The Magnificent Climate Heat Engine

Guest Post by Willis Eschenbach

I’ve been reflecting over the last few days about how the climate system of the earth functions as a giant natural heat engine. A “heat engine”, whether natural or man-made, is a mechanism that converts heat into mechanical energy of some kind. In the case of the climate system, the heat of the sun is converted into the mechanical energy of the ocean and the atmosphere. The seawater and atmosphere are what are called the “working fluids” of the heat engine. The movement of the air and the seawater transports an almost unimaginably large amount of heat from the tropics to the poles. Now, none of the above are new ideas, or are original with me. I simply got to wondering about what the CERES data could show regarding the poleward transport of that energy by the climate heat engine. Figure 1 gives that result:

net amount of energy exported poleward or imported

Figure 1. Exports of energy from the tropics, in W/m2, averaged over the exporting area. The figures show the net of the energy entering and leaving the TOA above each 1°x1° gridcell. It is calculated from the CERES data as solar minus upwelling radiation (longwave + shortwave). Of course, if more energy is constantly entering a TOA gridcell than is leaving it, that energy must be being exported horizontally. The average amount exported from between the two light blue bands is 44 W/m2 (amount exported / exporting area).

We can see some interesting aspects of the climate heat engine in this graph.

First, like all heat engines, the climate heat engine doesn’t work off of a temperature. It works off of a temperature difference. A heat engine needs both a hot end and a cold end. After the working fluid is heated at the hot end, and the engine has extracted work from incoming energy, the remaining heat must be rejected from the working fluid. To do this, the working fluid must be moved to some location where the temperature is lower than at the hot end of the engine. 

As a result, there is a constant flow of energy across the blue line. In part this is because at the poles, so little energy is coming from the sun. Over Antarctica and the Arctic ocean, the sun is only providing about a quarter of the radiated longwave energy, only about 40 W/m2, with the remainder being energy exported from the tropics. The energy is transported by the two working fluids, seawater and air. In total, the CERES data shows that there is a constant energy flux across those blue lines of about six petawatts (6e+15 watts) flowing northwards, and six petawatts flowing southwards for a total of twelve petawatts. And how much energy is twelve petawatts when it’s at home?

Well … at present all of humanity consumes about fifteen terawatts (15e+12) on a global average basis. This means that the amount of energy constantly flowing from the equator to the poles is about eight-hundred times the total energy utilized by humans … as I said, it’s an almost unimaginable amount of energy. Not only that, but that 12 petawatts is only 10% of the 120 petawatts of solar energy that is constantly being absorbed by the climate system.

Next, over the land, the area which is importing energy is much closer to the equator than over the sea. I assume this is because of the huge heat capacity of the ocean, and its consequent ability to transport the heat further polewards.

Next, overall the ocean is receiving more energy than it radiates, so it is exporting energy … and the land is radiating more than it receives, so it is getting energy from the ocean. In part, this is because of the difference in solar heating. Figure 2, which looks much like Figure 1, shows the net amount of solar radiation absorbed by the climate system. I do love investigating this stuff, there’s so much to learn. For example, I was unaware that the land, on average, receives about 40 W/m2 less energy from the sun than does the ocean, as is shown in Figure 2. 

(Daedalus, of course, would not let this opportunity pass without pointing out that this means we could easily control the planet’s temperature by the simple expedient of increasing the amount of land. For each square metre of land added, we get 40 W/m2 less absorbed energy over that square metre, which is about ten doublings of CO2. And the amount would be perhaps double that in tropical waters. So Daedalus calculates that if we make land by filling in shallow tropical oceans equal to say a mere 5% of the planet, it would avoid an amount of downwelling radiation equal to a doubling of CO2. The best part of Daedalus’s plan is his slogan, “We have to pave the planet to save the planet”  … but I digress).

net solar radiation downwelling minus reflectedFigure 2. Net solar energy entering the climate system, in watts per square metre (W/m2). Annual averages.

You can see the wide range in the amount of sunlight hitting the earth, from a low of 48 W/m2 at the poles to a high of 365 W/m2 in parts of the tropics.

Now, I bring up these two Figures to highlight the concept of the climate system as a huge natural heat engine. As with all heat engines, energy enters at the hot end, in this case the tropics. It is converted into mechanical motion of seawater and air, which transports the excess heat to the poles where it is radiated to space.

Now, the way that we control the output of a heat engine is by using something called a “throttle”. A throttle controls the amount of energy entering a heat engine. A throttle is what is controlled by the gas pedal in a car. As the name suggests, a throttle restricts the energy entering the system. As a result, the throttle controls the operating parameters (temperature, work produced, etc.) of the heat engine.

