Earth's baseline black-body model – "a damn hard problem"

The Earth only has an absorbing area equal to a two dimensional disk, rather than the surface of a sphere.

By Robert G. Brown, Duke University (elevated from a WUWT comment)

I spent what little of last night that I semi-slept in a learning-dream state chewing over Caballero’s book and radiative transfer, and came to two insights. First, the baseline black-body model (that leads to T_b = 255K) is physically terrible, as a baseline. It treats the planet in question as a nonrotating superconductor of heat with no heat capacity. The reason it is terrible is that it is absolutely incorrect to ascribe 33K as even an estimate for the “greenhouse warming” relative to this baseline, as it is a completely nonphysical baseline; the 33K relative to it is both meaningless and mixes both heating and cooling effects that have absolutely nothing to do with the greenhouse effect. More on that later.

I also understand the greenhouse effect itself much better. I may write this up in my own words, since I don’t like some of Caballero’s notation and think that the presentation can be simplified and made more illustrative. I’m also thinking of using it to make a “build-a-model” kit, sort of like the “build-a-bear” stores in the malls.

Start with a nonrotating superconducting sphere, zero albedo, unit emissivity, perfect blackbody radiation from each point on the sphere. What’s the mean temperature?

Now make the non-rotating sphere perfectly non-conducting, so that every part of the surface has to be in radiative balance. What’s the average temperature now? This is a better model for the moon than the former, surely, although still not good enough. Let’s improve it.

Now make the surface have some thermalized heat capacity — make it heat superconducting, but only in the vertical direction and presume a mass shell of some thickness that has some reasonable specific heat. This changes nothing from the previous result, until we make the sphere rotate. Oooo, yet another average (surface) temperature, this time the spherical average of a distribution that depends on latitude, with the highest temperatures dayside near the equator sometime after “noon” (lagged because now it takes time to raise the temperature of each block as the insolation exceeds blackbody loss, and time for it to cool as the blackbody loss exceeds radiation, and the surface is never at a constant temperature anywhere but at the poles (no axial tilt, of course). This is probably a very decent model for the moon, once one adds back in an albedo (effectively scaling down the fraction of the incoming power that has to be thermally balanced).

One can for each of these changes actually compute the exact parametric temperature distribution as a function of spherical angle and radius, and (by integrating) compute the change in e.g. the average temperature from the superconducting perfect black body assumption. Going from superconducting planet to local detailed balance but otherwise perfectly insulating planet (nonrotating) simply drops the nightside temperature for exactly 1/2 the sphere to your choice of 3K or (easier to idealize) 0K after a very long time. This is bounded from below, independent of solar irradiance or albedo (or for that matter, emissivity). The dayside temperature, on the other hand, has a polar distribution with a pole facing the sun, and varies nonlinearly with irradiance, albedo, and (if you choose to vary it) emissivity.

That pesky T^4 makes everything complicated! I hesitate to even try to assign the sign of the change in average temperature going from the first model to the second! Every time I think that I have a good heuristic argument for saying that it should be lower, a little voice tells me — T^4 — better do the damn integral because the temperature at the separator has to go smoothly to zero from the dayside and there’s a lot of low-irradiance (and hence low temperature) area out there where the sun is at five o’clock, even for zero albedo and unit emissivity! The only easy part is to obtain the spherical average we can just take the dayside average and divide by two…

I’m not even happy with the sign for the rotating sphere, as this depends on the interplay between the time required to heat the thermal ballast given the difference between insolation and outgoing radiation and the rate of rotation. Rotate at infinite speed and you are back at the superconducting sphere. Rotate at zero speed and you’re at the static nonconducting sphere. Rotate in between and — damn — now by varying only the magnitude of the thermal ballast (which determines the thermalization time) you can arrange for even a rapidly rotating sphere to behave like the static nonconducting sphere and a slowly rotating sphere to behave like a superconducting sphere (zero heat capacity and very large heat capacity, respectively). Worse, you’ve changed the geometry of the axial poles (presumed to lie untilted w.r.t. the ecliptic still). Where before the entire day-night terminator was smoothly approaching T = 0 from the day side, now this is true only at the poles! The integral of the polar area (for a given polar angle d\theta) is much smaller than the integral of the equatorial angle, and on top of that one now has a smeared out set of steady state temperatures that are all functions of azimuthal angle \phi and polar angle \theta, one that changes nonlinearly as you crank any of: Insolation, albedo, emissivity, \omega (angular velocity of rotation) and heat capacity of the surface.

