth’s surface in a complex spiralling path that takes no note of the land/ocean it crosses.
And that is the first of the problems. It is not oriented to the places on the surface it crosses. Nothing wrong mathematically in that, but not much use as it stands.
Climate is solidly attached to the surface (well relative movements to it anyway) so you need to look at things from that point of view to get whatever effects and interactions could occur.
But this is all a distraction really (and I am not trying to be antagonistic here) the problem is that if (and it is very much still IF) this does eventually have some effect on climate then this
http://i29.photobucket.com/albums/c274/richardlinsleyhood/M2_tidal_constituent_zps8ce22394.png
is what the Climate will be looking at. A movie over 4 * 18.6 years worth of how that pattern changes.
And I hope you will agree that this is a much more complex (and in a way much more interesting) question to consider.

Greg Goodman
February 14, 2014 1:44 pm

“Bye the bye, do you mind if I (re)use those two frequency plots from the Running Means thread in some work I am doing? I’ve stuck a copyright and ref url on the image so there is no doubt as to origin and copyright.”
No problem in principal , in fact I think you’ll find that as soon as you publish an image on wordpress.com it becomes CreativeCommons copyright.
which ones did you mean?

RichardLH
February 14, 2014 1:50 pm

Willis Eschenbach says:
February 14, 2014 at 1:00 pm
“The second problem was that Richard, as is his wont, was just trying to be obstructive.”
Now you do me a disservice. I am never obstructive, stubborn maybe, never obstructive.
I realise all too well that it is my fault I am unable to covey the point (line/vector/whatever) that I see. I try hard to change the words, adopt another point of view, express it as best I can in words that will carry meaning to you. I am still failing but, with your perseverance, I will continue trying.
No malice,. No anger. No rude words. Occasionally testy but I do try to apologize if that occurs. No-one is perfect.
So have I explained it well enough yet? Is there some other way I can give you the place I stand on so that you too can see the picture I see. I do hope so.
This is a detailed, wonderful picture with no easy explanations or remedies. Some really sloppy maths (not by you – down boy) that are in common use. Sub-sampled Single Means – who could ever get a paper published using those? Seems common place in Climate. So demonstrably wrong in hurts. Producing errors that are then baked into the and given as though they were gospel (and with a religious fervour too boot).
Some really sloppy assumptions (again not by you) where ‘it looks like it might fit – that must be the reason’ is advanced all the time. No backing. No curiosity after the choice is made. Full steam and damn the Icebergs.

RichardLH
February 14, 2014 1:51 pm
Greg Goodman
February 14, 2014 2:39 pm

I’ve taken a closer look at Indian ocean SST since it shows clear 9.3 years rather that the composite 9.07 found in Pacific and Atlantic SST. This is probably because it is land bound on the northern side.
http://climategrog.wordpress.com/?attachment_id=777
Having split it into Tropical (15S-15N) and extra-tropical (55S-15S) I found a NEGATIVELY correlation peak at 9.31 years. That means one zone cools while the other warms.
9.31 is half the lunar nodal precession that determines the declination angle.
Since the either the front or back aspect of the tide raising force will be in each hemisphere it only the magnitude of the declination angle which is relevant. Hence half the circa 18.6 year period.
This would seem to be clear evidence of warm water being drawn away from the tropics when declination is more pronounced.

RichardLH
February 14, 2014 2:56 pm

Greg: So why would we get a doubling of the frequency as such? I can see why one peak, Why the other?

Reply to  RichardLH
February 14, 2014 3:18 pm

I just posted what I believe explains the origin of tides on planets with orbital moons and/or in orbit themselves around the sun.
http://clivebest.com/blog/?p=5572
Tides must also play a role in the earth’s climate.

Greg Goodman
February 14, 2014 3:12 pm

The tide raising force acts in both directions ( bulge on each side in the simplistic model).
Zero declination, with sun and moon over equator is neutral, a deviation either N or S will cause a “bulge” on in both hemispheres or roughly equal proportions. It should be like a rectified sine wave in both hemispheres and in phase. Though inertia of the water mass will round off the pointy bit where it changes over. FFT is just picking up the principal frequency, maybe more digging would find the higher harmonics which would be present in the spectrum of full-wave rectified signal.

Greg Goodman
February 14, 2014 3:21 pm

This goes some way to validating my suggestion that the N.Pacific / N.Atlantic 9.07 is a combination of 8.85 and 9.3 year lunar cycles.
http://climategrog.wordpress.com/?attachment_id=755
This is not just a climate neutral displacement of water since the same 9.3 is present when the two regions are analysed together.
http://climategrog.wordpress.com/?attachment_id=774
This would suggest that as warm water is exported, tropical climate feedbacks act to warm up the cooler SST exposed thus raising the average of the whole ocean. More investigation of timing needed to verify that.

RichardLH
February 14, 2014 3:45 pm

Greg: Yes – of course. In the other oceans you will get both happening all the time because they swap sides around the Equator, in the Indian one of those bumps is on land. So a rectified full wave.
Mind you the two tides look completely different in spacial layout.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/K1Tides_zps453d8381.png
http://i29.photobucket.com/albums/c274/richardlinsleyhood/M2Tides_zps758f7faa.png

Greg Goodman
February 14, 2014 4:02 pm

Thanks for those graphs, quite enlightening. Looks like it may be mainly M2 i’ve picked up there.
BTW that a beautiful example of a standing wave right around the equator. Just Africa seems to disturb it a bit.
It also helps to see what ENSO is about and why Ninjo_3.4 region ties in with N.Pacific and N. Atlantic.
I’ve always found it rather dubious the way some people suggest that tiny region has a effect on world climate. I’ve said common cause would be more likely. I think we can see the common cause there. I’ll have to bookmark that. Could you post the source URLs for that?

