Guest essay by Philip Foster
COP21 Paris climate conference urged that all home heating should move away from gas to be all electric. In the UK the Climate Change Act already assumes this scenario will be put into practice.1
Just how realistic is this for the UK?
There are around 16 million (16 × 106) households connected to the gas grid network in the UK.
The average household boiler is rated at 60 kiloWatt
To replace that with electric home heating would still require about the same electrical capacity. (Remember even a single electric shower is 7 kW, and an oven approaching 10 kW).2
Here’s the math(s):
16 × 106 × 60 kW = 96 × 107 =~ 100 × 107 = 109 kW = 106 MegaW = 103 GigaW
or about 1 TeraW of extra power.

Drax, in Yorkshire England (which was the UK’s biggest and most efficient coal fired power station), generates about 4 GW, therefore to generate this extra 1 TW we would need to build about 250 Drax sized power stations, or erect half a million 5 MW (in reality, 2 MW) wind turbines [for reference: current requirement in the UK is a mere 40 GW, that is 0.04 TW].
Now let’s go to COP21’s second idea that all cars should be electric.3
In the UK there are about 35 million cars (just over double the number of households).
1 Horsepower is about 750 W
So an average 100 HP car engine = 75 kW (marginally more than the average household boiler)
This means we need, not just 1 TW extra electric power to charge up these vehicles, but more than 2 TW.
That is 500 Drax-sized power stations or one million wind turbines.

Combining household heating with electric cars the UK would need an extra 3 TW of generating power.
Although, arguably, the 3 TW are not always needed, they will be, frequently so, around 5-6pm on a weekday. People return home, plug their cars, switch on their heating, and start cooking – all on electric.
So COP21 (and our very own Climate Change Act) is asking the UK to build 750 more Drax sized power stations4 or 1.5 million more wind turbines. And, of course, we would need to completely rebuild the electricity Grid to take this nearly 75 fold increase in load. Also every street in the UK will need to be dug up to install much higher capacity cabling.
I’m not sure the English language has a word strong enough to describe this. It’s beyond insanity. Perhaps, as Roger T. put it: “the British like their understatement: ‘problematic’?”
Notes
1. See Christopher Booker:
http://www.telegraph.co.uk/comment/11305122/Forget-your-gas-cooker-were-headed-for-zero-carbon-Britain.html
2. Much talk about using heat pumps. But here again this is nigh impossible:
a. Most houses using gas are terraced or semi-detached in urban areas where there is obviously a limit to how much heat can be extracted from the ground without creating a local ‘permafrost’.
b. The necessary excavations in such areas would almost certainly hit gas mains (however defunct!), sewers, water pipes and electricity cabling.
3. Issues about electric cars:
a. The Tesla’s battery weighs 800kg – nearly a tonne. That is the equivalent of about eight extra passengers present for a whole journey. Range, if you are lucky, 200 miles. If it’s cold then less, as the power available from the battery drops by 50% for every ten degree drop in temperature. A petrol (gasoline) car for the same range would use fuel that weighed perhaps 16kg, diminishing, with no measurable change in available power for a ten degree drop in temperature.
b. Now imagine you are out on a lonely road in a blizzard in a Tesla. You have no heating; power diminishing due to the cold; you meet a snow drift; the vehicle slowly grinds to a halt with no available power. What can you do? Find a recharging point? Fat chance! Stay in the vehicle and hope for rescue? You’ll probable freeze to death. Get out and walk? a similar fate.
In a gas vehicle, unless you run out of fuel, you have heating, you are less likely to get stuck. Even if you do run out of fuel, you’ll probably have a spare can in the trunk: half a minute and you running again.
4. Just how many US forests will this require? Currently Drax consumes 7 million tonne per annum of ‘biomass’ – mostly imported wood pellets from the USA – for half its boilers. Assuming the new requirement of 750 Drax sized stations have to be built, they will consume a minimum of 5 billion tonne of wood pellets per annum!
Philip Foster
convenor Paris Climate Challenge www.pcc15.org
author, ‘While the Earth Endures: Creation, Cosmology and Climate Change’
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Or… you could carpet the British Isles with solar panels.
.
.
But then there would be no room for roads, which takes care of the electric car problem.
HR
Solar panels.
United Kingdom.
This is that cloudy, sometimes drizzly archipelago off the NW [that is ‘N O R T H West’] coast of Europe.
The southernmost tip is about 50 degrees North – the Sun reaches an elevation of over sixty degrees above the horizon for several weeks a year – in the very south . . . . .
The southern tip of Hudson’s Bay is at about the same latitude as the southernmost bit of the M25 – London’s Orbital Motorway. Hudson’s Bay does go further north, certainly.
The northernmost point of the UK is within 400 nautical miles of the Arctic Circle.
In Lerwick, in the Shetlands, the Sun is above the horizon for less than six hours a day near the Winter Solstice.
Yes, we’re bathed in the Gulf Stream/North Atlantic Drift.
But, really – solar panels?
Solar panels???
Without doubt – somewhat problematic!
Auto
does somewhat problematic = imposstupid?
I don’t think the English have as mild a word as that for something that certainly involves the letter ‘F’ – repeatedly!
Auto
Auto sez:
Solar panels???
Without doubt – somewhat problematic!
Exactly. My point being if you’re going to do something stupid, go all in. I was waiting for someone to point out the obvious; that to power the UK with solar, it would also take care of the population as there would be no room left for them, let alone cars.
.
.
.
Wait up! Maybe everyone could move underground with the next evolutionary step being The Mole People.
https://search.yahoo.com/yhs/search?p=the+mole+people+movie&ei=UTF-8&hspart=mozilla&hsimp=yhs-003
the UK to build 750 more Drax sized power stations or 1.5 million more wind turbines.
===================
sounds about right. few people have any realistic view of how much power there is in fossil fuels. in comparison the average north American household uses about 1 gallon of gasoline worth of electricity per day.
1 gallon of gasoline = 33KWh @ur momisugly $0.10/KWh = $3.30 gallon electricity equivalent.
Of course even if you build the 1.5 million more wind turbines they still need to be backed up by 750 more Drax sized power stations for those days when the wind doesn’t blow.
Using a quick check using figures from other posts I find that the UK will need 18.3 times existing capacity. Something that is impossible for the UK to achieve in the next 100 years without a technological breakthrough, given the time and money it took to install the existing capacity.
35 million vehicles will require charging 6kWh mainly overnight.
households 16,500 kWh (gas) electricity 3,300 kWh annual
27.0 million households in the UK
=============
vehicles = 6×365 = 21,000 KWh x 35 million = 735 thousand-million-KWh
households = 16500 + 3300 = 19,800 KWh x 27 million = 534.6 thousand-million-Kwh
existing = 3300 KWk x 21 million = 69.3 thousand-million-KWh
total required = (735+534.6)/69.3 = 18.3 times current capacity.
The vehicle usage seems quite small, but even so the electrical capacity required is still 18.3 times current capacity. Hard to do when you are shutting down all your coal and nuclear plants.
oops, looks like an error 6×365 = 2100 KWh. This number seems too low for vehicles. Hard to believe that vehicle traffic would require less energy than households.
using the reduced number for vehicles I get 8.8 times existing capacity will be required. Still very unlikely.