And we haven’t even got an atmosphere yet. Or water. But at least up to this point, one can solve for the temperature distribution T(\theta,\phi,\alpha,S,\epsilon,c) exactly, I think.

Furthermore, one can actually model something like water pretty well in this way. In fact, if we imagine covering the planet not with air but with a layer of water with a blackbody on the bottom and a thin layer of perfectly transparent saran wrap on top to prevent pesky old evaporation, the water becomes a contribution to the thermal ballast. It takes a lot longer to raise or lower the temperature of a layer of water a meter deep (given an imbalance between incoming radiation) than it does to raise or lower the temperature of maybe the top centimeter or two of rock or dirt or sand. A lot longer.

Once one has a good feel for this, one could decorate the model with oceans and land bodies (but still prohibit lateral energy transfer and assume immediate vertical equilibration). One could let the water have the right albedo and freeze when it hits the right temperature. Then things get tough.

You have to add an atmosphere. Damn. You also have to let the ocean itself convect, and have density, and variable depth. And all of this on a rotating sphere where things (air masses) moving up deflect antispinward (relative to the surface), things moving down deflect spinward, things moving north deflect spinward (they’re going to fast) in the northern hemisphere, things moving south deflect antispinward, as a function of angle and speed and rotational velocity. Friggin’ coriolis force, deflects naval artillery and so on. And now we’re going to differentially heat the damn thing so that turbulence occurs everywhere on all available length scales, where we don’t even have some simple symmetry to the differential heating any more because we might as well have let a five year old throw paint at the sphere to mark out where the land masses are versus the oceans, and or better yet given him some Tonka trucks and let him play in the spherical sandbox until he had a nice irregular surface and then filled the surface with water until it was 70% submerged or something.

Ow, my aching head. And note well — we still haven’t turned on a Greenhouse Effect! And I now have nothing like a heuristic for radiant emission cooling even in the ideal case, because it is quite literally distilled, fractionated by temperature and height even without CO_2 per se present at all. Clouds. Air with a nontrivial short wavelength scattering cross-section. Energy transfer galore.

And then, before we mess with CO_2, we have to take quantum mechanics and the incident spectrum into account, and start to look at the hitherto ignored details of the ground, air, and water. The air needs a lapse rate, which will vary with humidity and albedo and ground temperature and… The molecules in the air recoil when the scatter incoming photons, and if a collision with another air molecule occurs in the right time interval they will mutually absorb some or all of the energy instead of elastically scattering it, heating the air. It can also absorb one wavelength and emit a cascade of photons at a different wavelength (depending on its spectrum).

Finally, one has to add in the GHGs, notably CO_2 (water is already there). They have the effect increasing the outgoing radiance from the (higher temperature) surface in some bands, and transferring some of it to CO_2 where it is trapped until it diffuses to the top of the CO_2 column, where it is emitted at a cooler temperature. The total power going out is thus split up, with that pesky blackbody spectrum modulated so that different frequencies have different effective temperatures, in a way that is locally modulated by — nearly everything. The lapse rate. Moisture content. Clouds. Bulk transport of heat up or down via convection. Bulk transport of heat up or down via caged radiation in parts of the spectrum. And don’t forget sideways! Everything is now circulating, wind and surface evaporation are coupled, the equilibration time for the ocean has stretched from “commensurate with the rotational period” for shallow seas to a thousand years or more so that the ocean is never at equilibrium, it is always tugging surface temperatures one way or the other with substantial thermal ballast, heat deposited not today but over the last week, month, year, decade, century, millennium.

Yessir, a damn hard problem. Anybody who calls this settled science is out of their ever-loving mind. Note well that I still haven’t included solar magnetism or any serious modulation of solar irradiance, or even the axial tilt of the earth, which once again completely changes everything, because now the timescales at the poles become annual, and the north pole and south pole are not at all alike! Consider the enormous difference in their thermal ballast and oceanic heat transport and atmospheric heat transport!

