Buoy Temperatures, First Cut

Guest Post by Willis Eschenbach

As many folks know, I’m a fan of good clear detailed data. I’ve been eyeing the buoy data from the National Data Buoy Center (NDBC) for a while. This is the data collected by a large number of buoys moored offshore all around the coast of the US. I like it because it is unaffected by location changes, time of observation, or Urban Heat Island effect, so there’s no need to “adjust” it. However, I haven’t had the patience to download and process it, because my preliminary investigation a while back revealed that there are a number of problems with the dataset. Here’s a photo of the nearest buoy to where I live. I’ve often seen it when I’ve been commercial fishing off the coast here from Bodega Bay or San Francisco … but that’s another story.

bodega bay buoy

And here’s the location of the buoy, it’s the large yellow diamond at the upper left:

bodega bay buoy location

The problems with the Bodega Bay buoy dataset, in no particular order, are:

One file for each year.

Duplicated lines in a number of the years.

 The number of variables changes in the middle of the dataset, in the middle of a year, adding a column to the record.

Time units change from hours to hours and minutes in the middle of the dataset, adding another column to the record.

But as the I Ching says, “Perseverance furthers.” I’ve finally been able to beat my way through all of the garbage and I’ve gotten a clean time series of the air temperatures at the Bodega Bay Buoy … here’s that record:

air temp bodega bay buoy

Must be some of that global warming I’ve been hearing about …

Note that there are several gaps in the data

Year 1986 1987 1988 1992 1997 1998 2002 2003 2011

Months  7    1    2    2    8    2    1    1    4

Now, after writing all of that, and putting it up in draft form and almost ready to hit the “Publish” button … I got to wondering if the Berkeley Earth folks used the buoy data. So I took a look, and to my surprise, they have data from no less than 145 of these buoys, including the Bodega Bay buoy … here is the Berkeley Earth Surface Temperature dataset for the Bodega Bay buoy:

berkeley earth bodega buoy raw

Now, there are some oddities about this record … first, although it is superficially quite similar to my analysis, a closer look reveals a variety of differences. Could be my error, wouldn’t be the first time … or perhaps they didn’t do as diligent a job as I did of removing duplicates and such. I don’t know the answer.

Next, they list a number of monthly results as being “Quality Control Fail” … I fear I don’t understand that, for a couple of reasons. First, the underlying dataset is not monthly data, or even daily data. It is hourly data … so while the odd hourly record might be wrong, how could a whole month fail quality control? And second, the data is already checked and quality controlled by the NDBC. So what is the basis for the Berkeley Earth claim of multiple failures of quality control on a monthly basis?

Moving on, below is what they say is the appropriate way to adjust the data … let me start by saying, whaa?!? Why on earth would they think that this data needs adjusting? I can find no indication that there has been any change in how the observations are taken, or the like. I see no conceivable reason to adjust it … but nooo, here’s their brilliant plan:

berkeley earth bodega bay adj

As you can see, once they “adjust” the station for their so-called “Estimated Station Mean Bias”, instead of a gradual cooling, there’s no trend in the data at all … shocking, I know.

One other oddity. There is a gap in their records in 1986-7, as well as in 2011 (see above), but they didn’t indicate a “record gap” (green triangle) as they did elsewhere … why not?

To me, all of this indicates a real problem with the Berkeley Earth computer program used to “adjust” the buoy data … which I assume is the same program used to “adjust” the land stations. Perhaps one of the Berkeley Earth folks would be kind enough to explain all of this …

w.

AS ALWAYS: If you disagree with someone, please QUOTE THE EXACT WORDS YOU DISAGREE WITH. That way, we can all understand your objection.

R DATA AND CODE: In a zipped file here. I’ve provided the data as an R “save” file. The code contains the lines to download the individual data files, but they’re remarked out since I’ve provided the cleaned-up data in R format.

BODEGA BAY BUOY NDBC DATA: The main page for the Bodega Bay buoy, station number 46013, is here. See the “Historical Data” link at the bottom for the data.