I suspect the true number will be higher as the vehicle number seems way too low.
You guys all missed the fact that Agenda 21 says that heating and A/C are unsustainable. Thus, such electrical needs can be completely left out of the above calculations. Everybody will be in thermal underwear and body blankets in the winter, or die of hypothermia, or sweating it out on hot days with fans; wait, they will probably outlaw fans as people will go to them when A/C is outlawed. Sweating will become a new country past-time.
On Tuesday 19 January as night time temperatures went below zero C, the UK’s 5500 windmills generated 66MW or a thousandth of the demand. 75% of the demand was covered by fossil fuels and of that nearly 40% was still from coal. Is ‘beyond stupid’ the phrase we are looking for?
Not quite, Mr Bond…. May I suggest a review of the DECC DUKES data, which I did to answer this question 5 years ago. The answer at that time was that the big macro numbers for energy use in transport and domestic heating required similar amounts of net primary energy to support them, together a bit more than the UK’s total electrical energy use. So a bit more than double the generation to be all electric in those three areas of transport, domestic heating and current electrical use combined. Just the facts. It’s here, not perfect and a tad dated. Peer review welcomed:
https://dl.dropboxusercontent.com/u/1976309/2x%20Electrical%20Fossil%20Replacement%202010%20Update.xls
nb: Renewables can’t deliver the 330Twh we need today, at 2 or 3 times the wholesale price by law, never mind when needed. And, of course, we have better options that reduce CO2 emissions faster and cheaper w/o any subsidies. Gas then nuclear replacing coal on existing grid connected sites, no renewables required. Put simply, energy policy on renewables is a clear and very unequivocal legalised fraud on the facts of the costed physics on each of the policy claims of energy adequacy, cost, sustainability, security and availability, at least. And decarbonisation, its key justifier. Utterly bogus. On the facts. Opinion irrelevant..
The DECC narrative and David MacKay’s work generally agrees with this – a doubling by 2050, trebling by 2100, if we start going for synthetic replacements for oil and other chemicals using nuclear energy to manufacture them going towards the end of commodity fossil energy, plus any economic growth we might return to if we leave the EC.
Note that w/o fossil to justify their regressive existence renewables are wholly pointless. Nothing to “offset” left on the grid, and too expensive and intermittent, compared to nuclear base load that just works.
I will rework this to use the latest DUKES energy data shortly. I work in a similar but less detailed and clever back of the envelope approach to that Prof David MacKay used when he did all this work “Sustainable Energy – w/o all the hot air”. Available on line.
http://www.withouthotair.com/
His only fault was not to tell the DECC what his work meant in hard costed delivery reality terms on our real time grid as it is. Like an interconnect we use occasionally costs as much for the cable per GW as new CCGT power station on our grid that replaces coal fired power at a 60% CO2 reduction, etc. Gas replacing all coal will cut grid overall CO2 emissions from fossil generation by well over 40%, wind offsetting all gas on a 30% duty cycle about 6%, at twice the wholesale price. Which is best? All easy to calculate using DUKES data.
Avoiding spelling out the consequences to our hard of thought MInisters with DIrectorships awaiting in renewables companies allowed them to go on deluding themselves re renewables, so they and senior civil servant’s lobbyists could profit from easy guaranteed money for producing expensive energy at 2 or 3 times the wholesale price by law for 20 years. This is at actual and massive consequential fiscal subsidy cost to the bill payer, and to the environment of avoidable CO2 emissions, versus gas and nuclear replacing coal. But he couldn’t tell them the truth w/o losing his job as Chief Scientific Adviser to the DECC.
We all owe David the debt of publishing the truth for those who can understand it, also Caesare Marcetti, Vaclav Smil and Jesse Ausubel have also clearly set out the history and consequences of basic energy physics going forward. Papers here………
https://dl.dropboxusercontent.com/u/1976309/Energy%20Intensity%20Papers.zip
Vaclav Smil is one of Bill Gates top 10 reads. Very much contrasting the science facts to the science fiction of those decitful promoters of renewable energy as a religion and believe they can make science up to support what they want, and not bother to prove their claims on the physics, while passing laws to say their beliefs must be so, and denial of their bogus beliefs is a crime against society. By the time the deceit meets the implacable laws of physics they are all very rich from exploiting their legalised fraud, and retired of course. You can list Huhne, Hendry, Davey and Yeo as ministers who both promoted this fraud into law and have been well rewarded by renewables lobbyists for their trouble, not sure about DECC Milliband. No doubt some senior DECC civil servants. The business of government at work. €co Fraud on the science fact. etc. CEng, CPhys, MBA
The main point of the green agenda is not to replace existing power sources, but do without them. Therefore, no cars, no planes, no heating, no cooking, no showers. There are no problem with these calculations if everyone, in a worlwide élan of solidarity, agrees to roll back civilisation.
Brilliantly summarises the Green agenda. Also their Greenshirt zealot beliefs on nuclear power which is the only way to deliver all the energy we need at 50 degrees North, sustainably at zero carbon, genetic engineering to eradicate disease, and breed hte crops we need to feed the hungry world sustainably so we can ALL be developed rather than return to agrarian misery for the masses. by informed slective breeding instead of Monks on stools, etc. Green luddism. Which is making its American fear agenda crusaders a lot of money and goves them power with poiticians who prefer delusion al ideology to the facts of the science. The greens are totally against using science to make the world a better pace. Their agenda is to reverse this movement. Take a look at Ronald Bailey “The End of Doom” if you want to understand where this comes from, zealotry driven cukture of America, too much money, too many cukts, too many gullible idiots to be exploited. Hence the problems with the Scientologists and all the irrational belief led science fiction of the First Church of Christ’s Fruitcakes. America is full of shallow and vulnerable people who just want to have something to be scared about and object to, to bring some meaning into their lives. Weare suffering from their spin off of this industry of falesly promoted science fiction fear in our energy policy. Gas then nuclear replacing coal must decarbonise the grid faster and cheaper than any other approach, unsubsidised, as well as nuclear being the only adequately energetic, intense and controllable energy source to power the grid after fossil. CEng, CPhys
Bravo Sir, you have captured the essence of the movement. Although you fail to note that the climate protectors or whatever they will choose call themselves will require certain things like air and road travel to watch over things.
You need to carpet the UK regardless of wind or solar.
Haven’t seen the land use part of this analysis from anyone yet so here goes a quick and dirty calculation assuming 2MW towers…
According to the UKWED (UK Wind Energy Database), about 75% or the wind turbines in the UK are land based.
http://www.renewableuk.com/en/renewable-energy/wind-energy/uk-wind-energy-database/
As for the land area required for turbines…
http://www.aweo.org/windarea.html
So, for easy math, let’s just conservatively use the Tom Gray number applied to the math above for illustrative purposes.
If 75% of the towers were land based, converting UK households from gas to wind might take: 375,000 land towers (@ur momisugly 2MW) x 120 acres/2MW = 45,000,000 acres (182,108 sq.km.). This is an area equivalent to 75% of the entirety of the UK (243,000sq.km. total) or the size of the US state of North Dakota (19th largest state).