A hard problem. But perhaps I’ll try to tackle it, if I have time, at least through the first few steps outlined above. At the very least I’d like to have a better idea of the direction of some of the first few build-a-bear steps on the average temperature (while the term “average temperature” has some meaning, that is before making the system chaotic).

rgb

5 3 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

446 Comments
Inline Feedbacks
View all comments
Carrick
January 12, 2012 9:58 am
Kevin Kilty
January 12, 2012 9:59 am

Dr. Brown,
Some time ago I read a paper by Gerlich and Tscheuschner, who pointed out a number of inconsistencies in the usual presentation of the Greenhouse effect. Some of these are trivial (such as the atmospheric heating is not the way a greenhouse works) but others are quite substantive. The article inspired me to think about putting together a more realistic model of a rotating earth that could store heat in the crust and ocean, but it is a problem that presents huge difficulty and may not be worth the effort anyway–Gerlich and Tscheuschner suggest it is intractable.
Let’s start with a point we can probably all agree with, which is, the model of a uniformly radiating earth (i.e. uniform temperature) illuminated on one side and reflecting some fraction of the radiation is an unphysical model for the problem at hand. Without atmosphere it is 255K and with it is 288K–who cares?
What is of real importance is the actual temperature distribution of the earth, because that is the radiator we have to work with. At one time Victor Starr pointed out that the polar regions are the radiator for Earth and they are efficient in this task because they are so large–i.e. a large, cool radiator can work as well as a small hot one. But surely it is important that some radiation in the tropics and subtropics switches back and forth from surface to cloud tops, a huge change in radiator temperature, or that high plateaus, with little water vapor above radiate very efficiently, and so forth.
We waste a lot of breath huffing and puffing over the mean temperature of the planet and whether or not it is increasing or decreasing. I suggest that this arithmetical mean temperature is beside the point because it is not connected with the radiator itself. Because of the disconnection between the physical radiator and the arithmetic mean, there are many mean temperatures that are consistent with an Earth in equilibrium, each one a function of the internal dynamics of the oceans, atmosphere, and crust. Even when the forcing is not changing we may see mean temperature vary.
So, why should we even care about your build-a-bear effort, when it will likely turn out to contain options that make the problem tractable rather than features that are essential? What are the essential features, bare minimum, of a realistic model of how the Earth gains and rejects radiative heat? Maybe we could call it the build-a-bare model.

JPeden
January 12, 2012 10:05 am

Francois says:
January 12, 2012 at 8:30 am
Are you serious? You know there are a few books which might help you understand how the system works.
Right, in fact it’s so simple that the CO2 = CAGW Climate Scientists haven’t got even one relevant empirical prediction right yet, and are hard pressed to even be able to “explain” any more than about the first 20 of the last 32 years of the most recent past, another one of their records which is continuing to get even worse as we speak.
Right

Kevin Kilty
January 12, 2012 10:06 am

steven mosher says:
January 12, 2012 at 9:39 am

sounds like you are on your way to building a GCM

Except the GCM will parameterize the interesting smaller-scale physics in the problem, and we won’t know if this has a small or large impact on the solution.

January 12, 2012 10:19 am

“Basically you have something like dQ/dt for a surface element equals dP_in/dt – dP_out/dt, = CdT/dt, where dP_in/dt is \vec{S}\cdot \hat{n} dA for incoming Poynting vector from sun, dP_out/dt is blackbody power out of dA, and C is the heat capacity of dA. \hat{n}(t) is an outward directed normal (as a function of time as the sphere rotates). The solar flux is modulated by a periodic square wave so it is zero as the point goes darkside.”
Francois says:
January 12, 2012 at 8:30 am
Are you serious? You know there are a few books which might help you understand how the system works.
Dr. Brown is serious, Francois, it is this hard. So pitch in and give him a hand.

jorgekafkazar
January 12, 2012 10:26 am

Ocean albedo is in itself a huge problem. Not only does the reflectance vary [zero to 1.00] with zenith angle, it also is a function of wind velocity and direction, tides, sea foam, temperature, humidity, viscosity, density, and, so help me, plankton content. Assuming “average” values for any or all of these variables will NOT produce a dependable model, similar to the situation with clouds.