cd
February 14, 2014 4:09 pm

Willis
Thanks for your response:
Since you are a man without the courage to sign his own words and thus to have an actual history like an honest man has, for you to accuse me of “having form” is cowardly.
This seems like a fair point on the face of it. But I always sign as cd not as anything else. The reason it is anonymous is that, even though I may be writing as a private individual, anything I do can be projected onto my employers. Climate change as you know has become a bit of a political football – I can’t risk losing my job. So do you expect me to never express a point of view on a blog, the strength of which comes from the freedom to speak openly without spiteful retribution.
No … because it’s not a 1-D vector
I know, I was trying to make clear what was being meant by a 1D vector. I thought I was helping as Richards explanation seemed a little technical (I think Richard was alluding to 1D vector operations). But I obviously didn’t. As for keeping my nose out, again this is what blogs are all about. If not then you’d only ever get discussion between the same pairs of individuals.
Now, if I’m discussing speed, would you make the claim that the speed is a 1D vector
No I would say it is equal to the magnitude of the velocity vector. Again, you’re assuming despite I showing how you how to define any vector in terms of its direction (unit vector) and magnitude, I am conflating both. So please stop putting words into my mouth especially when it contradicts what I have said previously.
Firstly, speed is a scalar quantity it does not have direction; so that velocity can viewed simply as speed expressed in terms of a direction. For example, it can be expressed in terms of Cartesian coords where velocity can indeed be negative. If I centre my object on my x axis at 0 and if it moves to the left the object will have velocity of magnitude speed but sign -ve while to the right it will have a +ve sign. It is about the choice of reference frame as has been explained before. The speed will still be positive.
In terms of my expression of vector (V), unit vector (v) with one element x and magnitude (M – speed).
If we move an object to the left x = -ve, then my unit vector: v.x = -1 and M = speed.
V = vM, where V is my velocity vector (negative velocity).
if v.x = +1 then as above V will equal the velocity vector (positive velocity).
IN BOTH INSTANCES THE SPEED IS POSITIVE BUT THE VECTOR QUANTITY (a 1D one in the case) HAS A SIGN.
We could just easily express in terms of cardinal directions where W = -ve and E = +ve. Do a google search for negative velocity and kinematics.
With that I think I’ll move on as we don’t seem to be getting anywhere. And I appreciate that you must feel a little ambushed sometimes here when you have to deal with so many comments.

cd
February 14, 2014 4:15 pm

left the acceleration will have velocity of magnitude
Should be:
left the OBJECT will have velocity of magnitude
[Fixed. -w.]

1sky1
February 14, 2014 4:17 pm

RichardLH says:
February 13, 2014 at 5:11 pm
“I rather think you have never been to the Islands off Scotland and seen the tidal races that form there. Just where all that nice warm North Atlantic Drift is heading Northwards to the Arctic over the Greenland – Scotland ridge. You might have a slightly different approach to Tides then.”
What in your mind do tidal races that may develop on the surface as tides interact with bathymetry and wind-driven currents (which I’ve seen, along with tidal bores, many times at various locations around the globe) have to do with large-scale horizontal transport of water masses or the vertical mixing of heat on climatic time-scales? For every square mile where such tidal-energy-dissipating mechanisms appear with any regularity there are thousands of square miles of deep, open ocean where they are entirely negligible. It’s precisely in anticipation of such impressionable reasoning that I included the proviso “outside the confines of coastal waters and estuaries” in drawing the kinematic distinction between true currents and the orbital motions of forced-wave tides.
BTW, if you’re prepared to pay the costs of deploying certain instrumentation for a year along with my customary consulting fees, I’ll be happy to provide model predictions of the time-history of tides and associated tidal streams (but not wind-driven currents or storm surges) for the Faroe Bank, per your wish. They will prove robust throughout the time-horizon of periodically recurring perigee-szyzygy tides and the lunar-node-precession cycle, which everyone here confuses with the Saros cycle.

Greg Goodman
February 14, 2014 4:25 pm

” periodically recurring perigee-szyzygy tides and the lunar-node-precession cycle, which everyone here confuses with the Saros cycle.”
Everyone?

1sky1
February 14, 2014 5:21 pm

Greg says:
February 14, 2014 at 4:12 am
1sky1: ” tides and other longwaves merely put water mass into an irrotational, coherent orbit of limited dimension. ”
That sounds a little like one Paul Vaughan’s science-like sound bites. Like most of Pauls comments it sounds impressive but does not actually convey anything useful. Perhaps you could rephrase it.
=============================================================================
When I use standard technical terminology–famliar to all qualified in a scientific field–and someone doesn’t understand what it conveys, it leaves me wondering where and at what level to begin the tutorial. I value my time too highly (especially as the week-end begins), however, to offer anything more here than Googling “irrotational flow.” And I would suggest not tacking on a long exposition of unprofessional claims to garner serious attention. Gotta go!

Greg
February 15, 2014 4:55 am

Richard, could you explain how you got those plots from altimetry.info ?
I managed to get the URLs by zooming in on the graphs but I don’t see how to get them , for example for other years.
http://www.altimetry.info/html/data/product_list_en.html

RichardLH
February 15, 2014 8:33 am

1sky1 says:
February 14, 2014 at 4:17 pm
“What in your mind do tidal races that may develop on the surface as tides interact with bathymetry and wind-driven currents (which I’ve seen, along with tidal bores, many times at various locations around the globe) have to do with large-scale horizontal transport of water masses or the vertical mixing of heat on climatic time-scales?”
Oh I don’t know. Try
http://en.wikipedia.org/wiki/Internal_tide
“Internal tides may also dissipate on continental slopes and shelves [12] or even reach within 100 m of the beach (Fig. 3). Internal tides bring pulses of cold water shoreward and produce large vertical temperature differences. When surface waves break, the cold water is mixed upwards, making the water cold for surfers, swimmers, and other beachgoers. Surface waters in the surf zone can change by about 10 °C in about an hour.”
Do you think your view might be a bit superficial (surface wise).
“BTW, if you’re prepared to pay the costs of deploying certain instrumentation for a year along with my customary consulting fees, I’ll be happy to provide model predictions of the time-history of tides and associated tidal streams (but not wind-driven currents or storm surges) for the Faroe Bank, per your wish. They will prove robust throughout the time-horizon of periodically recurring perigee-szyzygy tides and the lunar-node-precession cycle, which everyone here confuses with the Saros cycle.”
I tell you what, offer your consulting services to the scientist involved in the complex interactions that happen in this part of the world and that have been a considerable line of study for them for many years. With your obviously large skill set and immense knowledge I’m sure they will snap up your offer and a very profitable line of work will be yours.
Or they could treat your trivial suggestions with the merit they deserve and decline your kind offer…..
I’ll leave you with one image why this just might be important.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/FaeroBankChannelTemperatures_zpsfb35726a.png
Google should provide the rest.

