A Matter of Some Gravity

Guest Post by Willis Eschenbach

A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”

So what is the S-B temperature, theoretical or otherwise?

A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.

The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is

Radiation = Emissivity times SBconstant times Temperature^4

where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.

This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)

Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun  with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.

Figure 1. Planet lit by multiple suns. Image Source.

On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?

Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.

The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:

1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.

2. It allows me to clearly communicate those ideas to others.

In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.

Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:

The poorly-named “greenhouse effect” works as follows:

• The surface of the earth emits energy in the form of thermal longwave radiation.

• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.

• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.

• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.

 OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.

I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.

So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?

But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.

I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.

The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.

So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.

Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.

But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.

And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.

Q.E.D.

Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:

… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.

Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.

And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.

But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …

TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.

w.

NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.

Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.

NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.

But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.

NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:

Water, 0.96

Fresh snow, 0.99

Dry sand, 0.95

Wet sand, 0.96

Forest, deciduous, 0.95

Forest, conifer, 0.97

Leaves Corn, Beans, 0.94

and so on down to things like:

Mouse fur, 0.94

Glass, 0.94

You can see why the error from considering the earth as a blackbody in the IR is quite small.

I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …

5 1 vote
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

1.2K Comments
Inline Feedbacks
View all comments
TimC
January 14, 2012 10:46 am

Willis said (to Crosspatch): “I will repeat it again. If there are no GHGs in the atmosphere, the atmosphere will not and cannot radiate energy. That’s the whole point. The only thing that can radiate is the surface. You keep claiming the atmosphere will radiate. It will not.”
I don’t profess to any real knowledge of thermodynamics but isn’t this then postulating (a) an atmosphere with mass, (b) capable of convection and conduction, and (c) with its own localised temperatures and gradients (separate from the surface temperature, although no doubt coupled to it, with lags).
Why can’t such an atmosphere radiate? Suppose, instead of surrounding a planet, it was just a cloud of the (hypothetical) transparent gas, in space. Would there be no way of physically detecting it’s presence, outside the gas envelope itself?
I’m smelling an impossible premise here, somewhere.

Kevin Kilty
January 14, 2012 10:48 am

ferd berple says:
January 14, 2012 at 10:06 am
Guest Post by Willis Eschenbach
TO CONCLUDE: I’m interested in people who can either show that my proof is wrong
There is no free lunch. If the GHG atmosphere is radiating, then there must be a reduction in radiation somewhere else.

There is no principle called “conservation of radiation”. There is conservation of energy and radiant energy is but a part contributor to that principle.

Jim D
January 14, 2012 10:48 am

The problem with ferd berple’s argument is that just because GHGs reduce the amount of surface radiation escaping to space, you can’t conclude that there is less surface radiation entering the atmosphere, and actually it turns out it has to be more because a GHG atmosphere has to be cooler than the surface due to the lapse rate (or gravity if you like).

Eric Barnes
January 14, 2012 10:53 am

Willis Eschenbach says:
January 14, 2012 at 12:32 am
So how do you not understand Huffman’s explanation?
Throw out unrealistic assumptions about blackbodies, greybodies, albedos, etc. and the complications surrounding them.
It’s simple recognition that the temperature profile of earth and venus are very close given similar pressures and considering their relative distances from the sun in spite of massive differences in concentrations of CO2. It’s natures results and natures experiment.
Can you explain why the temperature/pressure profiles are so close? Here’s the link.
http://theendofthemystery.blogspot.com/2010/11/venus-no-greenhouse-effect.html
Surely it’s a rather amazing coincidence if there is a greenhouse effect.

Stephen Greener
January 14, 2012 10:54 am

Convince me that the molten core of the earth has no effect on the temperature of the planet surface with or without an atmosphere or a solar source. [SNIP: Not on this thread, I won’t. -w]

Eric Barnes
January 14, 2012 10:59 am

NoIdea says:
January 14, 2012 at 6:14 am
Excellent explanation NoIdea. 🙂

January 14, 2012 11:00 am

– Willis, – is your GHG-less atmos transparent? or just approximately so for gubmint work.
– There is mass in this atmosphere in the form of gas atoms that photons do collide with (and are absorbed).
– Beers Law T= I/I sub o (Transmissivity = incident photons/transmitted photons through a slab of air) which equals e^(-sigma l N); sigma is absortion cross-section of gas atoms/molecules; l is thickness of air and N = number of atoms/molecules in the path.
-N increases as the air pressure increases – greater excitation in the lower atmos
-Energy absorbed (and eventually re-emitted) E =Planck cons*c (speed of light)/lambda wavelenght of light (not just IR).
-Imagine an atmos pressure at the bottom that is near liquifaction to exaggerate the picture.

ferd berple
January 14, 2012 11:01 am

Stephen Wilde says:
January 14, 2012 at 10:19 am
Thus Oxygen and Nitrogen are involved despite being relatively non radiative.
Oxygen and Nitrogen participate fully in adding to the process of conduction
in its competition with radiation.
Exactly. In the absence of GHG, the atmosphere would not be able to lose energy to space. Any energy lost to the atmosphere from the surface would eventually be returned to the surface.
In contrast, with a GHG atmosphere, energy lost from the surface to the atmosphere can then be radiated to space by the atmosphere and need not be returned to the surface.
Thus, without a GHG atmosphere, S-B tells us that the surface of the planet must warm to radiate this excess energy, that is no longer being radiated away by the atmosphere.