Theo Goodwin
January 12, 2012 10:35 am

Wonderful article, Dr. Brown. Your presentation is lucid and clear. I wish that this kind of work had been available twenty years ago. I thank you for doing it now.

Dan Kirk-Davidoff
January 12, 2012 10:37 am

Michael Hart:
Many climate modeling groups make their code public. NCAR’s is here: http://www.cesm.ucar.edu/models/cesm1.0/
GFDL’s is here: http://data1.gfdl.noaa.gov/~arl/pubrel/m/am2/doc/
NCAR’s is not too hard to download, set up and run, if you have the time and inclination, and a good sized computer.

Neo
January 12, 2012 10:37 am

The Earth radiates it’s own heat generated at the core.
The function of how it is emitted at the crust is quite complicated because it depends both the local surface material and geological faults.
It might be interesting for map AGW hot spots with known high geothermal emissions.

January 12, 2012 10:40 am

Dr. Brown, It is kinda complicated. I have a question that sounds off topic but is on topic to a degree. When I started thinking about how to build a better model, I was struck by the stability of the tropopause minimum temperature. Yes, stability is a bit relative in this case, but it tends to bounce back nicely. The coldest temperature on Earth and in its lower atmosphere is around 184K degrees -89C, with the tropopause making excursions to -95 C from time to time, but bouncing back rather quickly to below -90C. Oddly, Venus, the granddaddy of greenhouse effect, has a black body temperature of about 184K which is around 65Wm-2.
This seems to be a non-thermal limit to the atmospheric effect (the better term since a lot of crap is going on). Since Venus and Earth don’t have a heck of a lot in common other than mass, this is circumstantial evidence that the gravitational constant may be the prime suspect. Crazy talk right?
So once you iron out all the issues you are looking into now, be aware that there are possibly a few more shoes to fall. If the approximate 65Wm-2 is a gravitationally set limit, not numerical happenstance, it adds some neat thermomagnetic and thermoelectric atmospheric chemistry to the problem which may involve ozone and CO2 and/or CH4. Which is totally bassackwards to the Venus atmosphere building mass with runaway greenhouse effect. I believe someone theorized that Earth and Mars started out like Venus, but picked a different path. He may have been smarter than most of his buddies thought.

Tim Folkerts
January 12, 2012 10:49 am

It is great to have another voice of a physicist here.
The problem is indeed complicated, but not insurmountable. As Dr. Brown noted (“I just want to work through it on my own as “homework”, to learn it properly”), the sort of things he is doing are the “homework” to even start to discussing the topics. Anyone who wants to intelligently discuss the climate and the greenhouse effect really needs to understand the science at the level he is addressing.
One thing that often bothers me is the assumption by many people that scientists in the field have not thought of these things before. Nothing that Dr. Brown said is “new” or “unknown”. These would be the sorts of problems that grad students in the field would work through in their coursework. (The source that Dr Brown references is, after all, a textbook with sample problems.) So this is “basic” science for those specializing in climate modeling.
Finally, even though the topic is difficult and certainly not “settled” as a whole, many individual parts of he problem are “settled”.
1] the starting scenario (“Start with a nonrotating superconducting sphere, zero albedo, unit emissivity, perfect blackbody radiation from each point on the sphere. What’s the mean temperature?”) would give a planet with a uniform temperature of ~ 278.5 in earth’s orbit around our sun.
2] raising the albedo would lower the temperature of the planet (to ~ 255 K for the earth’s current ~ 0.3 albedo)
3] lowering the emissivity would raise the temperature of the planet (but experimentally the emissivity is very close to 1, so this is not a major concern).
4] a nonuniform temperature would lower the average temperature of the planet. (so any conduction or convection or fast rotation would help make the temperature more uniform and hence warmer on average).
5] GHGs high up in the atmosphere where it is colder would raise the surface temperature.
These are all “settled” in terms of the general affect on global temperatures. Of course, the details and exact extent are not “settled” (or we could perfectly predict weather and climate).
One big challenge is that some things have two or more effects. For example, more H2O in the atmosphere adds GHG and would warm the atmopshere [5], but it would also lead to more clouds which raises the albedo and cools the planet [2].