RichardLH
February 15, 2014 9:05 am

Willis Eschenbach says:
February 14, 2014 at 4:27 pm
“Richard, let me start with the important part. As it appears I misjudged you, I apologize without reservation.”
Accepted immediately and without prejudice.

“However, I’m still at a loss what your 1D vs 3D argument actually meant. It seems that you were trying to say that I should do the full 3D analysis, and I kept saying I did the analysis I set out to do. Hey, I start with the simple and work up from there … so your claim, that I should have done the full 3D analysis, misses the point.”
I’ll try and do my best to help with some more clarification.
Take a scalar quantity (such as that you believe you have obtained.)
If you wish to plot it on a graph then you will turn it into a 1D vector (vertical usually) and call it ‘x’. The you will add a further dimension, time in this case, and will turn that into another, horizontal, 1D vector ‘y’ and use the two together to describe what happens over time for your scalar input. A 2D graph.
So a 1D vector is a line, a direction with magnitude (signed or absolute). And you use it all the time (pun) to do your work.
3D graphs are an attempt to plot 2 dimensions against a third and then represent that on a 2D surface.
Remember when we used to put arrows on the ends of the axis on graphs? That was to indicate that they are 1D vectors (or so I believe).
So let’s unwrap it back into why a 1D vector in the first place.
We start with a 3D space. Cartesian or Radial doesn’t matter which, in which there are forces and objects to be plotted over time.
So to reduce that to the single dimension we need for your graph we do a reduction. First from 3D to 2D (i.e. flatten it somehow) and then to 1D to calculate just the magnitude along some arbitrary vector balanced in-between the 3D vectors used to create it.
Then we turn that magnitude back into the ‘x’ axis on the graph and way we go.

“And at the end of the day? Well, Greg graciously and generously offers to do the analysis that you’ve been digging in your heels and abusing me for not doing, and telling me that I should do, and what do you reply?”
RLH
“A few moments of Google and thinking means that it all would be a pointless exercise anyway, but thanks for the offer.”
“Richard, unlike you, I did your “few moments of Google and thinking” BEFORE I uncapped my electronic pen. That’s why I did the simpler analysis, duh.”
The pointless bit was that the extra step with all its apparent complexity would have provided no further enlightenment that your previous even less enlightening step already gave. It was me chiding myself for not think that through first.

“You say you weren’t intentionally obstructive, and I believe you.
But when you insist and insist and insist that I should do a complex analysis, based on the abstruse reason that my calculation of the tidal force contains 1D vectors, and then when someone offers to do that exact analysis you’ve said I should do, you say no thanks, it’s pointless???
You are not intending to be obstructive, Richard … but dang, despite that handicap, you’ve put in a gold medal performance …”
I thank for your initial attempt to understand and do wish it hadn’t turned into a jibe.

So lets get back to why I think this is all fairly pointless anyway.
“The 54+ year cycle gets a lot of airtime, because people claim it is reflected in a sinusoidal approximately 54-year cycle in the for example the HadCRUT temperature records.”
The ‘x’ we have plotted so far is along some arbitrary line from the centre of the Earth at the surface but without any attempt to say where on the surface it is. As HadCRUT temperature records are derived from thermometers that are most definitely fixed to said surface that matters.
We need to relate ‘x’ to those thermometers otherwise we learn nothing.
And now the complexities start. The first step would be as I suggested to Greg, turn this into a 3D plot against time (would have to be a movie as we have 4 dimensions now – no graph will cut it – probably multiple Mollweide projection for less distortions) to see how this line (and the multiple other lines that make up the full gravitation field) progress over time.
But that requires a big step. Now this arbitrary line we have has to be turned into Lat-Long which is not quite so simple. As do all the other lines as well. Any still totally pointless.
Why?
Because how the world (and its Climate) sees all this is like this
http://i29.photobucket.com/albums/c274/richardlinsleyhood/K1Tides_zps453d8381.png
http://i29.photobucket.com/albums/c274/richardlinsleyhood/M2Tides_zps758f7faa.png
What we need is a 4 * 18.6 year movie of that (on a Mollweide projection to reduce the visual errors) and then we might, just might understand how this could – or could not – affect Climate.
That is the picture I have been trying to give you and you have so stubbornly trying not to see.

RichardLH
February 15, 2014 9:11 am

Greg says:
February 15, 2014 at 4:55 am
“Richard, could you explain how you got those plots from altimetry.info ?”
Google.
“I managed to get the URLs by zooming in on the graphs but I don’t see how to get them , for example for other years.”
Oh I wish! As far as I can tell these are just for one particular case. Zero declination of both bodies! This single frame is all we have. The other frames from the 4 * 18.6 movie are still missing!
That’s why we need that damned super-computer!
An bye the way – that’s just the surface. Now we need Internal Tides and vertical mixing zones and…… the list goes on and on.

RichardLH
February 15, 2014 9:20 am

Greg: Make that two fames 12 hours apart. Only a few more to go…….

1sky1
February 15, 2014 2:29 pm

RichardLH says:
February 15, 2014 at 8:33 am
Nothing that you present in your comments is either recondite knowledge or of material consequence to questions of possible tidal influence upon climate on a global scale. Unable to counter my argument that such influences are negligible, you switch from surface tidal races to the even more localized pulses of cold water that may be brought up in the the surf zone by breaking waves. All too conveniently, you choose to ignore my important proviso, while leading readers astray with irrelevant links.
A physical oceanographer you certainly are not; meanwhile, those who have employed my consulting services have done so to mutual profit.