NDBC DATA DESCRIPTION: The NDBC description file is here.

 

Get notified when a new post is published.
Subscribe today!
0 0 votes
Article Rating
228 Comments
Inline Feedbacks
View all comments
John Peter
November 29, 2014 9:06 am

“Steven Mosher November 29, 2014 at 7:06 am”
If that is all he can say about this post I have gone even further OFF Berkeley Earth.
This one “made my day” “Finally one last time.
The data isn’t adjusted.
It’s a regression. The model creates fitted values.
Fitted values differ from the actual data. Durrr
Lots of people like to call these fitted values adjusted data.
Think through it”.

crosspatch
November 29, 2014 9:13 am

Any temperature record that shows cooling must be adjusted. The adjustment process is “spring loaded” to adjust any sudden downward change. That “sudden” change might be the natural result of a few days of missing data when the season is naturally cooling, might be due to a change in wind direction, a change in ocean current, could be anything. But the process is built to look for a “adjust” any sudden downward change upward. The idea that there could be a NATURAL sudden downward change is completely alien to them. Only upward changes are “natural”, apparently.

Billy Liar
November 29, 2014 9:21 am

The Bezerkeley ‘scalpel’ paper:
http://scitechnol.com/2327-4581/2327-4581-1-103.php
Extract from the summary:
Iterative weighting is used to reduce the influence of statistical outliers. Statistical uncertainties are calculated by subdividing the data and comparing the results from statistically independent subsamples using the Jackknife method. Spatial uncertainties from periods with sparse geographical sampling are estimated by calculating the error made when we analyze post-1960 data using similarly sparse spatial sampling.
Trying to pretend the data isn’t ‘adjusted’ by calling the adjustments ‘fitted data’ borders on the bizarre.
The full paper is available (for free).

Steve from Rockwood
Reply to  Billy Liar
November 29, 2014 9:39 am

If you use iterative weighting to reduce outliers the resulting “fitted” data converges to the mean rather than eliminating a trend.The only way to eliminate a trend is to adjust the mean over a time period that is long enough to be insensitive to outliers but much shorter than the time series (e.g. several months in a decadal time series sampled daily).

Billy Liar
Reply to  Steve from Rockwood
November 29, 2014 9:50 am

What their algorithm does, I think, is turn a station with a falling trend (say) into 3 stations (say) with no trend. Any ‘statistical’ outliers are removed whether or not there is any good reason to do so.

Matt
November 29, 2014 9:23 am

Did you ask BE for comment before posting? There is that rhetorical (?) question at the bottom, so I am wondering whether someone at BE is expected to read here and act upon your invitation, or whether they didn’t/wouldn’t grace you with a reply anyway?

Rick K
November 29, 2014 10:06 am

Willis,
Just a simple “Thank you.” I always learn something from your posts.
And I LOVE how the mighty fall with just some simple investigative questions!

November 29, 2014 10:16 am

I think Berkeley must have chosen only the two hours of normal temp collection times as if it were a land thermometer and used that for data.

Pete in Cumbria UK
Reply to  Willis Eschenbach
November 29, 2014 12:23 pm

A little further to missing data..
I’ve got myself three of the little USB data and humidity loggers. One is dangling off my washing line in my garden, another is near the middle of a 125 acre patch of permanent grassland cow-pasture (nearest building is a holiday home, empty 11 months/year and 500 metres away) The third is temp logger only and is in the company of the stopcock on my farm’s water supply ~30” underground.
I did have them taking readings every 5 minutes so as to make a good comparison with my local (3 mile away) Wunderground station which broadcasts a new reading every 5 minutes. After a couple of years, Excel on my 7yo lappy was ‘feeling the strain’ of 288 data points for every day.
Out of curiosity, as you do, I compared the daily average of the 288 points to the average of the maximum and minimum temperatures I’d recorded (just the two data values) whenever they occurred between midnight and midnight on whatever day.
To one decimal place (the loggers only record to ±0.5°C anyway), there was no difference if I used 288 points or just two data points to get the daily average. The answer was the same. It was really really surprising – 286 readings were redundant. And believe it or not, the same applies to the data coming from the Wunderground station.
It kinda makes the whole business of TOBS adjustment redundant as well dunnit and reveals what a fraud it is.