January 12, 2012 10:50 am

Harry Dale Huffman said January 12, 2012 at 9:32 am

And in that context, of the public and political debate — that irreducible, unarguable reality — the FACT (not theory) is, my utterly simple and transparent comparison of the temperatures in the atmospheres of Venus and Earth demonstrates there is no such greenhouse effect, whatsoever. [Emphasis mine].

It is a fact that p = it is true that p, or it is the case that p.
A theory is a set of propositions providing an explanation of a subject matter. Even a single proposition can be a theory. Such as it is true that p, or it is the case that p.
Thus you contradict yourself rendering whatever else you are saying incoherent.

January 12, 2012 10:52 am

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience. ” – A. Einstein
‘Chaos Theory’ teaches that even the simplest of non-linear systems can be ultimately unpredictable, and the earth is a definitively non-linear system.

January 12, 2012 10:53 am

Robert. What a wonderful world !
What you have shown is that the Earth, or any other planet for that matter, can never reach thermal equilibrium since energy is constantly flowing through the system. A single black body temperature is therefore an idealized myth. For the same reason it is also a fairly gross simplification to measure or to predict just one single globally averaged temperature (GAT). There are plenty of non anthropogenic phenomena which continuously change this average temperature. For example plate tectonics including the raising of the Tibetan plateau by 5 km which not only reduced the surface temperatures but also increased albedo. Then we know that albedo is anyway constantly changing due to clouds, let alone volcanic ash and deforestation.
The greenhouse effect itself is also changing on an hourly basis as water vapor enters the atmosphere and then rains out again. Into this mixture we then introduce over the last 260 years about a 30% increase in one greenhouse gas – CO2. We go back and measure GAT over the last 160 years of weather station measurements and assume that the observed rise of about 0.6C is just due to CO2. Well maybe they are right and it is all due to CO2. However, this can never be proved until measurements or experiments are designed which can eliminate all other effects except CO2. There are only a few places on Earth where such an experiment may even be possible. Firstly it would have to be somewhere with zero or stable water vapor at least for a fixed period each year far away from civilization. Ideally we would need a reliable weather station with a long historic time span. Does such a place exist ? I wonder if there is perhaps just one long term weather station somewhere in the Sahara for example ?

January 12, 2012 10:54 am

Dr Brown,
You’ll go insane trying to develop a deterministic model because the boundary conditions are effectively indeterminate. Stochastic. As you have observed; non-linearities are rife in the climate system; beyond T^4 effects. Especially convective heat transfer and the phases change of water, in all their phases make a big difference.
Then there are topographical effects; mountain-sides, canyons, hills … which change the angle of incidence of light dramatically throughout the day; and hence when and how much heat is stored and then released. IIRC, even water has different reflectivity at low angles of incidence.. When smooth. Wave action makes things a great deal more complicated. It’s not valid to assume that the average will be the same..
Vegetation is also highly variable in terms of albedo and the energy which it stores and how/when it releases that energy. Seasonal variations are substantial. And if you’ve ever looked out of the window of an aircraft flying at altitude, you may have noticed that the green forests appear to be almost black from directly above yet green from the sides at a distance. Plants orientate themselves (leaves turn) in order to optimise the balance between photosynthetic takeup and loss of water. Vegetation changes seasonally with species becoming dominant during growing their peak; and for those who stimulate the climate neurons; their seasonal stasic, decline and death are also important because that has a strong effect on albedo.
There are very many factors which are known to have an effect on weather and hence climate. Many of those known factors can be described in isolation, under controlled conditions (i.e. with reality adjusted to impose assumptions). But because the climate system is non-linear, the principles of super-position cannot be applied to combine two or more non-linear factors. And that’s without even considering the coupling effects between the variables; which also tend to be non-linear in magnitude.
Keep in mind that climate is entirely synthetic; an arbitrary statistical artifact, based on poor statistics. Only weather is real.
Although one can build simplified models of the climate system, those work on bulk averages (and fantastic assumptions). But those bulk averages imply that the condition of the climate system withing each cell is uniform. Which might be a reasonable approximation if it’s say 1000 cubic metres, but in the case of the models, it’s more like 1000 cubic kilometres for the smallest cell size. (Order of magnitude) And it’s extremely unlikely that conditions will be uniform throughout.
It is the internal differences in conditions that act as a perturbation (“disturbance”) to provide interesting weather. The non-linear response to the perturbation is impossible to determine a priori without knowing the boundary conditions; the state of the system.