RichardLH
February 15, 2014 3:24 pm

1sky1 says:
February 15, 2014 at 2:29 pm
“Nothing that you present in your comments is either recondite knowledge or of material consequence to questions of possible tidal influence upon climate on a global scale.”
I thank you for your erudite blindness and move on.

RichardLH
February 15, 2014 3:29 pm

1sky1 says:
February 15, 2014 at 2:29 pm
1400 meters is hardly the tide zone but you knew that already – right?
http://i29.photobucket.com/albums/c274/richardlinsleyhood/TheInternalTideatHawaii_zps7c7d5dbf.png

Greg
February 15, 2014 11:25 pm

“Google”. Damn , I thought they had a web interface to create the plots.
“That’s why we need that damned super-computer!”
Probably not. It is just data extraction from the altimetry data. Go to the home page of that domain name and look at Tools. They have a “Win/MacOS/Linux” download for some software. I have not look into it yet because I thought you had found an online access to these plots.
That’s not to say it will give you plots like that at the drop of a hat but if they’ve taken the trouble to provide cross-platform software, it’s worth a look.

Greg
February 15, 2014 11:37 pm

http://i29.photobucket.com/albums/c274/richardlinsleyhood/TheInternalTideatHawaii_zps7c7d5dbf.png
Jeezus! That’s 5 or 6 K variation every 12h down to 1400m .
Have you seem the longer term animations that AJ did? First one looks like a polynesian dancer in a body scanner.
https://sites.google.com/site/climateadj/argo-animations

Greg
February 16, 2014 12:57 am

comment image?attachauth=ANoY7cp6khOLZELuKvfzDz-J0GsJJ2PK0aHrunkYWr6n5xnjGCpbv13vu0C1xfFL3kkowQSy24J9Ci64KI0F-CU03q9LK-IDgyZy241XVdjhSQN6lDlbsNpwV_j50QyxvWuX56lbrxr9YTAAA7qd74ZYWi_I9f_JlCP6NdEWOpyJVUjbaRZtpcmHeQvP-n6XyTLTZkDbxHrnsdaSo0TxE310pl8UHpftsj37l-vwqxFi7DDlkkwUoOI%3D&attredirects=0
This one is particularly interesting. At 200m there’s more heating at the extremes of the solar declination range than at the equator.

Reply to  Greg
February 16, 2014 3:25 am

Greg,
That’s also about the average latitude where largest tidal currents are generated.

RichardLH
February 16, 2014 3:35 am

clivebest says:
February 16, 2014 at 3:25 am
“Greg,
That’s also about the average latitude where largest tidal currents are generated.”
Duh! I have been trying to point that out since this thread stated. Hasn’t got through yet!

RichardLH
February 16, 2014 3:36 am

Greg says:
February 15, 2014 at 11:37 pm
“http://i29.photobucket.com/albums/c274/richardlinsleyhood/TheInternalTideatHawaii_zps7c7d5dbf.png
Jeezus! That’s 5 or 6 K variation every 12h down to 1400m . ”
Who says the heat isn’t hiding in the Oceans?
“Have you seem the longer term animations that AJ did? First one looks like a polynesian dancer in a body scanner.
https://sites.google.com/site/climateadj/argo-animations
And that the heat dances whilst it is there 🙂
Thanks for the link.

RichardLH
February 16, 2014 3:43 am

Greg says:
February 15, 2014 at 11:25 pm
“That’s why we need that damned super-computer!”
Probably not. It is just data extraction from the altimetry data. Go to the home page of that domain name and look at Tools. They have a “Win/MacOS/Linux” download for some software. I have not look into it yet because I thought you had found an online access to these plots.
That’s not to say it will give you plots like that at the drop of a hat but if they’ve taken the trouble to provide cross-platform software, it’s worth a look.

OK. It just may be worth while doing the plots I was considering as that is the input to the forces driving all this as well as to see how the Oceans respond to that input by seeing their tools will do that.
Clive has provided part of the answer in a 2D x/y direction on the other thread but we now have to think about how it looks when looking down on the poles as well to get z.
So the true tidal force pattern is for an x, y, z oriented to the Earth’s surface and plotted over the whole globe, probably as 3 separate Mollweide projections, running as a movie over 4 * 18.6 years of vector input.
No problem, have that done by lunch……some day in the future 🙂

RichardLH
February 16, 2014 4:14 am

RichardLH says:
February 16, 2014 at 3:43 am
“So the true tidal force pattern is for an x, y, z oriented to the Earth’s surface and plotted over the whole globe, probably as 3 separate Mollweide projections, running as a movie over 4 * 18.6 years of vector input.”
Actually a 3 colour single x, y, z Mollweide projection with 256 levels to each channel and each channel scaled from min to max should make an interesting colour animation of what is happening!
That should look pretty.

Greg Goodman
February 16, 2014 7:08 am

clivebest says:
“That’s also about the average latitude where largest tidal currents are generated.”
I’m in no way disagreeing but I don’t immediately see where you get that.
In terms of temperature it’s where the sun spends most of it’s time. If we consider the d/dt(lattitude) is a sine with zeroes on the solstices and maxima on the equinoxes, it spends far longer within 20% of the extrema than it does within a similar margin of the equator.
On that evidence alone we cannot distinguish max overhead solar from any tidal drawing of water out of the equator towards tropics.
The spreading of the peaks to higher latitudes in lines below 200m looks it could be accounted for by diffusion.
Of course the moon tags along for the ride and also adds its own +/-5.1 degrees. This is the major tidal player but to a fair degree is correlated with the above.
Lunar declination seems to have max extent around 2006.76 AD so 2004 used for the M2,K1 maps is near max lunar declination. Smallest declination amplitude around 1997.25, prev max 1987.75 (the smaller roughly semi-annual cycle is latching the non-integer part).
It may be interesting to compare the 1997-2007 dates to the free-fall in Arctic ice coverage:
http://climategrog.wordpress.com/2013/09/16/on-identifying-inter-decadal-variation-in-nh-sea-ice/

Greg Goodman
February 16, 2014 7:26 am

here’s a quick plot of lunar range cubed * declination angle. Not rigorous , no solar. Just a quick guide to lone term cycles in lunar tide raising forces.
http://tinypic.com/view.php?pic=29w8xmx&s=8
Looks like they chose 2004 (perhaps indirectly because it gave nice standing waves) because it was a max in K1 component. For example 2002.7 and 2006.7 would be the most pure M2 with little K1.
I really would like to have similar plots for those years.

