From Stanford University
While 160 companies around the world have committed to use “100 percent renewable energy,” that does not mean “100 percent carbon-free energy.” The difference will grow as power grids become less reliant on fossil power, according to a new Stanford study published in Joule. Entities committed to fighting climate change can and should measure the environmental benefits of their renewable strategies accurately, the authors write.
Current methods of estimating greenhouse gas emissions use yearly averages, even though the carbon content of electricity on the grid can vary a lot over the course of a day in some locations. By 2025, the use of yearly averages in California could overstate the carbon reductions associated with solar power by more than 50 percent when compared to hourly averages, the paper shows. One finding of this analysis is that wind power – not solar – needs to be the next wave of investments for California. Similar analyses could suggest different options like nuclear power, geothermal energy, and long-range transmission in other locations.
“To guarantee 100 percent emissions reductions from renewable energy, power consumption needs to be matched with renewable generation on an hourly basis,” said Sally Benson, co-author of the paper and co-director of the Precourt Institute for Energy.
“Just purchasing more solar energy in a grid that already has lots of solar generation will not result in zero emissions,” Benson, professor in the Energy Resources Engineering Department in the School of Earth, Energy & Environmental Sciences, also said.
Annual vs. hourly accounting
Corporations that claim to be 100 percent renewable do not actually cover all their power use with renewables, as some acknowledge. Instead, they purchase or generate enough renewable energy to match 100 percent or more of their electricity use over the course of the year. For energy purchases dominated by solar power, an entity generates far more electricity than it uses during the afternoon and sells the excess. Then at nighttime it purchases power from the grid, which is much more carbon-intensive if generated by burning of fossil fuels.
The use of annual averages of the carbon content of grid power is valid only when fluctuations in renewable generation are small, or when all excess renewables can be stored. Places like California, Hawaii and some European countries experience large fluctuations in carbon content due to existing renewables, and do not yet have enough storage capacity to capture all excess electricity. In California, intentional reductions in solar and wind production, or “curtailments,” reached 3 percent of total generated energy in two months last year, the paper cites.
The difference in environmental benefit between wind and solar in today’s accounting methods therefore doesn’t account for the time of day when power is delivered. Instead, the difference between emissions reductions from wind and solar generation is only related to the difference in carbon footprint between the two technologies.
“Both the carbon footprint of a large consumer and the environmental value of renewable energy assets depend on the grid they interact with,” said energy resources engineering PhD student Jacques de Chalendar, lead author of the study. “Using hourly data is the best way to measure the environmental benefit of renewables, and this will become increasingly true wherever renewable generation is growing.”
Investing in non-solar renewables
The problem with investing in more solar panels in California is that the output often will not cause fossil fuel based generators to turn off, because they are already idle at the time of day the solar panels will produce power. In the paper’s case study, which approximated a hypothetical 1 megawatt constant load in California, short-term annual and hourly carbon estimates did not show significant differences in 2018. But by 2025, the two methods of estimation varied widely.
Using annual accounting, a 100 percent solar strategy in 2025 would reduce carbon emissions by 119 percent of the hypothetical company’s carbon footprint. Using hourly emissions, though, the number shrinks to 66 percent, according to the study. For a 100 percent wind power strategy, annual averages indicate 131 percent carbon reductions, which actually jumps to 135 percent using hourly data.
“In California, gas is often the marginal generation source and has a higher emissions rate than average grid power, which is why purchasing renewables can result in a net negative carbon footprint,” said de Chalendar. “A consumer with a 100 percent renewable energy supply can actually reduce the carbon footprint of the grid in addition to their own carbon footprint.”
Energy storage
Hourly carbon accounting methods could help large consumers increase their use of low-carbon power from the grid. With more accurate information, consumers can move flexible consumption to times of the day when grid power is cleanest. The data could also help consumers decide whether they should invest in large-scale energy storage projects as the most economical way to meet their carbon targets. This is because energy storage allows consumers to draw electricity from the grid during low-carbon periods and store it for later use.
Stanford University, for example, recently electrified its heating and cooling system and added thermal storage to cut emissions to a third of their 2014 peak levels. By using its energy storage to maximize purchases of electricity in the afternoon when solar power dominates the California grid, Stanford could reduce emissions from heating and cooling by an additional 40 percent, according to a study published earlier this month by the authors of this paper.
Location-specific analyses might suggest different types of low-carbon investments and strategies for other regions, the paper notes. In Great Britain, for example, grid carbon intensity is currently lower at night, meaning different types of renewable investments or consumption behaviors might be better. Alternatively, long-range transmission of electricity could also allow entities to transport low-carbon electricity elsewhere when there is an oversupply and receive low-carbon electricity when there is a minimal amount of renewable electricity generation.
