Guest essay by David Archibald
There is now consensus that the Sun has now entered a quiet period. The first paper from the solar physics community predicting the current quiet period was Schatten and Tobiska’s 2003 paper “Solar Activity Heading for a Maunder Minimum?”. To date, Solar Cycle 24 has shown similar maximum SSN amplitudes to that of Solar Cycle 5, the first half of the Dalton Minimum:
Figure 1: Solar Cycle 24 relative to the Dalton Minimum
But what comes beyond that? Predicting the amplitude of Solar Cycle 24 was big business in the solar physics community with a total of 75 forecasts. There is only one forecast of the amplitude of Solar Cycle 25 to date. That forecast is Livingstone and Penn’s prediction of a maximum amplitude of seven. The first forecast, by Libby and Pandolfi, of the current quiet period is now over 40 years old. The fact that Libby and Pandolfi’s prediction got the detail of temperature changes to date right gives great credibility to it. Written in 1979, they forecast a warming trend for the rest of the 20th century followed by a cold snap that might well last throughout the first half of the 21st century. Specifically, Dr Libby is quoted by the Los Angeles Times as saying,
“we see a warming trend (by about a quarter of 1 degree Fahrenheit) globally to around the year 2000. And then it will get really cold – if we believe our projections. This has to be tested.” How cold? “Easily one or two degrees,” she replied, “and maybe even three or four degrees.”
The Libby and Pandolfi forecast was based on isotope ratios in tree rings and dates from a time before the corruption of tree ring science.
One commercial consequence of lower solar activity is that satellites will last longer in their orbits. Another is that agricultural production in the mid-latitudes will be affected. One of the most productive agricultural regions on the planet is the Corn Belt of the United States. Modern corn hybrids are tuned around maximizing the yield from the growing conditions experienced in the Corn Belt over the last 30 years with Growing Degree Days (GDD) to maturity ranging from 2200 to 2700. GDD is calculated from the day of planting by adding the maximum and minimum daily temperature in Fahrenheit, dividing by two and then subtracting 50 to produce the result. If the overnight minimum is less than 50°F, 50°F is used. The maximum is capped at 86°F as corn plants don’t grow any faster above that temperature. Daily temperature records for the Corn Belt start about 1900. The following graph shows the accumulation of GDDs for the periods 1901 – 1910 and 2001 – 2010 for Whitestown just northeast of Indianapolis in the southeast end of the Corn Belt:
Figure 2: Cumulative GDD for Whitestown, Indiana 1901 – 1910 and 2001 – 2010
The graph assumes a common planting date of 27th April. The blue lines are the years 1901 – 1910 and the red lines are the years 2001 – 2010. They all stop on the date of first frost. Most of the growing seasons last decade had plenty of heat to get to maturity with up to 1,000 GDD in excess of the requirement at 2,500 GDD. A century before, the margin of safety was far less. Normal first frost for Whitestown is 10th October. A century ago the earliest frost was five weeks before that on 3rd September, 1908. Similarly, in the latter period the earliest date to get to 2,500 GDD was 15th August. In the earlier period the last date to get to 2,500 GDD was almost six weeks later at 28th September.
Farmers can adjust the type of crop they grow to suit their climatic expectations. Yield is directly proportional to GDD though as shown by the following graphic of corn and soybeans:
Figure 3: Yield relative to GDD (CHU) for Corn and Soybeans Source: Andy Bootsma, 2002: Potential Impacts of Climate Change on Eastern Canada
If a farmer plants a 2,200 GDD corn crop in the expectation of a cool or short season and the season turns out to have been capable of growing a 2,500 GDD, then he has foregone about 12% of the value of the later maturing variety. If he plants a 2,500 GDD variety and the season falls short though, most of the value of the crop will be lost. Wheat and barley require about 1,600 GDD and 1,400 GDD respectively. The highest wheat yield in Indiana in 2012 was 74 bushels/acre whereas the highest corn yield was 159 bushels/acre. Another factor in predicting grain output is the ability to switch to winter wheat in which a crop is planted in early September, germinates and then lies dormant under the snow blanket until the following spring.
A study in the 1980s of the effect of lower temperatures on Canadian wheat production found that a 1°C decrease would reduce the frost-free period by 15 days and that a 2°C decrease would not allow the crop to ripen before the first frost. Canadian wheat farmers have assured me though that they could switch to winter wheat and have a higher yield. In Manitoba, for example, the yield might be 71 bushels per acre for winter wheat compared to 51 bushels per acre for spring wheat. Growing winter wheat is riskier than spring wheat in that a hard frost before the first snow could kill the crop.