Reply to  Pete in Cumbria UK
November 29, 2014 4:42 pm

Pete writes “there was no difference if I used 288 points or just two data points to get the daily average.”
Now that IS interesting. It does make you wonder just how justified the TOBs adjustment is. I mean the TOBs adjustment makes sense conceptually but I wonder if the justification for its use was against enough varied test data. It’d be very agenda driven “Climate Science” if they found the effect a few times and extrapolated it to every station regardless.
Of course the reverse could be true and your experience is the exception rather than the rule…

Reply to  Pete in Cumbria UK
November 29, 2014 4:49 pm

Actually having thought about that a little more, I’m not convinced simply taking the average is the right answer. You probably need to take the average starting at say 10am for 24 hours worth of readings and compare that to taking the average starting at 10pm for 24 hours of readings to get the “TOB” bit in there.

Reply to  Pete in Cumbria UK
November 29, 2014 4:51 pm

Oh and, for example, the min of any 24 hours cant be less than the min at the start point.

Reply to  Pete in Cumbria UK
November 29, 2014 4:52 pm

Of course I meant
The min of any 24 hours cant be less than the temperature at the start point.

Reply to  Pete in Cumbria UK
November 29, 2014 5:17 pm

Bah, I’ll get the statement right eventually :-S
The min of any 24 hours can only be equal to or less than the temperature at the start point. It cant be greater (and consequently a single min may be counted twice for consecutive “days”). A similar argument applies to the max.

Sciguy54
November 29, 2014 10:52 am

Common sense time.
Someone with a bit of gravitas in the field of meteorology should compile two lists: the first would show the common ways that temperature can suddenly drop, for example a cold front passage, thunderstorm, santa anna, mistral, katabatic wind, etc. The second could show the common ways the temperature might suddenly spike upward, such as a sirocco. Follow up with a discussion characterizing the relative quantities of each “disturbance” and the likelihood that “fitting” would alter valid observations due to these conditions.
I would expect that such a conversation would reveal that many more below-expected observations would need to be “fitted” than higher-than-expected observations.

Reply to  Sciguy54
November 30, 2014 9:04 am

Well said. Thinking back over my almost 6 decade life I can think of very few times that it has suddenly gotten “hotter” but many times when it has suddenly gotten “cooler.” The hotter episodes are limited to small short wind gusts in desert gullies or washes. The cooler episodes happen a lot here in Florida when T-storms wind through. We’d get the weird, dry cold chunks of air during tornado season in the Midwest. Cold blasts coming down off a mountain etc. Sudden drops seem to be more the norm than sudden rises in temps from a purely subjective pov.

Kent Gatewood
November 29, 2014 12:11 pm

Would a land station or a buoy station be appropriate to smear (another word?) across large stretches of ocean without stations?

sleepingbear dunes
November 29, 2014 12:30 pm

After reading this post and all these comments, I thought Willis did an exceptional job.
As for Mosher in defending the BEST system? Just a “durr”. That says it all. Mosher being Mosher without enlightening us. It is not adjustment. It is some other gyration that by any other name is still a rose.

November 29, 2014 12:33 pm

Willis writes “So I’m sorry, but you are very wrong when you say that “you wouldn’t need to lose much data to put a month in question”. In fact, knocking out a full quarter of the monthly data leads to a MAXIMUM error in 1000 trials of seven hundredths of a degree …”
There is a difference between “knowing” and having an acceptable estimate. You’re talking about the latter but in the same breath wonder how Berkley Earth “lose” a whole month. Perhaps you have a better speculative answer?