Now converting the houses AND cars to wind electric the numbers above are tripled.
Looks like the UK needs to get into the land acquisition game again like back in the 17th century so they can provide the area needed for all those 12th century technology windmills that will be needed.
Greens would prefer you, or at least those who are not them, to use horses and carbohydrate power for other labour. Back to the future! I think we should set up a commune where they can live off agrarian power sources and crops, with herbal medicine and witch doctor NHS. and build a BIG wall around it. We could call it Wales, or Scotland? They’d none of them be missed. etc.
“COP21 Paris climate conference urged that all home heating should move away from gas to be all electric. In the UK the Climate Change Act already assumes this scenario will be put into practice.”
Can you imagine the electric heating and A/C costs on the public. It is a purposeful intent to impoverish and bestow cruelty (people will lower temps in homes) upon the population. Evil is not only among us, it is governing us.
Wind turbines currently use gas fired power plants for backup. Does this mean the UK will need another 1,000 gas fired power plants along with the millions of turbines?
No wonder they need to frack the Island.
Wind turbines (at present) have a life-time of 25 years, so (assuming you have somehow already built 1.5 million of them) you will have a continual program of replacing 60,000 of them evry year – that’s a lot of landfill – the “greens” won’t like that :¬) Also replacing/refurbishing 50 tons of generator, sitting on top of each tower.
At some time in the future, the oil & gas will run out – let’s hope someone will build an appropriate replacement to generate real, lasting and useful amounts of energy, before it does run out. Clearly the present wind-turbines and solar panels are not an answer – only fusion will provide the large amounts of power that humanity needs.
What the world needs is a “JFK” type announcement to “Choose to go and build fusion power reactors” – – in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win……….
If the world governments fail to do that “before the oil runs out” then everyone will be in deep trouble……..
kokoda: “Can you imagine the electric heating and A/C costs on the public. It is a purposeful intent to impoverish and bestow cruelty (people will lower temps in homes) upon the population. Evil is not only among us, it is governing us.”
I pay 12.545p per kWh for electricity and 3.817p per kWh for gas used for heating and hot water, so electricity is 3.286 times as expensive as gas..
Over the last year I used 9,727 kWh of gas, costing £371.12.
So if I had to use purely electricity, last year would cost me an extra £848,90.
My house is fairly well insulated with three foot thick walls and relatively small double glazed windows, so once warmed up holds its temperature well, and I consider my heating bill to be well below average.
Presumably the theory is that the new “Green” electricity will cost less than the old “dirty” fossil fuel variety. If you believe that you will believe anything.
Incidentally, it appears that whoever dreamed up this crackpot scheme has entirely overlooked that the conversion of fossil fuel into electricity and the transport of that electricity to the point of use is a massively less efficient process – not better than 50% by my quick calculations – than burning the gas at that point, but hey, who expects logic and reason from “Greens”?
And which little Lord has a company that runs transmission lines to wind farms, and would love to quadruple lines to every house in the land.
Or the pretend conservative government that the UK currently has.
I remember a letter to the (I think Daily Telegraph) from someone saying if they had turned down their central heating thermostat by one degree each time as recommended by various government ministers they would now be in minus figures.
James Bull
Not in a letter to the DT, but I have said in various places and at various times that if I had followed that advice each time the government recommended it in one of their ‘save fuel’ campaigns I would long since have died of hypothermia.
I’ve also said that the exponents of this madness appear totally ignorant of anything to do with electricity generation and appear to think that it self-creates by magic when you throw the switch.
Don’t confuse me with facts. I’m busy dreaming of my carbon dioxide-free utopia right now.
Like this guy:
http://40.media.tumblr.com/75c0ce51b119de4496afd6b3638b4426/tumblr_o16dy8AJaM1rzv6rko1_500.jpg
Maybe also on his first day, he will ask the djinn for his other two wishes.
I do not know much, but I am pretty sure we will not have a president who took his honeymoon in the Soviet Union.
“My first day . . .” LOL! Thanks, that’s a keeper
I wonder if he’ll rest on the seventh day.
CO2-free = bio-hell, not utopia.
Forgive me if I have this wrong but I believe I read that for every MW capacity of wind power generation we have available we must, simply for the frequent days when it does not work, have an immediate instant on backup option of the same generation capability? So even if you go the wind route and find places for those 1.5 million bird killers it’s not an either or option as you’d still require the power stations as backup.
This is truly madness.
You don’t have it wrong. If the grid is to deliver reliable power, then there must be available backup for wind/solar shortcomings.
Yep, last week we had a few days stuck in a ridge of high pressure. Temperatures barely above freezing.
https://notalotofpeopleknowthat.wordpress.com/2016/01/20/wind-power-down-to-0-1/
“At 5pm yesterday, electricity generation from wind farms dropped to a paltry 72 MW, just 0.1% of total demand of 52.1 GW.
The 24-hour period up to 10.30 pm was little better, averaging just 0.3% “
Batteries, batteries I say, millions and millions of dirty big batteries, we could put them on barges anchored off the coast (no room on land because of all the bird killers and solar panels)
To be fair though with all those propellers on board we could probably sail our little Island further south and get the solar panels to work.
zootcadillac sez:
To be fair though with all those propellers on board we could probably sail our little Island further south and get the solar panels to work.
BIG Grin! Thanks for that one.
(Just gotta make sure it doesn’t tip over while under way.)
Yup, gotta be careful as we approach the tipping point.
But…if England were to propel southwards, eventually you all will end up in Antarctica!
Or you have put in 3-5 x the turbines/panels and store the power somewhere. The best place to store it is in a high lake, recovered via turbine generator. So, we just sacrifice the Scotish highlands for the English power grid.
Except …
http://www.world-nuclear.org/info/Country-Profiles/Countries-T-Z/United-Kingdom/
Skip down to the table labelled “Power reactors planned and proposed”.
Good for 0.0179 of your 3 TW anyway 🙂
Current UK demand is 43.47GW. Something amiss with your numbers? If my fuse board is rated at 60KW it doesn’t mean I’m going to fry the thing 24 x 7 !!!
The numbers seem fantastically high to me. Another 750 drax? Can that be correct?
David Mackay, former chief scientist at decc wrote that burning gas should be made a ‘thermogenic’ crime but he also wrote a good book pointing out that renewables could not do the job we want them to. At some point we might use the ocean surrounding us as a good energy source but until then, at our latitude, solar farms are a non starter and wind farms to unreliable
Tonyb
“Can it be correct?”
Looks like nonsense to me (confuses load with consumption). Here’s what David Mackay came up with for future demand (assuming a jump to electric vehicles, heat pumps, etc.). The five energy plans:
http://www.withouthotair.com/c27/page_203.shtml
http://www.withouthotair.com/c27/figure233.png
They are fantastically high because these numbers assume 100% use at any one time. Cut the number in half for even the worst case scenario. Typically it would be a tenth of this claim.