A further complication in trying to determine what the coming decline in temperature will do to grain production is that the area of the Corn Belt approximates to the region that was scraped flat by the Laurentide ice sheet. After the Wisconsin Glacier receded, the glaciated soils of the Midwest that are primarily north of Interstate 70 were covered with several feet of wind-blown loess deposits that came from the Great Plains that lie east of the Rockies. In Northern Illinois for example, in an area north of I-80, six to eight feet of loess deposits overlie glacier till. These soils are all primarily silt loam, silty clay loam, clay loam and clay. The water holding capacity of these soils are about 2 inches per foot. The counties in the Corn Belt with the highest productivity have deep fertile soils. Most of these soils were covered with prairie grass that over time raised the organic matter levels to between 2% and 5%. The resulting biological activity that developed in these soils made them very productive. These counties are also watered by natural rainfall that results from the Gulf of Mexico Pump. As the weather fronts move from west to east across the Rockies, we have the Great Plains that are mostly arid, but by the time the fronts reach eastern Nebraska, the moisture from the Gulf of Mexico is sucked north by the counter-clockwise flow of air that rotates around the low pressure fronts and drops the rain on the Midwest when it hits the cooler air from the north. Therefore the Corn Belt has the optimum combination of soil type, temperature and moisture. As growing conditions shift south, the soil types won’t be as good.
Friis-Christianson and Lassen theory enables us to predict temperature for a solar cycle if we know the length of the solar cycle preceding it. Thus Solheim et al have been able to predict that the average global temperature over Solar Cycle 24 will be 0.9°C lower than it was over Solar Cycle 23. Polar amplification also plays a part such that Svalbard, for example, in winter will experience a 6°C decline in temperature. Work on temperature records in the northeast United States suggest that the temperature decline in prospect for the Corn Belt is 2.0°C for Solar Cycle 24.
We can cross-check this expectation against modelled historic Total Solar Irradiance (TSI) data. Lean et al produced a reconstruction of TSI back to 1610. That is shown in Figure 4 following. Also shown is Livingstone and Penn’s prediction for Solar Cycle 25 amplitude converted to TSI by scaling against the Maunder Minimum. Shaviv in 2008 found empirically that a 1 watt/m2 change in TSI was associated with (as opposed to cause directly) in a 0.6°C change in global average temperature. A fall in solar activity to levels reached in the Dalton Minimum, as per Lean’s data, would result in a decline of global temperature of 1.2°C, a little more than what Solheim’s group is projecting. Solar Cycle 4, the cycle preceding the Dalton Minimum, was 13.6 years long, about a year longer than Solar Cycle 23. Libby and Pandolfi’s prediction of a temperature decline of up to 4°F translates to 2.2°C. Through TSI, this would require a fall of 3.7 watts/m2 which is greater than the range in Lean’s modelled data for the period since 1610. This may mean that Libby and Pandolfi are correct and Lean’s model needs adjusting.
Figure 4: Projecting the decline in Total Solar Irradiance
Working through the effect on GDDs, a return to TSI conditions of the Dalton Minimum can be expected to reduce US corn production by perhaps 20% to 25%. This equates to the increase in corn production over the last ten years from mandated ethanol. US grain and soybean production of about 500 million tonnes per annum is sufficient to feed 1.2 billion vegetarians. The amine profile of wheat can be approximated by a diet of 70% corn and 30% soybeans, otherwise those things are fed to animals at about a 25% protein conversion efficiency. Corn and soybeans would be the diet of involuntary vegetarianism. The rest of the world does not have the luxury of US agriculture’s latent productivity.
Figure 5: US Corn and Wheat Prices 1784 to 2013
Figure 5 shows the effect of the low temperatures of the Dalton Minimum on corn and wheat prices in the United States. The absolute peak was associated with the eruption of Mt Tambora. Also evident is the period of high and volatile prices associated with the cold temperatures of the mid-19th century.
Figure 6: Major wheat exporting countries
A return to the climatic conditions of the Dalton Minimum is likely to take Russia, Kazakhstan and the European Union out of the export market. The other countries will have some reduction in wheat available for export. Colder is also drier and thus a number of major grain producers such as India and China, currently largely self-sufficient, will experience shortfalls from their requirements.