Greg Goodman
February 16, 2014 8:11 am

Hmm, I think I need to check the workings on that graph and label it up properly.
There is a 17.7 ( 8.85 * 2 ) year cycle on the pairs of peaks (2004-1880)/7
Also if we look at the alternating high and low peaks on the top, there is a phase change in 1969 (two equal peaks either side reverses the low,hi.low pattern).
Also larger magnitude swings in late 19th c. which is also found in the SST and land records.

E.M.Smith
Editor
February 16, 2014 8:23 pm

so much angst and noise. I hesitate to even say this…
The basic problem with this analysis is that it looks only at the scalar quantity of tidal force, while tides are a result of a vector force (size AND direction). That vector part matters. It has an 18.6 year period due to the precession of the lunar orbit. more here:
http://chiefio.wordpress.com/2014/02/16/tides-vectors-scalars-arctic-flushing-and-resonance/
Just looking at size of the scalar is not enough. The position over the geography of the Earth matters, as does the change of the vector direction over time. Even how this interacts with which season gets more tidal flushing of the North Pole matters. It is just not a simple scalar problem. So a scalar analysis is insufficient.

RichardLH
February 17, 2014 4:49 am

E.M.Smith says:
February 16, 2014 at 8:23 pm
“The basic problem with this analysis is that it looks only at the scalar quantity of tidal force, while tides are a result of a vector force (size AND direction). That vector part matters.”
It is strange that when you arrive and point out what I have been pointing out, you get civil treatment as opposed to the flack I have been getting.

RichardLH
February 17, 2014 4:53 am

Willis Eschenbach says:
February 16, 2014 at 11:42 pm
“People have taken things apart and studied the individual parts for centuries … why is it suddenly unacceptable when I do it?”
Because a 3-4 year old child with a 10 inch circular saw may well be able to create the 3 inch wood building blocks as the toy he wishes to use, but there is a large likelihood that he will chop off his own or other peoples limbs in the process of doing so?

Greg
February 17, 2014 5:24 am

EMSmith: “The basic problem with this analysis is that it looks only at the scalar quantity of tidal force,”
And even manages to get wrong.
CliveBest pointed out the error early on and I provided a fix for the code.
Rather than correct it. Willis prefers to start another thread the try bluster through with his mistakes. OH well.

RichardLH
February 17, 2014 6:50 am

Cross posted from the other thread because it is relevant here as well.
—-
Willis:
“On my planet, people commonly study simplified models of complex situations, precisely to draw conclusions from them Happens all the time, I’m in mystery why you think we can’t learn valuable lessons from simple models.”
RLH.
OK. Then at least do it correctly. So as to allow understanding instead of confusion. I obviously need to put my teaching hat on and explain how I think that this would best have been done so that there would have been a lot less squabbling all round.
Let us start from a very simple concept. A nearly featureless Globe, oriented vertically in the orbit, with a constant depth ocean, and a big ‘pin’ stuck down into the surface at 0 Lat, 0 Long.
Derive the gravitation forces that apply from the field diagram as below
http://upload.wikimedia.org/wikipedia/commons/d/d8/Field_tidal.png
Fig 1.
Let us then take some pictures of that from 3 directions starting from the longest possible intervals and working down towards human time frames.
The pictures are
1. looking down on the Earth from above at right angles to the orbit around the Sun,
2. looking along the orbit with the Poles North/South
3. looking out along the line drawn fro the Sun though the Earth.
This gives us x, y, z
Let us just deal with the Sun first, no Moon at all.
And we start taking pictures. At 4 year intervals to start with and at the Periapsis in the below.
http://en.wikipedia.org/wiki/File:Seasons1.svg
Fig 2.
Now we can see the ‘pin’ in the centre for 3, and pointing at the Sun for 2 and 1.
We can now deal with that oblate spheroid that the Earth’s rotation gives. We can also point out that most of the flattening is in the rock because the water skin is so thin. So all the centripetal forces, spin and orbit can be dealt with before we get into other stuff.
Now we speed up to once a year. And the first complication shows up. The ‘pin’ does not stay steady. It moves around those field diagrams in Fig 1.
So we draw out the first small cycle. One at 4 years. Then we move to 4 times a Year. Describe what happens there.
Now we have done the Solar components. Time to add in the Moon.
I am sure you can get the rest. Or do I need to do the full slide and description set?
Now is that a better way to do it or not? You tell me.

RichardLH
February 17, 2014 10:55 am

Wliis: Thank you for your careful and reasoned analysis of the point of view I offered.
As usual your megaphone amplified mutterings mean that your hearing aid is in need of some adjustments you have failed to apply.
You cannot, apparently, see anything from any other place that your specific, terrifically narrow, point of view.
Your curiosity level is pretty close to zero.
Others have pointed it out too.
Have you ever wondered why?

RichardLH
February 17, 2014 10:58 am

Willis:
“But until you actually get up off the couch and produce something, until you actually do the hard yards and deliver your finished explanation, as we used to say on the ranch … podner, you’re all hat and no cattle …”
Well it would appear that the chances are that the above approach which deals with the various problems in a logical and careful way so as to enlighten rather than confuse is too far beyond your comprehension.
I came to help and got insulted, continuously, by someone who’s power of language, curiosity and understanding is more limited by his own personality than his potential capability.