January 12, 2012 10:55 am

To simplify the energy flow problem pick the South Pole during the six months of night where it has very little atmospheric water vapor to cause a “greenhouse effect” and see if the rise in CO2 in the last thirty years has had any significant effect on the rate of energy radiated to space. Energy is being delivered via wind and lost via radiation to space. There is no direct input from the sun to complicate the balance. Also, nights and days are six months long. The air is thinner at that altitude and the TOA will be closer to the surface.

Bill Illis
January 12, 2012 10:58 am

How about if one makes it a non-rotating planet first with some set heat capacity (and I’m not sure there is really a limit to how much heat a surface or gas can absorb).
How hot does it get at the equator at the spot that is directly facing the Sun.

January 12, 2012 10:59 am

Lubos “crickets,” Lubos “crickets,” Bueller…

January 12, 2012 11:00 am

Robert Brown said January 12, 2012 at 9:32 am

So I’m pretty “skeptical” that current climate science gets the kind of stuff I’m considering above in the first few steps at all wrong — I just want to work through it on my own as “homework”, to learn it properly. Far better to derive things yourself than to trust or rely on a textbook, better still to do both, derive it yourself and learn to understand it and then check your work against texts and resolve the differences, learn from your errors (and look for possible errors in the accepted literature — they are not unknown:-).

And as Joseph Joubert once said: to teach is to learn twice (except he said it in French).

Peter Miller
January 12, 2012 11:02 am

Mr Watts
It is all very simple, trust us, we know!.
Let us explain: rising carbon dioxide levels cause lots and lots of heat and that changes climate and that means our children are all going to die horribly unless we do something about it now. Most important we need more grants. Then we need to create lots of nice new taxes and send the money to the nice people who lead the countries in the Third World.
You are making this simple situation much too complex and confusing, we would never dream of considering the things you discuss in your article. KISS has always been our motto, we don’t want to confuse those nice politicians, after all they are very simple people who don’t want to try and understand complex issues.
So, just remember this simple motto: carbon dioxide very bad, climate scientists very good – climate scientists understand, you don’t, and they can always be trusted to tell the truth.
Yours affectionately
The Team
/sarc

Wenson
January 12, 2012 11:06 am

As I mentioned in the another thread, Earth is not a true black body. Using “average T” would “increases” the earth temperature. And I don’t believe CO2 has any meaningful effect on earth temperature.
I’m a layman. Here is more question about CO2.
In anyway can I think a photo is much smaller than a Co2 molecule?
If so
How many photos will miss the target of CO2 molecules? Since CO2 only 0.3% , 0.4% in the air plus there a lots of empty space ( to the photo and air molecules) in the air.
What is the percentage of the photo will miss the target CO2? (at each “layer “of the air)
(In layman’s thinking, Only very very small portion of the photos will hit the CO2 molecules.)
the following is a layman’s another thinking. (based on NASA uses photo to drive a spaceship)
What happens After a photo hit CO2 molecule. (Assume a moving photo has momentum,layman’s photo just a glass ball now)
will the CO2 molecule change speed?
If the CO2 molecule really had speed change, then its energy changed. Assume CO2 molecule randomly moving.
Case 1. CO2 molecule moving faster,
Case 2. CO2 molecule moving slower.
Case 3. CO2 molecule changes moving direction only.
In which case the CO2 molecule will “reflect” a photo out? What is the “reflected” photo’s energy compare to the incident photo?
(Layman’s thinking: maybe not all the “hits” generate a “reflection “. If “reflection” occurs, the energy of the photo would be less than the incident photo’s energy. Because part of the energy transferred to molecule’s kinetic energy. How much less?)
And a molecule with increased speed will dissipate energy more quickly. ( how to relate the speed change to the temperature change? )
Layman’s conclusion: CO2 cannot have big “green house” effect.
I like to learn what is wrong in my thoughts.
Wenson