Reply to  Willis Eschenbach
November 29, 2014 3:49 pm

Willis writes “Not sure what you mean by “knowing” in quotes, or what your point is.”
And the point is that if they choose to drop data rather than estimate it, then a relatively small amount of data might make a month unusable.
Above, you said “Actually, the Berkeley folks lost an entire year”
But earlier you wondered “so while the odd hourly record might be wrong, how could a whole month fail quality control?”
I speculated on your monthly statement, not on how a whole year might be missing.

Reply to  Willis Eschenbach
November 29, 2014 2:09 pm

Willis, “Now, according to the data you reference, the errors are in fact symmetrical, as they are given as ± 1°C (as opposed to say +0.5/-1.5°C).
That’s just the way accuracy is written, Willis. It’s just the empirical 1-sigma standard deviation of the difference between a calibration known and the measurement. It doesn’t imply that the errors in accuracy are in fact symmetrical about their mean.
Any distribution of error, as unsymmetrical as one likes, will produce an empirical (+/-)x 1-sigma accuracy metric.
An accuracy of (+/-)1 C transmits that the true temperature may be anywhere within that range. But one does not know where, and the distribution of error is not necessarily random (symmetrical and normal).
Here’s a NDBC page with links at the bottom to jpeg pictures of the various buoys. On the coastal buoys in particular, one can make out the gill shield of a standard air temperature sensor — similar to those used in land stations — mounted up on the instrument rack. It’s especially evident in this retrieval picture.
Those sensors are naturally ventilated, meaning they need wind of >=5 m/sec., to remove the internal heating produced by solar irradiance.
In land station tests of naturally ventilated shields, under low wind conditions, solar heating can cause 1 C errors in temperature readings, with average long-term biases of ~0.2 C and 1-sigma SDs of ~(+/-)0.3 C. None of the distributions of day-time error were symmetrical about their means. Night-time errors tended to be more symmetrical and smaller. Average error was strongly dominated by day-time errors.
So, there isn’t any reason to discount the (+/-)1 C buoy accuracy metric as the standard deviation of a random error.
Thanks for discussing buoy temperatures, Willlis. A careful and dispassionate appraisal of accuracy in marine temperatures is long overdue.

KRJ Pietersen
November 29, 2014 2:12 pm

Anything that self-aggrandisingly gives itself the acronym ‘BEST’ had honestly better make sure of itself prior to sticking its neck above the parapet. Because if it’s not the ‘BEST’, then it’s going to get found out sooner or later and isn’t that a fact.
Mr Mosher’s arrival upon and very rapid about-turn and departure from the battlefield tell their own story. He did three things in his post:
He called Mr Eschenbach “Simple Willis” for his own amusement hoping that nobody would pick him up on it.
He said “The station is treated as if it were a land station. Which means it’s going to be very wrong”.
Which kind of fouls up the BEST idea.
And he said “Finally one last time. The data isn’t adjusted. It’s a regression. The model creates fitted values. Fitted values differ from the actual data. Durrr”
Regressions and fitted values are kinds of adjustments to data. Are they not?
Overall, to mix my sporting metaphors, I’d call this game, set and match to Willis Eschenbach by a knockout.

November 29, 2014 2:14 pm

Willis writes “In fact, errors are generally not uniformly distributed, but instead have something related to a normal distribution.”
“something related to a normal distribution” seems right but not necessarily normally distributed around the mean. The sensor itself might behave like that but its the whole measurement process that you need to consider and that includes errors introduced by varying voltages provided by the battery, its condition and how/when it charges.

Catherine Ronconi
November 29, 2014 2:22 pm

The Team’s Torquemadas torture ocean data until they confess because without such manipulation, surface “data” sets would show cooling, since that’s what’s actually happening.
Phil Jones admits that after adjusting all the land records upward (even when adjusting for UHIs!), then the ocean data need to be upped even more so that they won’t be out of line with the cooked land books.
All the surface series, HadCRUT4, GISTEMP & BEST, are literally worse than useless, except as boogiemen to raise money for their perpetrators.