And heat pumps can’t create permafrost. That’s foolish. Typically a heat pump works by exchanging heat with the air. You can actually get pretty good capacity as long as outside is above freezing (typical HSPF is 8.5, where you get 8.5 kW of heat for every kW of electricity). However, they become useless far below freezing. Ground loop heat pumps, which circulate water below the ground, can work at lower temperatures due to the deep earth being warmer, but are more limited in where you can install them.
Mr. Watts, this sort of nonsense is detracting from our site. We need to give realistic estimates. Ludicrous overestimations hurt our own position.
Of course it’s not correct. It’s just a sensationalist way of pooh-pooh-ing the COP21 requirements. The average household usage is more like 1.5 kW, not 60kW, and so those figures can be divided by about 40.
Probably still somewhat ambitious, but if you’re going to make a point, at least use reasonable numbers
You have to plan for peak use, not average.
You plan for peak of use, but peak has nothing to do with the sum of individual fuse ratings!
Richard Barraclough: What a lot of people forget is there is average supply, peak day and peak hour demand.
Last month I used 3081 kWh. When it is really cold (30 to 40 below), I can easily use over 4000kWh. But peak demand is OVER 12 Kw. That is the size of my emergency generator. It can run my water to water heat pump (3.5 kW), microwave, deep freeze, refrigerator, TV, some lights and a few other appliances before it starts to lag and dim the lights. A lot of people forget about starting amps and PEAK power. Your MONTHLY bill gives you average consumption for you house, NOT Peak Hour consumption. Peak hour demand can be several times the average demand. Never mind adding a welder or other large draw to the regular household demand.
Richard,
I don’t understand your post. kw is rating kwh is usage.
My boat has an 8 kw generator which can operate a lot including AC.
My home furnace is about 30 kw and it runs a lot in the winter. Most new homes in the US are probably 100 to 200 amps at 120 volts.
The UK has 15 reactors generating about 18% of its electricity and most of these are to be retired by 2023.
•The first of some 19 GWe of new-generation plants is expected to be on line by 2025.
==================
Would you tear down on old bridge before building a new one in its place? So why shut down power plants BEFORE new ones are built? Unless of course the aim is to jack up prices for the remaining power plants.
Quote from the article referenced, interesting:
“In the light of developments since 2006, public opinion in UK has remained positive regarding nuclear power, despite the Fukushima accident. Of more significance is that there is strong political support across all three main parties.
In July 2012 a YouGov survey found that 63% of Britons supported the use of nuclear power, and only 22% opposed building new plants on brownfield sites. Twice as many supported electricity market reform as opposed it (35% and 18% respectively) and interest in global warming was low – 59% compared with 72% in 2008.”
If anyone has watched Okkupert (TV series from Norway – Occupied in english), then you will know that Thorium power stations can do this easily – or at least that is what the Norwegian Prime Minister declared when he turned off all gas production from the North Sea!
The premise of the series (that the US is self-sufficient in energy and therefore doesn’t give a damm about Europe) does stretch things a bit, but it is great to see how quickly the rest of Europe throws Norway under the bus when they turn the taps off!
Listenin’ to: John Lee Hooker- “Serve You Right To Suffer”
(I watched it- being easily amused + Winter sloth)
” . . . a minimum of 5 billion tonne of wood pellets per annum!” Just how many square miles of forest would that be?
To date, not nearly enough to trigger any Green alarms, or scrutiny/revisions of agendas.
The numbers seem a bit high. 1kW will produce about 3400 BTU per hour and a car charger rated at 240 volts at 30 amps will take 7.2kW per hour.
a car charger rated at 240 volts at 30 amps will take 7.2kW per hour.
===============
After 4.6 hours this is the energy equivalent of 1 gallon (US) of gasoline.
An 85 kwh Tesla battery pack would take over 11 hours for a full charge to go over circa 200 miles at 7.2kw/hr. Assuming the grid does not collapse.
This seems fundamentally flawed.
The need is for an installed capacity which exceeds aggregate household maximum demand (+ % safety factor), not capacity which exceeds the rated value of all installations.
I have a mixed gas/electric house. Average electric demand over the year is approx 1KW per hour. Peak short term demand is probably up to 15KW (oven, hob, washing machine) which occurs for a few minutes at a time if all appliances are switched on together. Installed household load (all electrical appliances is probably 50KW++).
Electric cars can be charged outside peak household demand, if necessary with off peak pricing to change behaviours. So assuming contemporaneous demand is simply wrong.
This does not mean all electric is better than gas. If gas is used for generation then the issue is the comparative efficiency of central electric supply vs distributed gas. Second issue is alternative ways (vs gas) of electricity generation – nuclear, wind, solar etc.
Not much after peak time available if everything is electric. I have 10 kw of strip heat to back up my heat pump, but I live in the deep south. So, I’d guess you’d only need about 30 kw in the UK.
“The need is for an installed capacity which exceeds aggregate household maximum demand (+ % safety factor),”
Exactly.
France max is 102 GW and we have a lot of electric heating (way too much according to more than 97% of French ecoloons and other pseudo-experts).
Another factor needs to be considered: as more people switch to electric heating, the ratio of max/total increases, so few plants run as base and more run for peek; the plants are used less and their cost is spread less, meaning kWh cost jumps.
The cost of electric heating is more than the cost of non-heating electricity, for the same amount of energy, because people don’t use heating during summer.
Another way to look at it:
When you have electric heating:
When it’s sunny and hot outside, you don’t use electricity for heating.
So the sun is providing free heating, in your case a replacement for electricity.
So the sun provides virtual electricity for your electric heating.
So you have virtual solar electric power.
The issue of virtual solar is like the issue of real solar power, it’s a systemic issue: the production depends on the sun. The total production (virtual or real) of the region is strongly correlated.
Lack of “virtual sun electricity” results in very real electric demand.
So the systemic issue of electric heating is much like the systemic issue of solar power.
Yet, French ecoloons fight one and promote the other.
Hmm – I think you are mixing up kW (rate of usage) with kW-h (energy used). A 60kW boiler doesn’t make sense! Typically the electric geysers have 3 to 4kW elements and they don’t run continuously in a normal household.
So I’m not sure how you get to the numbers you mention.
He is, I’m afraid. He’s confusing the average boiler with an output of 60,000 Btus with kW. In kW it’s about 17.
I was converting that wattage to amps, and coming up with numbers that exceed the service capacity of any normal household. Watts is equal to amps times volts.
And watts (or the larger kW unit) is a unit of power, not energy.
Car numbers seem off. Check of the Tesla website lists home charger as 10 kW.
And weight of battery ignores that the electric car has a heavy battery, yes, but light electric motors. And a IC car has a light battery, but a very heavy engine and transmission. Full fuel tank, at twenty gallons (OK, that is for a large car or small pickup truck) is about 120lbs, plus weight of the tank.
It is true that a Tesla weighs much more than most sedans, but they are efficient in other ways. Regenerative breaking saves a lot of energy, for example.
https://en.wikipedia.org/wiki/Curb_weight
BTW, I do not mean to contradict the general conclusion that these switchovers would be very expensive and would require a massive upgrading of the electric transmission and distribution infrastructure and generative capacity.