RichardLH
February 17, 2014 11:04 am

“We can now deal with that oblate spheroid that the Earth’s rotation gives. We can also point out that most of the flattening is in the rock because the water skin is so thin. So all the centripetal forces, spin and orbit can be dealt with before we get into other stuff.”
I think that no-where have you ever offered this rather important point in your ramblings to date.
That oblate spheroid is mostly rock. The thin skin of water hardly notices the centripetal as a force at all. The very slight difference that an even layer of water would be distorted to can be calculated. If you wish. Or are you going to suggest that the poles would be dry?

RichardLH
February 17, 2014 11:08 am

Willis Eschenbach says:
February 17, 2014 at 10:40 am
“I’m done with it, I’ll leave you to play with yourself, you’re probably good at that at least …”
Again with the invective.

RichardLH
February 17, 2014 11:44 am

Willis Eschenbach says:
February 17, 2014 at 11:39 am
Again with the invective.
“You call a man a dog, you call him a child … then you bitch, whimper, and whine when he slaps your face for it. You’re a piece of work, all right.”
Oh, I stood for your petty childlessness for a very LONG time before I started to responded in kind.
I do so dislike all this bitchy, slapy, talk. But I can dealt it out with the best if called for.
I got to hone my skills in writing up some ones skillset in as few as words as possible a long time ago.
As I said before –
I came to help and got insulted, continuously, by someone who’s power of language, curiosity and understanding is more limited by his own personality than his potential capability.

RichardLH
February 17, 2014 11:49 am

“Looks like my guess was right … again, I encourage you to read any text on vector addition if you doubt my formula. The sum of two vectors a and b with an included angle theta is
sqrt( a2 + b2 + 2 a b cos(theta)
and there are no absolute values involved.”
Looks like you do not understand that summing two vectors from a 2D space creates a 1D vector in the same space in the process because you managed to turn that into a positive only scalar, as demonstrated above, even if you didn’t get it then – or possibly – now.

RichardLH
February 17, 2014 12:33 pm

“Say what? That has nothing to do with the subject under discussion, which (as evidenced by your quote of my words) is whether we should use the absolute value or not ”
Hmmm. Well as the vector sum in question is using gravity to calculate magnitude and the concept of the resultant 1D vector going negative has rather large implications…….

RichardLH
February 17, 2014 12:33 pm

Willis Eschenbach says:
February 17, 2014 at 11:57 am
“Whine on, Richard, whine on … ”
Dog’s whine so…..

RichardLH
February 18, 2014 2:15 am

Some interesting facts about tides (the short version)
The Earth is an oblate spheriod.
The Earth’s equatorial radius is the distance from its center to the Equator and equals 6,378.14 kilometers
The Earth’s polar radius is the distance from its center to the North and South Poles and equals 6,356.75 kilometers
A 21.39 kilometers difference.
Angular velocity of Earth’s axial rotation in radians per second = 7.29 x 10^-5 rad/s
Angular velocity of Earth around the Sun in radians per second = 1.99 × 10^-7 rad/s
Centripetal (outwards) acceleration at Earth’s surface due to Earth’s axial rotation = 0.034 m/s^2
Centripetal (outwards) acceleration at Earth’s surface due to Earth’s orbit around the Sun =~ 0.0000952 m/s^2
Gravity at Earth’s surface = 9.8 m/s^2
The tiny differential between 9.8 m/s^2 (Polar) and 9.834 m/s^2 (Equatorial) creates the 21.38 kilometres difference in radii above.
The Oceans average depth is 3.79 kilometres so 3.79 / (6,378.14 – 3.79) =~ 1 / 1682 so the difference is mostly in the rock.
The Solar tidal force is 46% as large as the Lunar. More precisely, the Lunar tidal acceleration (along the Moon–Earth axis, at the Earth’s surface) is about 1.1 * 10^-7 * 9.8 m/s^2,
while the Solar tidal acceleration (along the Sun–Earth axis, at the Earth’s surface) is about 0.52 * 10^-7 * 9.8 m/s^2.
The theoretical amplitude of Oceanic tides caused by the moon is about 54 centimetres at the highest point, which corresponds to the amplitude that would be reached if the Ocean possessed a uniform depth, there were no landmasses, and the Earth were rotating in step with the Moon’s orbit. The Sun similarly causes tides, of which the theoretical amplitude is about 25 centimetres (46% of that of the Moon) with a cycle time of 12 hours. At Spring tide the two effects add to each other to a theoretical level of 79 centimetres, while at Neap tide the theoretical level is reduced to 29 centimetres. Since the orbits of the Earth about the Sun, and the Moon about the Earth, are elliptical, tidal amplitudes change somewhat as a result of the varying Earth–Sun and Earth–Moon distances. This causes a variation in the tidal force and theoretical amplitude of about ±18% for the moon and ±5% for the sun. If both the Sun and Moon were at their closest positions and aligned at New Moon, the theoretical amplitude would reach 93 centimetres.
Real amplitudes differ considerably, not only because of depth variations and continental obstacles, but also because wave propagation across the ocean has a natural period of the same order of magnitude as the rotation period: if there were no land masses, it would take about 30 hours for a long wavelength surface wave to propagate along the equator halfway around the Earth (by comparison, the Earth’s lithosphere has a natural period of about 57 minutes). Earth tides, which raise and lower the bottom of the ocean by less than 1 metre, and the tide’s own gravitational self attraction are both significant and further complicate the ocean’s response to tidal forces.
In most locations, the four largest amplitude tidal components turn out to be:
M2 Principal lunar 12.42 hr
K1 Luni-solar diurnal 23.93 hr
S2 Principal solar 12.00 hr
O1 Principal lunar diurnal 25.82 hr
S2 is largest at mid-latitudes and vanishes at the Equator and the Poles.
M2 is largest at the Equator and vanishes at the Poles.
The Long-period tide (not listed above) is largest at the pole and (with reversed sign) at the equator.
A list of other components can be found in Knauss (1978) table 10.1. Particularly important is the fortnightly (2 week) tide, often written Mf.
See Figure 10.15 in Knauss (1978) for plots of partial tides.
Tides in different locations are classified based on the predominant frequency of the tide using a function called the form ratio which measures the relative strength of the diurnal and semi-diurnal tides.
F = (K1 + O1) / (M2 + S2)
F > 3 Diurnal 1 High, 1 Low per day
0.25 < F < 3 Mixed 2 Highs, 2 Lows per day, but of different strength
F < 0.25 Semidiurnal 2 Highs, 2 Lows per day, similar strength.