Reply to  Catherine Ronconi
November 29, 2014 3:41 pm

Catherine, the oceans are 71% of the planets surface. Until Argo, they were grossly undersampled. Some maintain they still are. Other than seafarers, we don’t experience these surface temperatures.
No matter how ‘adjusted’/fitted/homogenized, land temperatures can say nothing useful about global averages. There is a reason Earth is called the Blue Planet. Regards.

Reply to  Catherine Ronconi
November 29, 2014 10:03 pm

Thanks for reminding readers of this Catherine –

DHF
November 29, 2014 2:25 pm

I was taught that:
“Assumption is the mother of all mess-up’s”
Now, I start thinking that:
“Adjustment is the mother of all mess-up’s”

DHF
Reply to  DHF
November 29, 2014 2:52 pm

Or rather:
“Adjustment is the father of all mess-up’s”

David Norman
Reply to  DHF
November 30, 2014 5:25 am

And, when an Assumption is coupled with an Adjustment they frequently give birth to an Ad hominem.

Andrew
November 29, 2014 3:03 pm

The data needed to be adjusted because it is contrary to the GCM outputs.

RoHa
November 29, 2014 5:12 pm

But it seems clear that there is severe yellow diamond pollution near the California coast.

Reply to  RoHa
November 30, 2014 10:31 am

They’re going to cover them up with wind turbines so no one will notice them… especially the gulls and pelicans and condors and falcons and eagles…

stevefitzpatrick
November 29, 2014 5:47 pm

Steve Mosher,
Come on, we are waiting for a reasoned answer. Clearly, ocean measurements should not be treated as land measurements, but on the face of it, they have been so treated. What say you (and Berkley Earth)?

November 29, 2014 6:40 pm

Thanks Willis. Perhaps you have done for buoy data what Watts did for the land station data, not in the siting, but in the confidence we should have in the accuracy of the data. If you have the time, I would like to see if other buoy data are also similarly adjusted, oh sorry, fitted.

Richard
November 30, 2014 1:38 am

Boy oh Buoy! Looks like things are getting cooler.

November 30, 2014 2:34 am

Note, these are hourly measurements, not predominately min/max as all the land datasets are. And are therefore more valid measures of temperature changes over time.
In addition, they are free of the numerous local to regional scale effects on measured temperatures that exist on land.
Being fixed they are also free of any drift biases that exist with Argo.
IMO, perhaps the best air temperature trend dataset we have.
No real surprise to me they show a cooling trend.

Mervyn
November 30, 2014 3:45 am

It is a catastrophe that the IPCC (i.e. Dr Pachauri and his Panel mates), pro-global warming politicians and bureaucrats, most of the media, academia, the environmental movement, and other global warming alarmist supporters, do not give a damn about real world observational data on climate. They are only interested in climate propaganda driven by the UN.
There is now an overwhelming amount of data and research that demonstrates the IPCC’s supposition of catastrophic man-made global warming is wrong. Yet the grand deception goes on and on.
It no longer matters what the weather and temperature does anymore because, whichever way they go, the climate change charlatans just blame it all on “climate change”… global warming or cooling… droughts or floods… hurricanes or no hurricanes… winter blizzards or no wonder blizzards… sea level rise or sea-level decline… it matters not, anymore.

dp
November 30, 2014 10:32 am

Pro-CAGW data isn’t data until it’s made a pass through the Gruber engine. Thus refined, it is fit to publish.

Windsong
November 30, 2014 12:49 pm

Willis, I have a question regarding short term ocean temperature changes. With arctic air upon our area for the first time this year, decided to look at a buoy off the Washington coast to see how cold the water was. NDBC 46087 (Neah Bay) at 11/29/14, 1720 hours, Air temp of 36.3F and Water temp of 52.3F. At 11/30/14, 0720 hours, Air temp of 34.3F and Water temp of 50.0F. The two air temp readings seemed logical, but the larger difference of the two water temp readings surprised me.
Is it unusal to have that much change in the water along the coast? Or, is the effect of tides and currents moving the water temperature in larger swings than the air normal?
Also, was curious if all the buoys report temperatures in Farenheit?
Thanks