Check of the Tesla website lists home charger as 10 kW
================
after 3 and a third hours of charging, you have the energy equivalent of 1 gallon of gasoline.
Refueling on a long trip would sure be a drag.
They have those superchargers in some places.
But I do not think electric cars will be much m ore than a novelty unless they have rapid charging stations everywhere, or they develop tech to quickly switch out batteries.
Mencholas
The Tesla S weighs about 25% more than a Chevy Imapla which gets about 29 mpg on the highway
TESLA:
Front trunk cargo volume 5.3 cu ft; Turning circle 37 ft; Curb weight 4,647.3 lbs
TESLA costs over 3 x that of the Chevy which has a greater range.
Hey man, I was the one that posted the link to the curb weights, remember?
:0P
Menicholas,
Sorry that you are offended.
I was just trying to put some meat on the bones by comparing the TESLA with a car that might be similar in interior size, maybe I did not pick a comparable size vehicle.
It is best in my mind to give some specific data in the main post. Your link did not cover cost or compare to similar vehicles or give mpg of similar vehicles.
To overcome the problem of peak demand, the plan is to fit us all with smart meters, which by variable pricing, will ‘encourage us’ to only switch on when there is ample supply. More likely is that we’ll all just emigrate and the last one out will turn the light off.
@ur momisugly Bloke, 9:57 am, where would you go the rest of the planet is going just as nuts if not worse. But Britain takes the cake and Norway turning of the oil? Then they are not far behind and here I thought Norway was the leading light. Me thinks the place has gone crazy, I was never one for the conspiracy thingy but Agenda 21 is being implemented as we speak!
Bloke
No need to turn it off – it’ll be solar powered . . . .
Oh – of course!
Sorry!
Ninth root of zilch for three or four months a year.
Clown Town rules, of course, will overcome orbital geometry, precession, nutation, and the weather here in the British Isles.
Auto
People working in the real world would say, “Lets run the numbers.” People in the green world seldom do.
Remind me about the efficiency of this Carnot cycle I keep hearing about.
People with short memories forget about Central Maine Power in the 1980s. They were going to generate lots and lots and lots of power from the cogen of paper mills burning their waste wood. A lot of folks went over to electric heat. Between one thing or the other, it just didn’t work out. (Surprise? not.) Eventually, the company had to do a defensive bankruptcy to shed the State mandated purchase of the cogen power at above market rates.
You just do not fix stupid.
Nothing against burning waste wood btw. There is a fireplace insert burning wood pellets as I speak. I enjoy my fire, my wife enjoys that it doesn’t make a lot of smoke. Everyone is happy and the dog in front of it is nice and cosy.
A cigarette weighs about 1 gram and second-hand smoke is classified as a health hazard. Now you have a log fire burning say 4 kg per night, the smoke going up the chimney as second-hand and spreading throughout the neighborhood. Where’s the EPA when you need it? Hmmm, probably fixing up old mines or rusty water pipes … somewhere.
Their top people have been in Flint Michigan for the past few years seeing to the water in that city.
God help them.
The EPA has banned most wood stoves last year.
Mr Foster,
You make a fundamental error. COP21 is part of Agenda 21. We are all just peasants to the ecowatermelons.
Why would working class peasants each need their own family auto mobile? Public transportation and bicycles (like eco friendly North Korea) will be provided.
Why would each live in a single family home with its own furnance and temp controled by said peasants?
Soviet style block apartments will be provided, along with heat and warm water, unless the tenant-peasants complain, then it will be shutoff until complaints stop.
Agenda 21, saving mankind from itself. Got it?
If gas is used for heating and gas is used for electricity, I don’t think it’s possible that electric heating could be more efficient. There are serious thermodynamic losses in electrical generation: I believe that even with the most modern combined-cycle turbines the efficiency is still only about 70%. Add to this the transmission and distribution losses.
Best CCGT are 61% efficient run as baseload. T&D losses are greater than 10% depending on grid. Can be as high as 30%. The high efficiency gas (propane) furnace at my farm house is 95%, since the output is heat, not electricity. So electric heating wastes about half the energy potentia of natural gas. Dumb. UK, get fracking. If worried about CO2, CCGT produces about 35% of what Drax does from coal.
You could never heat in winter with wind generated electricity in the UK. The winter high pressure systems are when it is coldest and there is the least wind. National Grid data says that condition can persist for days. First blocking high, millions would freeze to death.
Exactamundo.
“T&D losses are greater than 10% depending on grid. Can be as high as 30%.”
Where? In ridiculously large countries?
Well, you can’t “reduce” the size of countries can you? Shrinking France, Canada, or Australia, China or the Russians might irritate them. And they’d STILL have to cross-connect their grids. Local power is used locally, transmitted as SHORT a distance as possible EVERYWHERE. Now, the regional (800-1200 mile) “grids” ARE cross-connected at specific “tie points” that are very well regulated. BUT! The power consumed at each local utility IS generated as close as possible to MINIMIZE the power transmitted across these tie-points. Losses further than 500-600 miles are very, very wasteful of energy. Distributing power further than 100 – 150 miles can be tolerated, but is not desired.
Best way to describe is as follows.
You have a long garden hose, 20 mm in diameter, but 10 meters long attached to a spray valve.
You can get 100% hose pressure at the end of the hose, but only if the spray valve is “off”. Turn it on to spray water, and you may get only 90% pressure.
Extend the hose to your neighbor’s house to try to fight a fire. You now have a 100 meter hose, and the same 100% pressure if the spray valve is “off”. Try spraying water, and you get 35% water pressure and a weak splash.
Extend the hose to 900 meters, and you barely see any flow at all.
You’re still connected “to the grid” .. You HAVE “voltage” but you have almost no “power” (“voltage x current”) after 1000 km when you try to use that power to do something useful.
“Shrinking France,”
No, France is small and densely populated. Power plants are well located (except two regions that lacks power sources, esp. Bretagne – parce que les bretons ont la tête dure). Grid losses are small.
“And they’d STILL have to cross-connect their grids.”
They don’t HAVE to, they WANT to. It’s cheaper to buy the missing bits of power from abroad than to be able to produce everything locally.
“Losses further than 500-600 miles are very, very wasteful of energy.”
That’s why you want well located power plants. (Which is impossible when Nature tells you were the power plants should be.)
For a ridiculously large country with a small population hence small power need, it might be more difficult to have power plants of the right size (“big is beautiful”) near peoples. Australia may also suffer from inept politics.
I was thinking the same thing. If you burn gas in your house, all the heat is in your house, minus what goes up the chimley, which is minimal I believe.
I am holding off on putting in a new water heater and clothes dryer until I get a propane tank for my new (for me) house. In dollars per BTU, gas and even trucked in propane is cheaper than most fuels here in the US.
Although with oil dropping to the levels it has the gap is closing. I have wondered if this is not at least part of the reason for the decline in oil prices? I think a lot of those big trucks out on the highway have switched to nat gas. The cost of oil went way up when the demand exceeded supply by a small fraction of total demand. So it would not take much reduction in demand, logically, to cause the reverse.