Figure 6: Imports and exports of grain by continent
Figure 6 above shows net exports of grain by continent with the Arab countries as a separate region. Those countries are the biggest grain importing block on the planet. Soybeans are not included in this graphic. China has become the major soybean importer at 60 million tonnes per annum. In terms of protein content, that equates to about 180 million tonnes of wheat per annum. The Chinese convert those soybeans to animal protein in the form of pig meat.
Countries in the Middle East North Africa (MENA) region have been in the news recently. Further detail on their import dependency is shown in Figure 6 following.
Figure 6: MENA region domestic and imported grain by country
In Figure 6, the population size of each country is shown by the size of the bar. The blue component of the bar shows how much of each country’s grain requirement is grown domestically and the red component denotes the imported share. Countries are shown from west to east as per the map. A proportion of the Egyptian population already suffers from malnutrition. A current wheat prices, it costs about $1 per day to keep someone fed in terms of bulk grain. The oil exporting countries in the graphic can afford to feed their populations, with some countries feeding others as well. Saudi Arabia has been keeping Yemen above water and more recently took on Egypt too.
Figure 7: An animal model of population growth and collapse
All the countries of the MENA region have seen their populations grow to well in excess of their inherent carrying capacity. A combination of deteriorating climate and ongoing world population growth can be reasonably expected to cause a spike in grain prices to levels last seen in the 19th century. It is also possible that sufficient grain may not be available at any price in some regions. Populations models from the animal kingdom provide some guidance as to how events might unfold. A good example is the snowshoe hare and lynx of North America. The snowshoe hare population collapses to less than 10% of its peak on a roughly ten year cycle, followed by the lynx. Taking the example of Egypt, the current population is twice the level that can be supported by its grain production. If the food supply to that country falls below the minimum required to maintain public order, then the distribution system for diesel and fertiliser will break down and domestic grain production would also be affected.
The starving populations of Egyptian cities will fan out into the countryside and consume whatever they can chew which will include the seed grain. That will ensure that domestic grain production will collapse. The population of Egypt might fall to 10% of its carrying capacity which would be 5% of its current level. Any starvation in the MENA region is likely to trigger panic buying by other governments in the region and beyond with consequent effects on established trade patterns.
UPDATE:
The Excel spreadsheet for the Whitestown data used in this essay is here Whitestown-all-years (.xlsx file)
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Hmm interesting thoughts. Probably not going to be able to stop something like this, time to start thinking about adaptation. Food production is well understood science, we should start thinking on what to do given a starvation scenario. Harmless to game it even if it never hits the worst considered scenario.
Yes David, peak food and peak oil. Somehow we will manage to increase yields if the temps turn downward. Look at the yield growth over the last sixty years. Just like oil; we will keep finding new techniques that make your static models fail.
A scary forecast. In one or two years from now we will know it.
Not sure how useful historic yields are considering progress in seeds, hybrids and fertilisation, including CO2 fertilisation. In a way that’s like comparing 1910’s automobiles to 2010’s in an attempt to look at mpgs.
“The starving populations of Egyptian cities will fan out into the countryside and consume whatever they can chew which will include OTHER HUMANES.” Just as Europeans ate their own babies during the LIA.
Thanks, David, interesting post. What is the source of your data for Figure 2?
w.
A lot of mixing of wheat/corn with ‘grain’. Would have liked to read a bit more about projected rice production, as well as crops like potato.
I’m gonna have to protest this one:
You repeat the error of the climate alarmists, who claim that a rise of a few degrees will be catastrophic. While a fall of a few degrees is definitely something to be concerned with, I don’t think that farmers are as foolish as you seem to assume they are. If the growing season gets shorter, they will switch to shorter season crops, including short-season corn.
Best regards,
w.
As for previous posts by the same author, I must object about certain assumptions and levels of extensions of the quiet sun/cool temperatures/food crises in this post. Fundamentally, I see in the line of reasoning an expression of the Unique Solution Syndrome, the same syndrome that characterizes the CAGW camp: that one, over-riding parameter determines the outcome of a complex system.
The sun, through sunspots, doesn’t do everything. All correlated patterns do not have a common cause.
The unitary, directed causative correlations between grain price and temperature and lynx-snowshoe populations is shockingly naive. For grain crops only, there are mechanical changes, fertilization issues, movement (because of the first two issues) into marginal lands, transport abilities, government subsidies, international use of food as political tools, changes in diet and relative proportions of population in developed countries to take into account. We are well beyond simple supply and demand conditions. As for the hare-lynx comparison, it is not the numbers that count as it is the proportionality and reflects predator-prey interactions with different birth rates: trapping, poisoning and loss of habitat are considered unimportant?