So the question naturally arises … in the climate heat engine, what functions as the throttle? The answer, of course, is the clouds. They restrict the amount of energy entering the system. And where is the most advantageous place to throttle the heat engine shown in Figure 2? Well, you have to do it at the hot end where the energy enters the system. And you’d want to do it near the equator, where you can choke off the most energy.

In practice, a large amount of this throttling occurs at the Inter-Tropical Convergence Zone (ITCZ). As the name suggests, this is where the two separately circulating hemispheric air masses interact. On average this is north of the equator in the Pacific and Atlantic, and south of the equator in the Indian Ocean. The ITCZ is revealed most clearly by Figure 3, which shows how much sunlight the planet is reflecting.

total reflected solar radiationFigure 3. Total reflected solar radiation. Areas of low reflection are shown in red, because the low reflection leads to increased solar heating. The average ITCZ can be seen as the yellow/green areas just above the Equator in the Atlantic and Pacific, and just below the Equator in the Indian Ocean. 

In Figure 3, we can see how the ITCZ clouds are throttling the incoming solar energy. Were it not for the clouds, the tropical oceans in that area would reflect less than 80 W/m2 (as we see in the red areas outlined above and below the ITCZ) and the oceans would be much warmer. By throttling the incoming sunshine, areas near the Equator end up much cooler than they would be otherwise.

Now … all of the above has been done with averages. But the clouds don’t form based on average conditions. They form based only and solely on current conditions. And the nature of the tropical clouds is that generally, the clouds don’t form in the mornings, when the sea surface is cool from its nocturnal overturning.

Instead, the clouds form after the ocean has warmed up to some critical temperature. Once it passes that point, and generally over a period of less than an hour, a fully-developed cumulus cloud layer emerges. The emergence is threshold based. The important thing to note about this process is that the critical threshold at which the clouds form is based on temperature and the physics of air, wind and water. The threshold is not based on CO2. It is not a function of instantaneous forcing.  The threshold is based on temperature and pressure and the physics of the immediate situation.

This means that the tropical clouds emerge earlier when the morning is warmer than usual. And when the morning is cooler, the cumulus emerge later or not at all. So if on average there is a bit more forcing, from solar cycles or changes in CO2 or excess water vapor in the air, the clouds form earlier, and the excess forcing is neatly counteracted.

Now, if my hypothesis is correct, then we should be able to find evidence for this dependence of the tropical clouds on the temperature. If the situation is in fact as I’ve stated above, where the tropical clouds act as a throttle because they increase when the temperatures go up, then evidence would be found in the correlation of surface temperature with albedo. Figure 4 shows that relationship.

correlation surface temperature and albedo annualFigure 4. Correlation of surface temperature and albedo, calculated on a 1°x1° gridcell basis. Blue and green areas are where albedo and temperature are negatively correlated. Red and orange show positive correlation, where increasing albedo is associated with increasing temperature.

Over the extratropical land, because of the association of ice and snow (high albedo) and low temperatures, the correlation between temperature and albedo is negative. However, remember that little of the suns energy is going there.

In the tropics where the majority of energy enters the system, on the other hand, warmer surface temperatures lead to more clouds, so the correlation is positive, and strongly positive in some areas.

Now, consider what happens when increasing clouds cause a reduction in temperature, and increasing temperatures cause an increase in clouds. At some point, the two lines will cross, and the temperature will oscillate around that set point. When the surface is cooler than that temperature, clouds will form later, and there will be less clouds, sun will pour in uninterrupted, and the surface will warm up.

And when the surface is warmer than that temperature, clouds will form earlier, there will be more clouds, and higher albedo, and more reflection, and the surface will cool down.

Net result? A very effective thermostat. This thermostat works in conjunction with other longer-term thermostatic phenomena to maintain the amazing thermal stability of the planet. People agonize about a change of six-tenths of a degree last century … but consider the following:

•  The climate system is only running at about 70% throttle.

•  The average temperature of the system is ~ 286K.

•  The throttle of the climate system is controlled by nothing more solid than clouds, which are changing constantly.

•  The global average surface temperature is maintained at a level significantly warmer than what would be predicted for a planet without an atmosphere containing water vapor, CO2, and other greenhouse gases.

Despite all of that, over the previous century the total variation in temperature was ≈ ± 0.3K. This is a variation of less than a tenth of one percent.