wayne
January 12, 2012 11:07 am

Robert Brown:
Hi Robert. Just read you post and later comment (and kwik’s).
http://wattsupwiththat.com/2012/01/12/earths-baseline-black-body-model-a-damn-hard-problem/#comment-861864
Guess you know I was the one that jumped into the Unified Theory of Climate thread and coded up that simple integration in c. Kwik’s thoughts are very close to mine. I have already ported that to CSharp and have had thoughts along the same lines: how far could you carry the next steps to an integrated surfaces so all of the pertinent parameters which could be altered to give us all of the variant questions you so well laid out in words.
It would be quite easy to program such a model, staying strictly in CSharp for portability. The integrations to me would pose no problem. I already have in CSharp a set of very fast adaptive Simpson 3/8 interpolators, Runge-Kutta of various orders and my favorite Yashida 6th order sympletic integrator for minimal energy error terms, fast and very precise. After all, all integrators will have round-off error, it’s just where you want them minimize, in the spatial terms or the energy terms.
But the jump to multiple vertical layers is more challenging memory wise and performance. Performance is why some flavor of c would be preferred to MatLab or other script language.
Yes, I have been pondering on these very same questions, could you simulate this whole question that Dr. Nikolov brought up and carry it further towards reality.
Good post Robert.

stumpy
January 12, 2012 11:08 am

Its a key issue, as the greenhouse gasses are assigned their importance on the 33k warming they may or may not actually make – no one never actually took the time to do it right though!

January 12, 2012 11:11 am

Stephen Wilde says:
January 12, 2012 at 8:42 am
Excellent article.
One question:
How do we know that the Earth is any warmer than it would be without greenhouse gases if the standard assumptions are so obviously inappropriate and/or incomplete ?

It’s quite straightforward. The emission spectrum of the Earth from space is grey body with numerous missing bands which can be unambiguously assigned to the GHGs (CO2, H2O, O3, CH4 & N2O), the spectrum of the Earth absent those GHGs would be grey body but would have to have the same area under the curve which requires a lower temperature. Therefore there is a GHE due to the presence of those gases.

George E. Smith;
January 12, 2012 11:11 am

“””””Thermodynamic professor, power plant manager says:
January 12, 2012 at 9:41 am
I’m sure that thermodynamic atmosphere effect explains everything much better, it’s the only method that is based on physical facts. If you try to model earths temperature with this very clear Anthonys description you can argue everything until you are dead or used 1 bn$;) Backradiation is bullshit from cooler gas to warmer surface, physically impossible! Gases can’t heat up with infrared radiation without incredible W/m2, only surfaces. “””””
So Thermodynamic Professor, whether or not one believes that the ordinary atmospheric mono or homo-diatomic gases: Argon, Nitrogen, Oxygen (maybe Hydrogen) etc, do, or do not absorb and emit Electromagnetic Radiation under ordinary atmospheric conditions (circa STP), it is an experimental fact that the earth atmosphere DOES emit EM radiation, and there is no theoretical physical basis for believing that such atmospheric emission is not locally isotropic. That is, there is no preferred direction of emission; all directions are equally likely. And some declare on their mother’s grave, that it is solely the triatomic (or more) or hetero-diatomic molecules generally grouped as GHGs that emit this isotropic atmospheric EM radiation.
So whether you or I like it or not, it is an experimental fact that at all levels in the atmosphere, EM radiation IS emitted downwards; and those emitting GHGs can have no a priori knowledge or information as to the Temperature of the earth surface, or whether that Temperature is lower or higher than the local Temperature of the emitting atmospheric gas, at the time such radiation leaves its originating gas molecule.
So now what is it; in your view; as a Thermodynamic Professor, that instructs that radiation that it may not land on the surface, because that surface happens to be at a higher Temperature than was the emitting gas molecule; about which the near surface arriving EM radiation, carries absolutely no information, by which to inform the surface that it originated from a colder gas molecule.
Or is it perhaps that such matters are managed, as in your role as a power plant manager, rather than the laws of Physics, which would be relevent to a Thermodynamics Professor.
How it it that EM radiation emitted from the earth at averaged 288 K Temperature, is safe to land on the moon at average Temperature 240 K but the same solid angle beam may NOT land on the sun, at its surface Temperature of about 6,000 K ??
Some of us non thermo-dynamic professors, and non power plant managers, are anxious to learn the answer to that from you ?

Verified by MonsterInsights