In case the reader thinks I am anti-sun as an influence on our climate, the answer is “no”. I do not disagree with the (repeated) prediction of either a quiet sun or GCR/cloudiness relationship or even a cooling trend coming up. I disagree with what appears to be an over-stretching of evidence, a Gorism, perhaps, for a Catastrophic Global Cooling (CGC) which is not strongly supported.
The sun changes prior to the drop to the Dalton and certainly the Maunder Minimum. We had entered into the LIA out of the MWP long before the Maunder began, and we had risen from the Maunder before the Dalton began – why are we looking to, in a step-function, collapse the pre-minima changes in one fell swoop today? It is all CGC drama.
We have to first go from here to get there. The assumption here is that the LIA was purely the result of the sunspot minima (through extension); a return to the minima will bring the LIA back, with a plunge to temperatures of those times, i.e. up to 3C. What I see is a drop of a degree, perhaps less, which is to bring us back to the 1950s, not even the 1920s.
I understand that on a practical level we also have to respect the relationship between global temperatures and regional ones (not that the CAGW likes to do this). Grain-belt temperature changes are admittedly greater than those of the globe, so a comparison of one to the other must note this: a big one in the center of North America is about 1/2 of that of the world. Each region must be considered separately.
Certainly grain yields will be affected, as elevated heat will, over only a few days, reduce crop yields by 20% (personal experience along the Saskatchewan-American border in the mid-80s). This is a threshold problem, of course: where the crops are sitting on the border of viability they will be most affected by a shift of minimal temperatures.
The threat posed by CGC here is more like that of another Tambora in 1815. The temperatures dropped suddenly in April when the eruption occurred, causing a global drop of 0.4 – 0.7C – but that is a global average for a year in which both the pre-eruption and post-eruption more normal temperatures have been ignored. The specific temperature drop due to the Tambora eruption was much more than that and occurred during the specifically important growing season. It was not the global average drop that caused the problem as the regional drop during the growing season.
The prediction of a quiet sun is one thing. The prediction of a catastrophic cooling event, of a return to a Dalton, let alone a Maunder climatic condition and its impact on the food generating capabilities of the planet are, in my opinion, over-hyped and forgetful that the climatic conditions of the pre-Maunder and pre-Dalton period (and the SSN, too) are not the same as those of our recent years.
Interesting – appears that should global temperatures continue to cool, United States/North America become the world’s breadbasket, far better than becoming or being the world’s policeman.
There are two related themes here that are both worthy of deeper individual treatment.
One is the impact of cooler temperatures on global agricultural productivity, the other the vulnerability of entire regions to any disruption in agricultural trade.
Imho, the author should have kept his focus on just the first of these. A bit of extra research on the capabilities of breeders to develop more cold tolerant grains would have added perspective.
Nice post and well done.
The corresponding rebuttal is the ability in other regions to grow corn due to the drop in summer time temps and the resulting increase in soil moisture.. The black belt regions of the Southern states come to mind – roughly a triangle from Dallas to Memphis to Atlanta and then back to Dallas.
We will adapt.
I question the “colder is dryer statement”. I can’t be true everywhere and at all times. It’s just -2C. How can you prove there won’t be more rain on subtropical marginal land?
Farmers in the US are limited primarily by the market price for crops, given relative international currency valuation. We’ve been converting or reverting agricultural land for generations now, which should tell you that the market drives farming in the US, not hunger. So, short of a new Younger Dryas era, the scare tactics are premature.
It’s beginning to look like the Arctic minimum might have arrived three days ago.
Ice extent has risen slightly over the last two days, according to NSIDC data.
If so, the minimum would be about a week earlier than normal, and will make it the highest extent since 2006. (Although other sources suggest 2009 could run it close.)
http://notalotofpeopleknowthat.wordpress.com/2013/09/08/arctic-ice-extentis-this-the-minimum/
Regardless of how cold winters are, or might be, the ruling class has demonstrated how to treat the masses. In recent winters, how many died of cold in Great Britain as a result of energy policy; basically allowing people to perish so others can stay warm. The US with a surplus of energy and food can withstand brutal winters providing the infrastructure remains capable. When colder winters destroy/reduce crops in China, Canada, Europe, etc, the cost of food and energy will become a factor in who eats and who does not. Do we rely on the likes and decisions of the ruling class? We can argue many merits or lack of to this subject, but keep in mind that the policy making fools are in charge. The examples of hurricane victims and governing agencies should be an eye opener for those in NE USA. A big freeze with big snow and no groceries at the supermarket? Who you gonna call? Farming adapting to cooler climate is not an answer.