For a system as large, complex, ephemeral, and possibly unstable as the climate, I see this as clear evidence for the existence of a thermostatic system of some sort controlling the temperature. Perhaps the system doesn’t work as I have posited above … but it is clear to me that there must be some kind of system keeping the temperature variations within a tenth of a percent over a century.

Regards to all,

w.

PS—The instability of a modeled climate system without some thermostatic mechanism is well illustrated by the thousands of runs of the ClimatePredictionNet climate model:

climateprediction_bad_data

Note how many of the runs end up in unrealistically high or low temperatures, due to the lack of any thermostatic control mechanisms.

5 2 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

496 Comments
Inline Feedbacks
View all comments
Count_to_10
December 22, 2013 6:56 am

“Over the extratropical land, because of the association of ice and snow (high albedo) and low temperatures, the correlation between temperature and albedo is negative. However, remember that little of the suns energy is going there.”
In case no one has mentioned it previously, there is also going to be a negative correlation due to cloud cover moving from the tropics, blocking the sunlight, and lowering the local temperature.

Mickey Reno
December 22, 2013 6:57 am

It’s quite clear to me that ocean currents drive our “climate.” Perhaps they even drive the ice house / hot house changeovers. Disruptions to, or elimination of heat pumping mechanisms caused by plate tectonics plays a huge role. In smaller shifts, on the scale of centuries, perhaps smaller changes in currents and flow of ocean water can create little ice ages and warm periods.

David Riser
December 22, 2013 7:01 am

Great post Willis.
For the pressure folks, Atmospheric pressure differences are caused by temperature differences, ie warm and cold air masses the wind is created by the differences between the pressures, rotation of the earth and land masses deflect the wind but do not create it.
Its interesting to watch cloud formation at different places, particularly open ocean. In the tropics its general after a set time in the morning in the mid latitudes clouds are rare at sea except for storms. I personally have never been to the poles so its hard for me to say what is going on up there.
Finally Some Ocean currents are driven by wind but not all. The great currents are caused by the sum movement of the water from all the small currents driven by the wind which is temperature and pressure related. So Willis idea of a heat engine is absolute genius.
v/r,
David Riser

December 22, 2013 7:09 am

Stephen Wilde says:
December 22, 2013 at 2:37 am
It appears that variations in solar activity alter global cloudiness by affecting the zonality / meridionality of the jet stream tracks
There is no evidence for that, only supposition.

James Strom
December 22, 2013 7:10 am

Thanks for your typical lucid presentation. I’ve read enough of them by now that I’m starting to have a new problem: how do you explain the significant swings in the earth’s temperature that you have acknowledged? The thermostat, which I think you have proved to exist, seems to have been capable of different settings, like a building thermostat.

Leonard Weinstein
December 22, 2013 7:16 am

Willis,
Great post.
Stephen Wilde says:
December 22, 2013 at 4:50 am
Stephen, the adiabatic cooling with increasing altitude exists whether there is an atmospheric greenhouse effect of not. It is called the lapse rate, and is due purely to gravity and the gas specific heat. However, this lapse rate is a GRADIENT not a level of temperature. The radiative effects cause an altitude shift of location of average ourgoing energy balance, and thus set the actual temperature LEVEL.

Editor
December 22, 2013 7:23 am

And the typical bifurcations in the Doubled CO2 runs….that one sees so often in chaotic systems..

old construction worker
December 22, 2013 7:26 am

Now, if we understood all the forces effecting “climate/Weather” like the Moon’s influence, the tilt of the earth and so on, coupled with 5 or 6 hundred years of observation we may be able to “predict”
the future (not withstanding a meteorite impact or eruption of a super volcano).

Leonard Weinstein
December 22, 2013 7:27 am

James Strom says:
December 22, 2013 at 7:10 am
James, there are many causes of shifts. One is the moderately long term periodic shifts of ocean currents (e.g., PDO, AMO). Others include changes in solar conditions (flux, spectral balance, magnetic field). Others include variations in Earth’s tilt to the Sun, and movement of large masses of land. Each condition has it’s own set point, but that set point can change with conditions changed. Even with very large changes possible, the average temperature has held to a band of about plus or minus 4% over hundreds of millions of years.