“Transparent, precise and meaningful carbon accounting is necessary,” Benson said. “And if it’s done properly, we can make the right investments in renewable power and create a more sustainable grid.”
###
All data and supplemental code used in their commentary are publicly available here.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
I would like to see a calculation of the amount of electricity a wind turbine generator manufacturing plant needs to produce one wind turbine at a time, including blades, and correlate that to the number of same sized wind turbines needed to supply that power. Include calculation of number of wind turbines of that size needed to produce electricity needed to reduce calcium carbonate to lime for cement needed for concrete base. Include number of turbines needed to charge EV trucks delivering said cement and other construction materials.
Finally, calculate whether output of turbine plant could keep up with the failure rate of turbines in the 2 wind farms. I can imagine a wind farm powering turbine and cement production facilities with total output consumed by replacement needs of that very wind farm.
SR
re: “I would like to see a calculation of the amount of electricity a wind turbine generator manufacturing plant needs to produce one wind turbine at a time, ”
As a starting point, what is the cost of said completed and installed wind turbine?
Then, what is the operational cost per year from date of install?
Also include cost of high voltage and medium voltage ‘plant’ necessary to bring all this electricity back to ‘load centers’ made up of people, buildings and residences. Some of the high cost of wind is on account of wind farms being located some distance away from ‘load centers’ (population centers) and therefore require HV transmission facilities to bring that energy back to the “big cities”.
Build, maintain and finally decommission.
“In Great Britain, for example, grid carbon intensity is currently lower at night, meaning different types of renewable investments or consumption behaviors might be better. ”
No, that is a false assumption. Yes carbon (O2) is lower at night as the proportion of the load following fossil fuel stations is lower. Move load to the night from the day as per ‘ consumption behaviors might be better’ will simply mean that the CO2 emission increase at night as fossil fuel generators increase output to match the load.
I don’t think the authors quite understand how power is generated for the grid?
One word: Nuclear
Were it not for the potential of new energy sources on the horizon, I would agree.
Otherwise, I will have to go with two words in response to yours:
“Stranded assets.”
Here in the UK we can see the current status of the National Grid on a site called Gridwatch, and I have been checking it daily for a while. We have a lot of offshore wind farms, and on a good day they can supply about 30% of demand. We have also replaced coal with gas. One day recently wind only managed 0.6% of demand, and gas was ramped up to 22% extra over normal that day. That’s why wind can never be carbon free.
And it’s here where the rubber meets the street. Those yearly averages are nothing but one method to shift costs renewables should be bearing over to the fossil generation assets. A truly honest company would only state their energy that actually came from renewable assets as their renewable share. Buying fossil power over nighttime and selling excess solar power during daytime at a guaranteed price (above market) just shots excess power into the grid when it’s not needed pushing power prices down for the others. We need a database of all those companies that signal virtue with this fraud and cut their possibility of getting fossil power during night or at least don’t guarantee fixed prices for their unneeded solar daypower. Right now, they make power more expensive for the average user which shifts the cost of renewable power en more towards those that can least afford it.
i would like to know how the greenies are going to stop the volcanoes from erupting the earth crust is starting to shift a lot more volcano and earthquakes will be the result
From Ontario, Canada:
“Ontario’s Electricity Dilemma – Achieving Low Emissions at Reasonable Electricity Rates”. Ontario Society of Professional Engineers (OSPE). April 2015.
https://www.ospe.on.ca/public/documents/presentations/ontarios-electricity-dilemma.pdf
Page 15 of 23. “Why Will Emissions Double as We Add Wind and Solar Plants ?”
– Wind and Solar require flexible backup generation.
– Nuclear is too inflexible to backup renewables without expensive engineering changes to the reactors.
– Flexible electric storage is too expensive at the moment.
– Consequently natural gas provides the backup for wind and solar in North America.
– When you add wind and solar you are actually forced to reduce nuclear generation to make room for more natural gas generation to provide flexible backup.
– Ontario currently produces electricity at less than 40 grams of CO2 emissions/kWh.
– Wind and solar with natural gas backup produces electricity at about 200 grams of CO2 emissions/kWh. Therefore adding wind and solar to Ontario’s grid drives CO2 emissions higher. From 2016 to 2032 as Ontario phases out nuclear capacity to make room for wind and solar, CO2 emissions will double (2013 LTEP data).
– In Ontario, with limited economic hydro and expensive storage, it is mathematically impossible to achieve low CO2 emissions at reasonable electricity prices without nuclear generation.