I wish we could get someone to propose some way of financing installing nat gas lines to every house in the country, sort of like the rural electrification act did that for electric power way back when.
When I lived in the UK many houses electrically heated used night storage heaters. They would use cheap rate power over night to heat up (I think they had some sort of ceramic blocks in them) and then be used when needed during the day.
Ah I see Kev-In-UK has made a reference to storage heaters. Yes I don’t know of anyone that uses them anymore (Very expensive compared to gas). Most central heating systems are gas fired boilers for both space heating, through radiators in each room, and hot water.
This question of efficiency is important I think especially when we’re talking to what Simple-Touriste calls an “eco-loon” (I like that very much BTW :). It seems burning either fossil fuels or “biomass” (aka “green” coal) will produce CO2 in similar if not identical amounts to burning the same substances locally, with the theoretical advantage that more waste products might be economically recovered in the centralized, mass production case.
But to what degree? If thermodynamic efficiency is 61% at the plant, and there’s a 30% transmission loss, a central plant burns 2x the fuel to provide the same power. Unless ts waste recovery is perfect, it can’t possibly compete with a 98% efficient gas furnace on-site from an emissions perspective?
Nuclear and hydro power are obviously a different story, but it seems to me someone’s leg is being pulled whenever the tech being advanced involves actually using combustion of some sort.
“there’s a 30% transmission loss”
If so you have a badly designed system, maybe the power plants are too remote. Maybe because they use “renewable energy” that couldn’t be used elsewhere.
“it can’t possibly compete with a 98% efficient gas furnace”
Where can such thing be found?
Will it be 98% efficient for all its lifetime? What is its lifetime?
Sure. A simple hot water heater, gas-fired, well-insulated inside a home’s walls with a clear burner is about 95-98% efficient at heating water in the homes as described above. Lasts 12-15 years. Costs little. Found worldwide. In civilized countries burning fossil fuels. When it needs replacing, as in my daughter’s house last week, it takes one trip by a plumber and a soldering iron, couple of screwdrivers to install. Two hours. Then you’re good for another 12-15 years.
” A simple hot water heater, gas-fired, well-insulated inside a home’s walls with a clear burner is about 95-98% efficient”
So you are telling me that only 2% goes in the exhaust? How is that even possible? What is the output temperature? What is the size of heat exchanger? Can you fit that huge device in a flat?
“Costs little”
How little? Less than 300
Also, how much is the maintenance? (the mandatory check every year)
The problem with central heating here is the huge fix cost compared to cheap electric heaters.
I’m afraid that the author has his assumptions and sums very wrong. He is confusing Btus with kW. The average home would need an electric boiler about 17kW, not 60! An average electric shower is 9kw, not 7kw, and an oven about 2kw not 10kw!
The future for domestic heating in the UK looks likely to be combined heat and power units – run by gas, to produce power for electric heating, and the heat produced would provide hot water needs. The current problem with these is that they are £20,000 a piece. With such units, the draw on the national grid will actually diminish, not increase. The government’s preferred plan is district heating (so-called Heat Networks), but these have problems all of their own.
I had similar thoughts – most domestic CH boilers will be 15 to 20kW, but for on demand hot water it is higher, I think ours is 30 or 35kW.
For the last 40 years or so, since the widespread distribution of natural gas, house heating has mostly been by gas. I personally believe this has accounted for a lot of the UHI in towns, as folk tend to have more ventilation and gas is much cheaper than electricity. When I was a kid, we had storage heaters, and my parents were always poor due to the cost and outr house was always kept as cool as possible! I don’t know of anybody on night time electric (storage heaters) anymore, though I’m sure there will be some in more rural areas.
The article is somewhat alarmist and a bit ‘out’ on the figures, but the underlying principle of an grid electric only energy supply system is still absurd. The only way a full electric system can operate without massive grid/load/generation improvements would be if ALL housing became much more efficient in respect of insulation and therefore energy requirements. Very modern ‘efficient’ houses can be heated with a few kW so I believe? – which is kind of what most houses use on top of their gas central heating!
On the presumption that every house in the UK is going to last another 40 years (apparently mortgage companies assume such a lifespan for mortgage purposes?) before being replaced, it is going to take a long long time before we are a nation of thermally efficient residents!
Here in Florida almost everyone has electric heat, hot water, cooking, and clothes drying. Up in Philly these are all nat gas, and have been forever.
There are no gas pipeline distribution networks down here. If you want gas, for nearly everyone except industrial use in certain areas, you must use propane, which is not as cheap, and can run out during emergencies.
I should have added, that re nat gas availability for household use, I think once you are outside of the big cities up north, most homes do not have gas service via direct pipes. Using Florida because I know that for sure here, but I think the Western States, and anyplace that homes are spread way out, do not have gas.
All the old big cities do, because the pipes were in before electrification. Up in Philly, there are gas lines over a hundred and fifty years old…consisting of cast iron based tubes of rust, mostly. Every Spring, esp ones like last year, soil settles and lines rupture and bad things happen. Too expensive to dig up a city to proactively replace them, it would seem.
When I lived in the Wairarapa in New Zealand (NZ), a rural region north of Wellington, almost all houses where heated electrically and by that I mean stand-alone heaters plugged in to a wall outlet. Most houses do not have cavity wall insulation and walls are just 100mm thick with 10mm – 20mm of exterior weatherboard and 10mm plasterboard inside. The meters could be remotely controlled and high demand appliances like ovens could be effectively “turned off” (Well, it was in my house anyway as it was new). However, I had propane gas water heating. Two 45kg bottles. Used to last about 2 weeks per bottle for bathing and cooking (I actually don’t recall accurately length of time and costs anymore). Electricity in NZ, even though mostly from hydro, is very very expensive IMO. But then 15% GST is added to the bill too…and you are billed monthly.
“The average household boiler is rated at 60 kiloWatt”
This converts to 200,000 BTU/hour. That is an industrial sized boiler — they don’t make residential units of that capacity. 15-20kW is probably more reasonable.
I think you still have a point but there are some serious errors in your estimates.
Reality will have to dawn soon. Cop 21 commitments cannot be achieved with available technology, even if there is a big swing to nuclear. The zealots are in denial over the impracticality of their proposals.
Philip. I hope that I don’t seem harsh but your figuring of electrical power required to replace gas furnaces is way to high or your average houses in the UK are really big. A 1.5KW electrical heater in each room would be plenty for most houses. They would not have to be on all the time either. Another error is to assume that because a gasoline powered car has a 100 hp engine that it uses 100 hp. We should avoid using global warming alarmist tactics of greatly exaggerating a small problem.
The only way to achieve COP 21 goals is to drastically reduce consumption(consumers). There are no realistic plans to increase generating capacity. That has always been the long-term intent of the neo-fabians behind this scheme.
A normal swedish residential house, with direct electrical heating, would seldom have more than 25A main fuses, or max power of 16 kW.
The energy consumption, annually, could be some 20.000 kWh.
All household energy, for ovens, warm water, etc. is included.
A gas heated house could have a much higher nominal power rating, but enegy consumtion would be about the same. Some recalculation needed.