December 22, 2013 7:49 am

“Despite all of that, over the previous century the total variation in temperature was ≈ ± 0.3K. This is a variation of less than a tenth of one percent.
For a system as large, complex, ephemeral, and possibly unstable as the climate, I see this as clear evidence for the existence of a thermostatic system of some sort controlling the temperature. Perhaps the system doesn’t work as I have posited above … but it is clear to me that there must be some kind of system keeping the temperature variations within a tenth of a percent over a century.”
######################
lets see. intertia ,,,,,,or some magical thermostat that makes a clunky analogy more analogical

December 22, 2013 8:01 am

You are confusing local and transient effects (wind and weather) with the global mean. The regulator of Earth’s temperature is the mass of the atmosphere, and the stable hydrostatic condition of it which produces the stable tropospheric vertical temperature gradient (a.k.a. the lapse rate). Clouds have no effect upon global mean planetary temperature, even the thick cloud layer on Venus, for despite the great difference in cloud cover on Venus and the Earth, the Venus/Earth temperature ratio both above and below the cloud layer, at points of equal pressure and over the full range of Earth tropospheric pressures, is a constant that is precisely and fully explained by the ratio of the two planetary distances, nothing else. Only within the clouds themselves is the temperature lessened, by about 5K, from what it would be without the clouds–clearly due to the greater specific heat of the non-gaseous liquid drops making up the clouds. The only “heat engine” is that due to the non-uniform heating of the planetary surface, primarily latitudinally, which is a primary driver of the local and transient effects of wind and weather. The global mean is the unchanging world stage upon which the continuing but intrinsically lesser effects of wind and weather play their dynamic, ever-recurring roles. I have pointed all this out any number of times in comments here over the last 3 years–whenever the supposed effect of clouds comes up, for example–but you have no more physical insight, or plain sense for the definitive evidence–of the seminal Venus/Earth temperature comparison–than do the alarmists.

James Strom
December 22, 2013 8:04 am

Leonard Weinstein says:
December 22, 2013 at 7:27 am
Thanks for those ideas. As presented, the thermostat seems to be quite powerful, so it will be interesting to discover how these or other phenomena override or reset it. In other eras, for example, has the same thermostat operated at something like 8-10 degrees hotter or cooler?

timetochooseagain
December 22, 2013 8:29 am

Willis, do you understand that that horizontal heat transport and it’s dependence on temperature-or rather temperature gradient-is why you can’t calculate local sensitivity by regressing TOA flux on local temperature? Because you have done it several times and I recall you being dismissive of the idea that horizontal heat transport could make any difference to such results.
Your using the term “constant” a couple of times for the poleward heat flow suggests not, but hope this is just sloppy use of language.

Pamela Gray
December 22, 2013 8:37 am

I know I am a thorn in your side Stephen, but please stop stating your Sun/Jet hypothesis sans tested mechanism. The variation in the energy available in Solar parameters needed to change something as strong as the Jets (through expansion/retraction of the absolute height/depth of the mesosphere thus relaxing/squeezing the jets north or south) would have to be many times greater than it actually is in watts per square meter. The jets are strong enough to impede or speed up the travel time of manmade jets. Your tiny changes in solar parameters just don’t have the chops to move such a powerful entity north or south of its tract. And your thesis does not include the mechanism for its amplification to the level required to move global jets.
Your hypothesis fails at its most elementary level.

John C
December 22, 2013 8:44 am

Please, everybody, don’t focus exclusively on Willis’ actual hypothesis to the exclusion of the larger point, which he states at the end of the paper. That point is that it’s *negative* feedbacks we should be looking for, not positive ones. If the climate system was dominated by positive feedbacks we almost certainly would not be here to observe them. Such a planet is not suitable for the evolution of complex life.

gnomish
December 22, 2013 8:46 am

harrydhuffman
reconcile for me your comparison of venusian clouds to earth clouds with the fact that sunlight never reaches the surface of venus, please.
for bonus points, explain the distinction between aerosols as the working fluid in a heat pump vs a phase change liquid. (as any practical heatpump relies on phase change to move the heat)
for willis:
now that you’re well focussed on the physics of heat pumps, did you know what happens when you increase the heat carrying capacity of the working fluid? (as happens, albeit insignificantly, with increased co2)
(plz note that there is no change of temp during this phase change- so your idea that heat and temperature are directly convertible is disproven. stefan bolzman does not apply to this at all.)
for bonus points- what is the lest dense gas of any significance in our atmosphere? and does it require any convection whatsoever to move from surface to stratosphere?