Tim Folkerts
January 14, 2012 11:11 am

ferd berple says:
>The argument that theory trumps observation is what has led so many
>astray. Here is a practical demonstration of a device that is theoretically impossible.
and
>Mathematical proof that GHG cools the surface of planet earth
Unfortunately, Fred, you don’t quite understand the theory involved in either case. The blow-your-own-sail is counter-intuitive to many people, but fully within the rules of newtonian mechanics. The greenhouse is also and counter-intuitive to many people, but it also follows the rules of physics.

Richard M
January 14, 2012 11:11 am

Eric Barnes says:
January 14, 2012 at 10:53 am
Willis Eschenbach says:
January 14, 2012 at 12:32 am
So how do you not understand Huffman’s explanation?
Throw out unrealistic assumptions about blackbodies, greybodies, albedos, etc. and the complications surrounding them.
It’s simple recognition that the temperature profile of earth and venus are very close given similar pressures and considering their relative distances from the sun in spite of massive differences in concentrations of CO2. It’s natures results and natures experiment.
Can you explain why the temperature/pressure profiles are so close? Here’s the link.
http://theendofthemystery.blogspot.com/2010/11/venus-no-greenhouse-effect.html
Surely it’s a rather amazing coincidence if there is a greenhouse effect.

Not a coincidence at all if there is a maximum greenhouse effect. All the planets would warm up until they reached that maximum. If that maximum just happened to be determined by the mass and the gravitation of those planets then we would see exactly what Huffman sees. However, for the surface to warm above the SB calculations there must be an effective radiation altitude above that surface.
We don’t need to discard the GHE. It’s real, it just has limits that haven’t been discovered because of simplifications made to climate models.

ferd berple
January 14, 2012 11:13 am

Willis Eschenbach says:
January 14, 2012 at 10:50 am
So your argument is that on a planet with a transparent GHG-free atmosphere, the surface is continually losing energy by conduction … riiiight, that’s the ticket
I think you have this backwards. In a non GHG (non radiating) atmosphere, any heat lost by the surface to conduction must be returned to the surface – for example at the poles. In contrast, in a GHG atmosphere, heat lost by the surface to conduction can then be radiated to space by the GHG atmosphere.
Thus, the GHG atmosphere MUST result in a lower average surface temperature as compared to a non GHG atmosphere, due to the energy lost via atmospheric GHG radiation.

PeterGeorge
January 14, 2012 11:37 am

I believe Willis’ proof is not correct.
In a real world with a no-GHG atmosphere, the atmosphere still absorbs heat from the surface through conduction and convection. And the near-surface temperature of the atmosphere is not the same as the “skin” temperature of the solid or liquid surface.
If one adds more atmosphere, there will be more conduction/convection. The “skin” temperature will decrease and the skin will radiate less. The near surface gas temperature, however, will rise and the radiation from the atmosphere as a whole will increase, maintaining a total balance.
In simple terms, the sand on the beach will not burn your feet as much, but the air you are immersed in will be warmer and will be radiating more.
When we talk about the “surface” temperature, what are we talking about, the “skin” or the air? We should at least be clear about that, because the “skin” can get very, very hot. With radiation increasing as T^4, hot beach sand radiates a hell of a lot more than the same beach sand, irradiated in the same way by the same sun, but cooled by a brisk wind.
In short, none of the models I’ve ever seen is either complete or coherent. Which explains the confusion.

GabrielHBay
January 14, 2012 11:38 am

Well, to stupid me it seems unbelievable how many here seem not to understand the difference between energy and temperature. Thanks to the few voices in the wilderness who clearly do understand. (One thing I do seem to remember from my university days too many decades ago) When I got to Willis’ talk about temperature issues somehow conflicting with conservation of energy (or something to that effect) I just skipped to the comments.. And why, pray tell, should it be possible to definitively explain the physics of it all in an ‘elevator speech’ of a few lines? Who was it who said that simplicity can also be the essence of untruth?
Gabriel van den Bergh

PhilC
January 14, 2012 11:39 am

berple GHGs can only radiate into space long wave / infra red photons intercepted from the surface and stored in internal energy states. They cannot emit additional photons that they haven’t captured emerging initially from the surface of the planet.
AIUI The effect of GHGs is that they STORE energy in the vibrational energy states corresponding to the infra red radiation energies. This energy may be later released as heat. The rate of spontaneous emission has a reverse relationship with frequency, so the energy is retained for a relatively long time (minutes, hours).