I have a 60 yr old semi in UK with gas heating. . Boiler 17kW/hr. Gas usage annual, 8200 kWhr, electricity1900 kWhr.
[“semi” is a small, semi-detached apartment? (In the US, a “semi” is a very large, detactable tractor and its “semi-trailer” combination. ) .mod]
Wil Pretty
No air conditioning, right?
Is your “boiler” also a hot water source in the summer?
Is your “boiler” indoors – inside the heated walls of the house in both summer and winter?
Is your gas-fired “boiler” vented so (only) the combustion fumes are vented outdoors, and very little of the heated indoor non-combustion air?
(A wood fireplace, for example, vents an amazing mass of “heated” room air outdoors through the chimney opening. that used-be-be-heated room air (far more mass than the combustion air needed to burn the wood!) must be replaced (around the warm living room fireplace) by cold air coming from the bedrooms and kitchen and storerooms and basement, which in turn is replaced by outside very cold air coming via drafts through holes and gaps in the walls and around doors and windows. Thus, a Franklin stove sits in the middle of the room in front of a CLOSED fireplace opening, radiating warmth in all directions from its metal walls and top, but the Franklin stove has a closed door to its fire and a long tube surrounding the exhaust gasses. That long tube itself is a radiator and a convection source of heat, but it prevents the room air from getting sucked into the draft into the fireplace and up the chimney.)
Are your electric lights fluorescent or LED or incandescent?
How long is your heating season, and how long is the “heat” needed from the water-filled (?) radiators?
All of your radiator piping is inside the heated area, right? (None goers through an unheated crawl space or up and through an unheated attic? If any goes through the basement (crawl space) is that crawl space or basement competely vented, or it is trapping heat below the floors?
There is a method to the madness of my questions, but my answer to your single simple question about your single simple house of “How much electric power is needed to replace your gas heat?” depends on EVERY one of the answers.
Semi in UK is a semi-detatched house. On average 3 bed.
I drive 10000 miles per year, that works out at 11100 kWhr.
If I was all electric my electric use would be 11x current.
RACookPE1978
I would say the answer to most of your questions are – Yes.
Lighting is Fluorescent + LED
Air Conditioning is supplied by windows in the Summer.
Heating season normally Dec through April but December was very mild in UK this year.
“Boiler 17kW/hr”
W is a unit of power or if you prefer unit of energy over time
W/h means power over time or if you prefer energy over time over time, it’s a unit of variation of power or if you prefer variation of variation or energy
My fuel costs in UK are (/kWhr) Gas £0.044, Diesel £ 0.09, Electricity £0.134.
Current fuel costs are £1615 PA. Were I to be all electric at current prices it would cost me.£2834 PA
S P,
Excuse me, but you got that slightly incorrect.
Watts are power units. Power times time is equal to energy.
Power is sold in units of energy, or kilowatt-hours.
A kW-h is not power divided by time, but power times time.
So: Joules/second x seconds = joules, which is energy.
Energy/time x time = energy, the general case.
Yes, semi-detached, basically what looks like to be one house, is in fact two [dwellings], like a mirror reflection. Very common in the UK. The three basic structures in the UK are terraced, semi-detached and detached (Houses only, not apartments or units (Aus) or flats (UK)).
Semi-trailer (US) = Articulated lorry/truck (UK – HGV Class 3 if I recall correctly).
We call that a duplex here in the US.
A normal swedish residential house, with direct electrical heating, would seldom have more than 25A main fuses
==============
Typical North American house has a 100A main, though many newer houses are installing 200A service to accommodate electrical heating. It can be a real problem to heat a North American house on 100A service.
The same problem likely exists in other countries. The houses were never designed for electric heating or electric cars. They quite simply do not have heavy enough wiring to take the additional load.
So while this all sound well and good in theory, as soon as you try and actually implement all electric, you find that you will need to rewire the whole country. An exercise that would require many decades at a minimum.
I find this funny somehow the person making this proposal does not understand electricity distribution has about a 95% delivery rate heat pumps are efficient in mild temperatures and a low temperatures you need direct heating which is accomplished by using the current to heat wire directly which is very inefficient. electrical heat in a cold climate is a very expensive and costly endeavor. Gas delivery is over 98 % efficient and does not suffer from the extreme cold problem. It can have problems if it distribution system is not robust enough for extreme cold but that only a design problem which electrical distribution system can also suffer from.
Mark, You ought to come over to Norway and tell people this – electric heating is normal here (in what I consider a cold climate) and the only alternative anyone building new houses talks about are ‘varmepumper’, which is to say air-conditioners.
…Because in winter, there is after all so much heat energy to be extracted from the frigid air outside.
Even though Norway is normally the second largest supplier of gas to western Europe, almost no one uses gas for domestic heating or hot water to exploit indigenously sourced gas.
The rationale for this is all that ‘free’ renewable energy coming from indigenously melting snow turning turbines at 1166 hydro-electric power stations of varying size (the renewable, carbon neutral energy that greens prefer not to talk about, because it’s what they spent the 1970s complaining about). Evidently electricity used to be cheap in Norway, so inefficiently heating one’s wooden house with a wall mounted electric radiator used to make sense and even as electrickery becomes more expensive, old habits die hard.
And domestic gas reticulation infrastructure is conspicuous by its absence.
So, this demented scheme for the UK to switch entirely over to the ‘lecky can be solved if they can find enough mountain watersheds to dam up and exploit. Or are people still thinking it’s sensible from an energy security viewpoint to erect solar farms in Algeria and Libya and run a big long flex up to Blighty?
Not to mention that while our electrical system is subject to storms, our gas never fails. If I install a gas-operated backup generator I could hold out in a power failure for weeks.
“our gas never fails”
Until the electric grid fails.
“simple-touriste
January 23, 2016 at 8:00 pm
Until the electric grid fails.”
Exactly! What pumps gas, these days, to houses? Electrically powered pumps! Gone are the days of the gas tower you used to see in the UK which used gravity to “pump” gas to local users.
The French greens (the political party Les Verts, the antinuclear associations under the umbrella of Sortir du nucléaire, all the future generation stuff… I can’t list them all and I forgot their names anyway) are STRONGLY anti-electric heating and pro combustion heating, in the name of reducing CO2 output.
17kW is its rated output. I am charged per kWhr so usage at 100% will be 17kWhr/hr.
Wil Pretty
Just to show how complex the entire nation’s “convert to wind-powered electricity and stop burning gas” problem actually becomes, let’s look at this simple little problem.
In your case, if this were a gas-fired water heater, you’d burn natural gas at a constant, efficient rate in a single burner when the water gets cold, then the burner stops when the water tank is hot enough. The tank refills with cold water, the average temperature goes down, the burner goes on again.
But your water heater is indoors, so ALL of the heat energy lost from the water tank stays IN the house heated area. No use of hot water, only parasitic losses occur (the tank does get colder slowly) and the gas seldom is needed. BUT! Every watt of “lost energy (from the water tank) IS USED in winter time as “extra heat” into the living space. Now, the only “wasted heat” is that chemically in the combustion gasses up and out the flue (hot CO2, hot water vapor as chemicals), and the thermal hot energy in the exhaust gasses (CO2 and water vapor) plus entrapped room air accidentally brought into the combustion chamber and not burned. 2% to 15% depending on how effective your setup is. So, 98% of the chemical energy of the natural gas entering the house IS USED to heat water directly or to heat the house through the water heater walls and pipes.