The story is in it’s beginning phase, and we will have to see first how quiet the prolonged solar minimum is, and how long it last.
If these solar paramenters become established I expect a substancial cooling.
They are:
solat flux sub 90 sustained, sub 72 more severe.
solar wind sub 350km/sec. sustained, sub 300 km/sec. more severe.
ap index 5.0 or lower 98+% of the time.
cosimc ray count north of 6600 counts per minute sustained.
solar irradiance off .015% or more sustained.
EUV(extreme ultraviolet light) off upwards of 50% sustained.
The above following many years of sub-solar activity in general which we have had since late 2005.
The era of solar data from 1844-present has NO data to show how the climatic system of the earth may act to a prolonged solar minimum and the associated effects with this type of solar action, because their has not been one such occurrence post the Dalton Minimum.
What we have had instead is a more or less active regular 11 year sunspot cycle with lulls and peaks,. This type of solar action in my opinion is not going to make for solar/climate correlations, because the the degree of magnitude change and duration of time of solar actvity was not extreme enough to over come random earthly climatic changes ,such as ENSO,VOLCANIC ACTIVITY ,PDO/AMO etc. and also not strong enough to overcome the inherent negative feedbacks in the earth climatic system.
Anotherwords for the solar /climate correlation to become established to some degree a critical threshold level of solar activity deviation must occur from what it has done prior.
It looks like this deviation in solar actiivty has commenced in year 2005 and should continue for some time which will allow us to see if indeed a solar /climatic relationship does or does not exist.
I think it does when one looks at the two most recent prolonged solar minimum periods, those being the Maunder Minimum and the Dalton Minimum and the response of the climate at those times.
As I write this the solar flux value is sub 100, and this closer to typical solar mimimum readings despite the fact we are currently in the maximum of solar cycle 24.
Oh dear he starts off by using the “C” word. That starts to raise the red flag in my world.
Very good post, thank you. A great deal of consumable foodstuffs are wasted or underutilized every year –
– Per-capita consumer waste is estimated to be 95 to 115 kilograms per year for Europe and North America, but only 6 to 11 kilograms per year in Sub-Saharan Africa and South Asia (Gustavsson et al. 2011).
– Food waste is a huge problem globally, but the underlying reasons differ between regions.
– Food waste in high-income countries is dominated by consumer waste.
– Developing countries have high losses at the post-harvest and processing stages due to spoilage. Factors leading to spoilage include lack of modern transport and storage infrastructure, as well as financial, managerial and technical limitations in difficult climatic conditions (Venkat 2011; Gustavsson et al. 2011).
– The total avoidable food waste in the United States is 55.41 million tonnes per year for 2009, which amounts to 28.7 percent of total annual production by weight (Venkat 2011).
– Using 2011 retail prices, the avoidable food waste in the United States (for the year 2009) has a total retail value of 197.7 billion USD. Consumer waste alone amounts to 124.1 billion USD, or nearly 63 percent of the total retail value of wasted food (Venkat 2011).
====
I think we’ll be able to handle domestic food supply changes due to a slightly cooler world. However, rampant overpopulation in countries such as Egypt will carry a stiff price-tag.
Hmmm. All very interesting. Has anyone begun to study what the UK has been doing, and whether the past 5 years of long, cold winters with relatively short cool summers have had any affect upon local food production? If so, what has it been?
Energy supplies have apparently been affected there by the cold conditions as well as by government policies.
The starving populations of Egyptian cities will fan out into the countryside and consume whatever they can chew which will include the seed grain.
More likely, they’ll try to get to Europe.
good grief….using this logic…you can’t grow tomatoes in Alaska because the season is too short
…well duh, of course you can…..you use a faster breed
David, south Florida used to produce 90% of our winter produce…..our growing season down here is shorter than in the midwest..who do we do it?……using plants that grow faster!
The models David Archibald lays out are potential scientific predictions of the events foreseen by John:
Revelation 6:5-6 NIV
The first forecast, by Libby and Pandolfi… is now over 40 years old. […] Written in 1979…
Counting on my fingers and toes I get just 34 years from 1979 to the present.
Check out the sun at its supposed maximum ……… it says its NORMAL ,,,, wonder what it will look like at its minimum ?????????