December 22, 2013 8:53 am

Hmmm, was brushing up on Gulf Stream information after seeing the comment about a shutdown, found this: http://www.americanscientist.org/issues/feature/2006/4/the-source-of-europes-mild-climate/1
In short: the winds moving east over the Rocky Mountains end up being compressed vertically and spreading horizontally.
There is a counter-clockwise rotation induced by the rotation of the planet (the planetary component in meteorological terms) and conservation of angular momentum leads to a reduction in said rotation as those air columns spread horizontally, which can be treated as a clockwise component to the rotation, and results in a southward deflection.
After crossing the southeast US and reaching the open ocean these columns of air trade that clockwise component back into the planetary component as they expand vertically and accordingly are thus deflected back north to carry milder air over Europe and the British Isles.
I made a comment some time ago in another thread on here about the vertical compression which would result from the rotating “vanes” of the Andes and Rocky ranges interacting with the diurnal bulge, and it was rather quickly shot down as being unlikely to have any significant or noticeable influence.
To be fair I did not explore enough to account for the changes which would result in north/south deflection of air masses traveling over these ranges, but I would expect that there is no coincidence that the prevailing winds and planetary rotation components over the Rocky and Andes are adjacent to two well known oceanic heat transport phenomena: ENSO and the Gulf Stream.

Box of Rocks
December 22, 2013 9:00 am

Steven Mosher says:
December 22, 2013 at 7:49 am
“Despite all of that, over the previous century the total variation in temperature was ≈ ± 0.3K. This is a variation of less than a tenth of one percent.
For a system as large, complex, ephemeral, and possibly unstable as the climate, I see this as clear evidence for the existence of a thermostatic system of some sort controlling the temperature. Perhaps the system doesn’t work as I have posited above … but it is clear to me that there must be some kind of system keeping the temperature variations within a tenth of a percent over a century.”
######################
lets see. intertia ,,,,,,or some magical thermostat that makes a clunky analogy more analogical
Let us see
CO2?
Ding Ding Ding
Now give me your money!

Billy Liar
December 22, 2013 9:00 am

Steven Mosher says:
December 22, 2013 at 7:49 am
lets see. intertia ,,,,,,or some magical thermostat that makes a clunky analogy more analogical
Don’t try anything Gleick-like: you’d spot yourself immediately. 🙂

restalrig
December 22, 2013 9:12 am

rob r says Nice, but how do you get a significant number of climate scientists to take note of this common sense approach to an issue that, when looked at another way, puts bread on the table and pays the mortgage?
A quote from Upton Sinclair rings the bell “It is difficult to get a man to understand something when his salary depends upon his not understanding it”.

k scott denison
December 22, 2013 9:14 am

Steven Mosher says:
December 22, 2013 at 7:49 am
….
lets see. intertia ,,,,,,or some magical thermostat that makes a clunky analogy more analogical
______________
So if I’m translating correctly from Snark to English, you are asserting that inertia limited the climate response to 0.6 C last century. Let’s assume that is true.
Now, given that response to increased CO2 is logarithmic, and that the rate of increase of CO2 is not exponential, we can conclude, then, that the response in this century will be lower than last.
Guess there’s no worry about catastrophe then.

Steve Keohane
December 22, 2013 9:23 am

Thanks Willis. The poles, esp. the arctic seem to be the way the planet dumps heat. I think esp. the arctic because water gets all the way north, plus open water in the arctic really dumps heat to the atmosphere. Melting the bottom of any floating ice consumes a great deal of heat too, which would be happening around Antarctica. The increasing southern ice may be indicative of a cooling planet, more reflected sun = less heating of sea water. I would think snow and ice more reflective than clouds, and it is staying around longer than clouds and growing in the south.
Here is an overlay of the current 12/20/13 ice extents for both poles.
http://i43.tinypic.com/f9p35l.jpg

aequitas45
December 22, 2013 9:40 am

The amount of heat entering the earth varies only a small amount but if it is increased or decreased consistently for decades the heat transport, that Willis talks about,is changed and magnified here on earth leading to climate change. The solar system after billions of years of evolution is in a state of near perfect resonance. The variation in the suns output can be show to be dependent on the movement of planets in the solar system. The climate is now entering a cooling phase because the sun is entering a prolonged quiet phase. The problem of climate change is multi-dimensional but is usually presented as a one cause and effect because that is what Al Gore did and is easy for the human mind to grasp.

D. F. Linton
December 22, 2013 9:53 am

It probably doesn’t yield as cool a slogan, but you could just release top-reflective, ballasted inflatable plastic floats with trailing sea anchors in huge quantities into the tropical seas and get the same effects without the need to dredge all that fill….

December 22, 2013 10:00 am

Thank you, Willis. A great read to reflect on during quiet times of winter holidays. Very enjoyable.
Merry Christmas and Happy New Year with your new aftermarket parts!

Verified by MonsterInsights