1sky1
February 18, 2014 4:48 pm

RichardLH says:
February 15, 2014 at 3:29 pm
Once again, you present impressive-looking graphics that utterly fail to
demonstrate what you think they do about ostensible tidal influences upon
transfer of THERMAL energy to or away from the surface.
All that Rudnick’s data show is a brief time-history of the vertical
displacement of near-bottom isotherms by internal tides on the Hawaiian
Ridge. Like all internal waves, they require a sharp density-gradient for
their very existence. Unlike the ubiquitous, astronomically-forced
barotropic tides, they are excited only sporadically and unpredictably by
strong interactions with sharp bathymetric features. As they propagate
away, the baroclinic flow of the coherently orbiting water masses tends to
remain irrotational nevertheless, although bottom friction may create
dissipative turbulent eddies. Inasmuch as they draw MECHANICAL energy away
from the barotropic tides, internal tides are of scientific interest
primarily in closing the tidal-energy budget. Outside of exceptional
circumstances in coastal waters, their effect upon surface temperatures is
nil!
You plainly have no sound conception of tidal wave kinematics in either barotropic or baroclinic states and your presumptions are totally misguided vis a vis turbulent mixing. Furthermore, your notion that 1400m is “hardly the tide zone” is simply ludicrous, as the deep-ocean measurements of bottom pressure clearly show here: http://www.ndbc.noaa.gov/dart.shtml. Please spare us all from the comical air of visionary oceanographic knowledge and from dismal displays of your Wiki-erudition.

RichardLH
February 19, 2014 1:49 am

1sky1 says:
February 18, 2014 at 4:48 pm
“Please spare us all from the comical air of visionary oceanographic knowledge and from dismal displays of your Wiki-erudition.”
As I know all too well how this undersea phenomena works with is sometimes considerable mixing of the various layers as they ‘break’ just like all other waves when meeting obstructions I’ll just treat your offerings as the deluded mutterings of one determined not to see what is there.
These layers flow in ways that are sometimes almost unconnected and particularly where they interact with the Internal Tides around important opposite flow patterns like the Greenland-Scotland ridge has and does provide a great deal of study and work for many, many scientists now and in the past.
I’m sure they too are completely ignorant of tidal wave kinematics. And think that turbulent mixing and flow interruptions of less than 0c water with greater then 6c water has no effect of things climatic at all.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/FaeroBankChannelTemperatures_zpsfb35726a.png

RichardLH
February 19, 2014 1:57 am

1sky1 says:
February 18, 2014 at 4:48 pm
Try this for academic articles
http://bit.ly/1oQVVdN

1sky1
February 19, 2014 4:12 pm

RichardLH:
Despite my oft-repeated proviso that the point at issue is putative tidal
mixing OUTSIDE of coastal waters–which potentially could have some effect
on SURFACE temperatures at CLIMATIC time scales on a GLOBAL scale–the
penny never seems to drop in your mind. You keep blathering about
near-bottom temperatures and exceptional internal-wave effects in the
coastal waters of islands.
Get back to me when you have demonstrated some credible mechanism of mixing
Celsius 0-6-degree water upward into the surface layer in the open ocean.
Meanwhile, check out your presumptions with the chaps at NOC in
Southampton to see who harbors delusions here.
P.S. I’m well acquainted with Rob Hall’s work on internal tides in Monterey Bay, where I conducted long-wave measurement studies decades ago.

RichardLH
February 20, 2014 2:05 am

1sky1 says:
February 19, 2014 at 4:12 pm
“Despite my oft-repeated proviso that the point at issue is putative tidal
mixing OUTSIDE of coastal waters–which potentially could have some effect
on SURFACE temperatures at CLIMATIC time scales on a GLOBAL scale–the
penny never seems to drop in your mind.”
The cross flow pattern on the Greenland Scotland ridge IS the northern part of the thermohaline flow.
If you do not believe that has global climatic impact then I will just have to differ.

RichardLH
February 20, 2014 7:26 am

1sky1 says:
February 19, 2014 at 4:12 pm
As for the Fram Strait and ice flow from the Arctic (another potentially tidal flow influenced pattern of interest)
http://chiefio.wordpress.com/2014/02/16/tides-vectors-scalars-arctic-flushing-and-resonance/
Again, of no real climatic influence at all I’m sure.

1sky1
February 20, 2014 5:29 pm

Richard LH:
By dynamic definition, THC is the adjunct to wind-driven circulation that is entirely driven by density, i.e., by gravity alone. It acts only vertically, bringing hypersaline warmer water ocassionally into cooler layers below. Patently, you believe in a “global conveyor belt” that Carl Wunsch aptly characterized as “a fairy tale for adults.”
While I have extended my encouragement and admiration for Chiefio’s deconstruction of GISS’ anomaly-manufacturing algorithm, the physical question of flushing of ice through the Fram Strait lies well above a programmer’s pay grade. Likewise, the discussion of Willis’ follow-up thread is amateurish speculation. I have no time for such.

RichardLH
February 21, 2014 2:20 am

1sky1 says:
February 20, 2014 at 5:29 pm
So you tell me why there is a ~60 cycle in the Fram Strait ice flow then.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/ArticSeaIcevariability2014_zpsb2247428.png
Fairies?