In summer, you have no air conditioning loads, so there is NO extra energy needed in the air conditioning system to counter the extra heat lost from the hot water pipes and water heater walls. In the US south, where AC is used, there IS an extra electrical load needed to cool the room air around a water heater!
Incadescent bulbs. Much of the power of an incandescent bulb IS direct resistance heat, and so every light bulb deposits ALL of its current as either light or heat INTO the room where it is running. In winter, in your house, this “heat loss” IS “100% efficient” at REDUCING your house heating bill. In summer, in YOUR case (but not in mine!) every light running is 15% efficient in generating light and 85% (or more) lost or wasted energy. In MY case where AC is needed mid April to mid-October, EVERY extra excess watt of heat from an incandescent bulb subtracts from a winter heating need and adds to a summer AC load.
So. Natural gas water heater in your case is some 95 – 98% efficient in heating water year round.
Now, how about electric power?
A lot depends on how you generate the electric power. All electric distribution (other than the very loooong distances needed for the distributed microscopic wind turbine generators) are about the same: 97 – 95% efficient over short distances, losing a lot of power over long distances. (In the UK, this is not as bad as the 45 – 65% losses for transmission grids longer than 1000 miles her in the US.)
An “average” nuke is 35-37% percent fuel efficient (electric power out/nuclear fuel in), because the thermal margins are lower and no superheated steam can be generated.)
An “average” fossil-fired coal plant is 43% – 47% fuel efficient (electric power out/fuel energy in), plus you have more “chemical energy” left in the masses of dust and ash – which does make very good concrete filler, by the way.
A direct drive single cycle gas turbine is also now about 45% efficient, older ones 40-42% since they were used lower pressures and could only be allowed lower temperatures across their turbine blades.
Multi-staged secondary cycle gas turbines (gas turbine exhaust heating steam recovery boilers running steam generators are 60-64% efficient. Not quite as large as nukes or fossil-fueled coal plants, these combiend cycle plants are the most efficient electric producers worldwide.
So, the electricity is produced – but only after losses of 35% to 65% of the fuel burned.
It is transmitted cross-country, inducing further losses of the already lower efficient energy.
It enters the house wall, and does the same thing as the gas being burned: No “extra” benefits of the electricity already being needed light or heating food or cooking food or cooling the refrigerated food or making ice or freezing food or sanitizing utensils or washing clothes even. Just heating water.
So if electricity is used to heat water, or to heat the house, ALL current loads are still needed 100% of the time, PLUS all of the “current” heating loads are added. At an energy burned cost of 1.53 TIMES the “heat load (1/.65 the fuel efficiency of combined cycle “best available) to 2.72 TIMES the heat load of an average nuke fuel efficiency!
Talking of incandescent bulbs. In the UK coloured bulbs, to create “mood lighting” have been banned. You can only buy the clear glass bulbs, I am sure they will be banned too (Apparently they consume less power. Must be almost impossible to detect). Also, because electricity is so expensive most houses will have cavity wall (Standard 9″ cavity brick wall), ceiling, under floor insulation as well as insulation on the hot water tank and any under floor pipes as well as double glazing. This has been common practice in the UK for many years. I remember fitting my parents hours with insulation in the 80’s. Matters not because power suppliers keep putting up prices, and with the Govn’t Climate Change Act in force, it’ll only get worse. I pity the elderly and poor.
Your calculation for the amount of KW needed to charge the electric cars is incorrect because you assumed that the car batteries are charged in one hour. Assuming an electric car uses 75 kw and can go about 200 miles at 75% load or 50mph(this is a guess), then it would use 56 KW for 4 hours or 225 KWH. 225KWH spread over 14 hours (the time required to recharge the batteries from 5PM to 7AM) would require about 16 KW. This is about 21% of the 75 KW figure in your calculation meaning that instead of the 2 TW of power required you would need .42 TW of power. Still a huge amount. This doesn’t demean your article but I don’t think it is necessary to play the lefts game of exaggeration to make our point.
would require about 16 KW
====================
at 240 volts, this about 66.7 Amps!! There is almost nothing left to run your household! Really, has anyone thought this through!?
A slightly older US home has a 100 amp service which can supply 240 volts for a Level 2 charger which can supply up to 19.2 kW. This isn’t as much of a burden as you might think, since overnight your other electrical usage is likely to be low and a full charge state is achieved in 8 hours. US homes at least are notorious for having services WAY larger than they generally need. When I looked at a portable or fixed generator for emergency use, I realized that a 7.5 kW unit could provide everything I needed except for air conditioning.
Always remember it is your money they want to spend. It is your life they want to control. Pretty simple, vote these people out of office!
Terry Bixler,
Correctomundo. That’s at least a temporary answer. But the next leftist will carry on. “Two steps forward, one step back”. Speaking of “Forward!”…
President Obama is a sweet talker, but he lies like Hillary. Watch his actions instead. Does any of this look familiar:
How to create a social state by Saul Alinsky (summarized):
There are 8 levels of control that must be obtained before you are able to create a social state. The first is the most important.
1) Healthcare – Control healthcare and you control the people.
2) Poverty – Increase the Poverty level as high as possible, poor people are easier to control and will not fight back if you are providing everything for them to live.
3) Debt – Increase the debt to an unsustainable level. That way you are able to increase taxes, and this will produce more poverty.
4) Gun Control – Remove the ability to defend themselves from the Government. That way you are able to create a police state.
5) Welfare – Take control of every aspect of their lives (Food, Housing, and Income).
6) Education – Take control of what people read and listen to; take control of what children learn in school.
7) Religion – Remove the belief in the God from the Government and schools.
8) Class Warfare – Divide the people into the wealthy and the poor. This will cause more discontent and it will be easier to take from (Tax) the wealthy with the support of the poor.
Looks like 8 for 8, doesn’t it?
db
And several out of eight for the UK.
Maybe – mebbe – not 2, 5, and 6 – if, like your present writer – one wishes to be extraordinarily charitable to the ‘Ins’ of Cameron and his pals . . . .
Auto
“dbstealey
January 23, 2016 at 12:50 pm
4) Gun Control – Remove the ability to defend themselves from the Government. That way you are able to create a police state.”
This is in effect in Australia, right now, thanks to little Johnny Howard in the 1990’s. And yet, there are more “ïllegal” guns in Australia than before. More home-made guns. There are more guns finding their entry through ports and airports in to Australia than before. There is more gun crime. Gun laws DO NOT stop criminals from committing gun related crimes. But they do exactly what you say, enable the creation of a police state where citizens cannot defend themselves from said state. And most people I discuss this matter with say “If you have not committed an offence/crime, you have nothing to worry about.” They seem to forget that freedoms and liberties are being systematically eroded to the point that no-one will be truly free from the state and state control. May as well move to North Korea then.