January 14, 2012 11:40 am


What? Everything with a temperature radiates. I don’t care WHAT a substance is, it will cool. It will cool until it reaches equilibrium with its background.
I don’t know why, but some folks seem to think that all things radiate at all temperatures. They don’t.

No one said it radiates at all temperatures. No one is even saying that all things radiate IR. What they”re saying is that everything radiates at SOME frequency. At least that’s my understanding… correct me if I’m wrong. U of Virginia seems to agree.
http://galileo.phys.virginia.edu/classes/252/black_body_radiation.html
Any body at any temperature above absolute zero will radiate to some extent, the intensity and frequency distribution of the radiation depending on the detailed structure of the body.
So simplifying the earth to only consider IR is a gross oversimplification. For example, the earth was also hit by UV rays. Some of the material in the earth will absorb those UV rays and increase the energy of the earth. Conduction within the earth will transfer some of that energy to other materials, which may have a different emissivity… say it emits in IR. So in that instance we have IR being generated from the surface that did not arrive as IR!
So, an atmosphere that aquires heat content from the surface of the earth (and it MUST, right? your atmosphere can’t be at absolute 0 or it’d be a solid) has the possibility of radiating that energy as microwaves, etc, etc. Reducing the heat content of the atmosphere and the surface.
To totally ignore all emissivity except IR seems a gross oversimplification.

ferd berple
January 14, 2012 11:41 am

Tim Folkerts says:
January 14, 2012 at 11:11 am
The greenhouse is also and counter-intuitive to many people, but it also follows the rules of physics.
No, you have it backwards.
Nature does not follow the rules of physics. Physics describes the actions of Nature, and the description is imperfect, due to the existence of the “unknown” which for all practical purposes is infinite in size.
I have shown a very simple mathematical demonstration of why the GHG theory does not describe nature. If you wish to refute this, show where the mathematics in in error. You cannot do this via rhetoric, you must do so via mathematics.
The gravitation theory of surface temperatures has demonstrated a predictive power across multiple examples. Something the radiative theory is yet to demonstrate.

January 14, 2012 11:43 am

“No one said it radiates at all temperatures. ”
Actually, all temperatures but absolute 0. Duh. 🙂

lateposter
January 14, 2012 11:47 am

I thank Dr. Jelbring for his response, and I apologize if I misrepresented his paper. But my comments were based on reading it, not second-hand from Willis. I thought it was easy to understand, and I’m not claiming to have found any statement in it that wasn’t true, but the definition of greenhouse effect implied by the paper seems to be different from what other people mean by it.
I understand the greenhouse effect to be something that raises the effective radiation height, which together with a relatively constant lapse rate, results in a higher surface temperature, as explained by Leonard Weinstein.
Dr. Jelbring defines the greenhouse effect quite clearly as “The average global surface temperature minus the average infrared black body radiation temperature, as observed from space”. But this definition cannot be applied to his model, because it “neither receives solar radiation nor emits infrared radiation into space” and the GE “is independent of the absolute average temperature of the model atmosphere”. In it’s place, he identifies the GE with the lapse-rate-induced temperature difference (“the temperature difference (GE) between the surfaces”), dropping the all-important black body radiation temperature reference point.

Eric Barnes
January 14, 2012 11:48 am

Richard M says:
January 14, 2012 at 11:11 am
Not a coincidence at all if there is a maximum greenhouse effect.
Convenient explanation.
So we’ve maxed out at 390ppm CO2 and our current level of water vapor/methane?
Watch how far you back up. The cliff of never ending rationalization is near.

January 14, 2012 11:58 am

It just occurred to me, when Hansen said..
http://wattsupwiththat.com/2011/12/20/hansens-arrested-development/#more-53430
The precision achieved by the most advanced generation of radiation budget satellites is indicated by the planetary energy imbalance measured by the ongoing CERES (Clouds and the Earth’s Radiant Energy System) instrument (Loeb et al., 2009),, which finds a measured 5-year-mean imbalance of 6.5 W/m2 (Loeb et al., 2009). Because this result is implausible, instrumentation calibration factors were introduced to reduce the imbalance to the imbalance suggested by climate models, 0.85 W/m2 (Loeb et al., 2009).

Was he talking only about the IR portion of the spectrum?
http://en.wikipedia.org/wiki/Clouds_and_the_Earth's_Radiant_Energy_System

Each CERES instrument is a radiometer which has three channels – a shortwave channel to measure reflected sunlight in 0.3 – 5 µm region, a channel to measure Earth-emitted thermal radiation in the 8-12 µm “window” region, and a total channel to measure entire spectrum of outgoing Earth’s radiation.

If so, conversion of other wavelengths into emitted IR might account for some of that.

Edim
January 14, 2012 11:58 am

“The problem comes in assuming that GHG warms the surface. In fact the opposite is true. GHG cools the surface, in the same way it cools that atmosphere, by radiating LWR to space that would otherwise remain trapped in a non-radiating atmosphere.”
The oposite is often true in life. But I digress, I agree with this. The question is, how strong is the effect. Probably not very strong.

1 7 8 9 10 11 48