RichardLH
February 21, 2014 2:25 am

1sky1 says:
February 20, 2014 at 5:29 pm
“By dynamic definition, THC is the adjunct to wind-driven circulation that is entirely driven by density, i.e., by gravity alone. It acts only vertically, bringing hypersaline warmer water ocassionally into cooler layers below.”
As it supplies ALL of the bottom water that eventually makes its way to the surface to be returned to the Arctic/Antarctic I suspect your “ocassionally” view is somewhat myopic and very short term.
Look at it from a greater than 60 year viewpoint and all is not quite so easy to dismiss.

RichardLH
February 21, 2014 2:30 am

1sky1 says:
February 20, 2014 at 5:29 pm
Why greater than 60 years I hear you cry. Because that is what the data says is there. Most of the ‘cyclic energy’ in the system is in the ‘less than 75 years’ bracket.
http://climatedatablog.files.wordpress.com/2014/02/fig-9-additional-proxy-data-sets-added-with-15-year-lp-filters-applied.png
That may well be a mixture of 55 – 65 -75 patterns but, as you well know, the data high quality data series are WAY to short to tell on that yet.

1sky1
February 21, 2014 5:02 pm

RichardLH:
I should have granted much earlier your genius in shifting from original topic (tidal predictability and putative mixing) to irrelevancies (deep temperature fronts,THC, sea-ice cover, and now multidecadal temperature variations) in your display of Wiki-erudition. And who, after all, is Carl Wunsch to dismiss the magical physics of cold, hypersaline “bottom water that eventually makes its way to the surface?” An absolutely brilliant performance on WUWT’s stage!

RichardLH
February 21, 2014 6:29 pm

1sky1 says:
February 21, 2014 at 5:02 pm
Well I will just simply observe that for each ton of ice that floats merrily on its way South (or North) on the surface to melt, there is another ton of cold, dense brine that heads South also, at the bottom of the ocean.
No doubt Carl Wunsch decided that doesn’t occur either. How else does the ocean deep retain its temperature profile? Why do all the cross sectional diagrams show just that behaviour? Experts! So quick with the myopic viewpoint.
I notice you skipped the question about cyclic variability in the ice.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/ArticSeaIcevariability2014_zpsb2247428.png
or the one about similar variability in the wider temperature figures.
http://climatedatablog.files.wordpress.com/2014/02/fig-9-additional-proxy-data-sets-added-with-15-year-lp-filters-applied.png

RichardLH
February 21, 2014 6:36 pm

1sky1 says:
February 21, 2014 at 5:02 pm
Shall I just quote from Real Climate where Carl’s observations on this were discussed so long ago.
“Thus while density changes don’t ‘drive’ the circulation (in an energetic sense) they can ‘drive’ (in a modulating sense) changes in that circulation.”

RichardLH
February 22, 2014 4:15 am

1sky1 says:
February 21, 2014 at 5:02 pm
What Carl Wunsch actually said as opposed to your very poor resume of his observations.
http://ocean.mit.edu/~cwunsch/papersonline/thermohaline.pdf
“The conclusion from this and other lines of evidence is that the ocean’s mass flux is sustained primarily by the wind, and secondarily by tidal forcing. Both in models and the real ocean, surface buoyancy boundary conditions strongly influence the transport of heat and salt, because the fluid must become dense enough to sink, but these boundary conditions do not actually drive the circulation.”

1sky1
February 22, 2014 1:57 pm

Wunch’s debunking of the amateurish “global conveyor belt” notion can be found here: http://books.google.com/books?id=ugHsLF1RNacC&pg=PA324&lpg=PA324&dq=Carl+Wunsch,+Fairy+Tale&source=bl&ots=b58GioKWRo&sig=f8bdHPvyMCi4Sllpo1C11ZzuHUY&hl=en&sa=X&ei=7BUJU-fjLcT7oAT42YHgAQ&ved=0CDEQ6AEwAg#v=onepage&q=Carl%20Wunsch%2C%20Fairy%20Tale&f=false
There’s not an iota of support for your fantasized return of bottom water to the surface in the THC link you provide. You plainly have no dynamical grasp of what Wunsch says about the real-world oceanic circulation. And I have no interest in indulging your pretentious and contentious nonsense.

RichardLH
February 22, 2014 3:13 pm

1sky1 says:
February 22, 2014 at 1:57 pm
Thank you for your careful, reasoned and non-scientific arguments!
He was actually talking about the whole global conveyor concept, not about thermohaline flow as well you know (or should).
Or do you think that the brine created by freezing ice just disappears? Or does not get created in the first place somehow? Or that it isn’t saltier and colder on the bottom north of the Greenland-Scotland ridge than south of it. Please!
And if the brine goes down where and how on Earth do you expect it to come back? From the top somehow. Like missing heat in reverse I suppose.
You don’t know Nate Drake PhD do you? He was about as logical and right as you are.

RichardLH
February 22, 2014 3:15 pm

P.S.
““The conclusion from this and other lines of evidence is that the ocean’s mass flux is sustained primarily by the wind, and secondarily by tidal forcing.
His words, not mine.

RichardLH
February 22, 2014 5:28 pm

1sky1:
P.P.S. I notice you have still skipped the questions about cyclic variability in the ice.
http://i29.photobucket.com/albums/c274/richardlinsleyhood/ArticSeaIcevariability2014_zpsb2247428.png
and the one about similar variability in the wider temperature figures.
http://climatedatablog.files.wordpress.com/2014/02/fig-9-additional-proxy-data-sets-added-with-15-year-lp-filters-applied.png

RichardLH
February 23, 2014 4:01 am

For those who failed to follow the link that 1syk1 provided, the part he is referring to is about how a cartoon level description of Global Ocean circulation does not really convey a full description of the complexities that actually occur.
That statement is not in doubt.
What Carl Wunsch did not do and does not do is suggest that somehow the thermohaline circulation does not exist, or that the MOC is not real. It is just a little more complex than a single line drawn on a globe.