Guest blog by Marcel Crok
Over at Climate Dialogue we have started a new discussion about the influence of the sun on the climate. People familiar with climate discussions know that the sun has been and still is a popular argument to explain at least part of the warming since 1750. This has to do with solar proxies correlating well with climate proxies (in the distant past), although Willis Eschenbach in a series of posts here at WUWT has shown that the solar signal is often not easily detected in climate records.
Also the Little Ice Age coincided with the Maunder Minimum, a period with few visible sunspots. So if the sun played a role in the past, why shouldn’t it in the present?
But figuring out how the sun has varied in e.g. the past millennium isn’t easy. And in fact, the science seems to be developing in the other direction, i.e. showing an even smaller solar influence than scientists thought let’s say a decade ago. AR5 said that in terms of radiative forcing since 1750 the influence of the sun is almost negligible.
Meanwhile solar activity has dropped to levels last seen a century ago. Some scientists suggest the sun might go into a new Maunder Minimum in the coming decades. What influence will that have on our climate?
So the timing of this dialogue is apt. We have a record number of participants, namely five. Two of them – Nicola Scafetta (USA) and Jan-Erik Solheim (NOR) – believe in a large role of the sun. Mike Lockwood (GBR) – in line with AR5 – thinks the sun is only a minor player. The two other participants – Ilya Usoskin (FIN) and José Vaquero (ESP) – seem somewhere in between.
In our Introduction we asked the participants the following questions:
1) What is according to you the “best” solar reconstruction since 1600 (or even 1000) in terms of Total Solar Irradiance?
2) Was there a Grand Solar Maximum in the 20th century?
3) What is your preferred temperature reconstruction for the same period? How much colder was the Little Ice Age than the current warm period?
4) What is the evidence for a correlation between global temperature and solar activity?
5) How much of the warming since pre-industrial would you attribute to the sun?
6) Is the Total Solar Irradiance (TSI) of the sun all that matters for the Earth’s climate? If not, what amplification processes are important and what is the evidence these play a role?
7) what is the sun likely going to do in the next few decades and what influence will it have on the climate? Is there consensus on the predictability of solar variability?
There will be a lot of area to cover. Please head over to the dialogue and feel free to leave a public comment. Keep in mind that the goal of Climate Dialogues is to find out on what participants agree, on what they disagree and why they disagree.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Ionization in the zone ozone, contrary to appearances, is not evenly distributed over the polar circle (magnetic field). As a result, the jet streams are blocked in polar vortex. This weakens the polar vortex and causes pressure anomalies in the troposphere above the polar circle. This forces the circulation. These developments are particularly evident in winter, when the jet streams in the stratosphere gain speed.
http://www.cpc.ncep.noaa.gov/products/stratosphere/strat_a_f/gif_files/gfs_o3mr_40_nh_f00.gif
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/blocking/real_time_nh/500gz_anomalies_nh.gif
According to my observations that greater solar activity accelerates the jet stream and reduces the pressure anomalies over the polar circle.
The density of the solar wind affects the galactic radiation that actively affects the state of the ozone over the polar circle (magnetic field).
http://cosmicrays.oulu.fi/webform/query.cgi?startday=01&startmonth=01&startyear=2014&starttime=00%3A00&endday=18&endmonth=10&endyear=2014&endtime=23%3A30&resolution=Automatic+choice&picture=on
The NAIRAS model predicts atmospheric radiation exposure from galactic cosmic rays (GCR) and solar energetic particle (SEP) events. GCR particles are propagated from local interstellar space to Earth using an extension of the Badhwar and O’Neill model, where the solar modulation has been parameterized using high-latitude real-time neutron monitor measurements at Oulu, Thule, Lomnicky, and Moscow. During radiation storms, the SEP spectrum is derived using ion flux measurements taken from the NOAA/GOES and NASA/ACE satellites. The cosmic ray particles – GCR and SEP – are transported through the magnetosphere using the CISM-Dartmouth particle trajectory geomagnetic cutoff rigidity code, driven by real-time solar wind parameters and interplanetary magnetic field data measured by the NASA/ACE satellite. Cosmic ray transport through the neutral atmosphere is based on analytical solutions of coupled Boltzmann transport equations obtained from NASA Langley Research Center’s HZETRN transport code. Global distributions of atmospheric density are derived from the NCEP Global Forecasting System (GFS) meteorological data.
Interesting graphs… FWIW, I gathered a bunch of nullschool temp and wind graphs from just 2 days before those graphs. Shows the vortex and cyclones nicely. Comparing them is interesting:
http://chiefio.wordpress.com/2014/10/17/gonzo-gonzalo-and-cyclone-up-vortex-down/
Clearly shows warm air rising in cyclonic systems over the ‘low pressure regions’ and the polar vortex descending in the middle. Massive heat engine driven by water heat moving to stratospheric radiation to space ( IR is irrelevant to the troposphere, it is in the stratosphere that the air radiates, and then CO2 cools to space.) In the troposphere it’s all mass flow and phase changes. The images make that clear to see.
Broad circular warm flow down low, narrowing to dissipation at height. Polar vortex huge at height, narrowing to a small swirl at the surface (where you can see cold air outflow over Canada / USA and toward EurAsia…) Circles both ways moving huge heat flux via mass flow / enthalpy. IR need not apply… it only does anything of interest in the stratosphere (about 70 mb).
Now my question is what happens to the IR flow when the thermosphere about the stratosphere has a huge temperature shift from that huge UV solar shift. Hmmm? What happens when the only place where IR does anything is facing a hot thermosphere ‘up’ vs. a relatively ‘cold’ one? Can the solar UV modulate the stratospheric cooling via the thermosphere large temp and density swings? (We know that the low UV level had the thermosphere cool and shrink so much that satelite orbital life changed from the lower drag… not a subtle effect at all.)
Willis is the pressure distribution in the lower stratosphere over the polar circle.
http://www.cpc.ncep.noaa.gov/products/stratosphere/strat_a_f/gif_files/gfs_z100_nh_f00.gif
Marcel Crok,
For your wonderfully arranged dialogue, as a minimum it would be valuable to consider various historical timescales of 100 to 200 years when evaluating EAS changes versus solar changes.
It seems on that timescale is where many disputes are centered.
John
Solar influence could be incredibly simple. EUV from high activity periods causes the atmosphere to expand slightly. Larger atmosphere = larger catchment area for other incoming solar radiation.
IMO solar effects on the hydrosphere & lithosphere are also involved.
Re Question 7) “Is there consensus on the predictability of solar variability?”
http://wattsupwiththat.com/2014/03/06/new-book-twilight-of-abundance/#comment-1584185
Here is a compilation of predictions for SC24.
As you can see, there are 45 of them, more than enough to fill a roulette wheel, and they are “all over the map”.
http://users.telenet.be/j.janssens/SC24.html
SC25 is just around the corner.
Ladies and Gentlemen, faites vos jeux!
Allan, I wouldn’t say that 2021 is “just around the corner”. There, there’s my jeu…
Rich.
Thank you Rich,
A good segue to my recent post, excerpted below:
http://wattsupwiththat.com/2014/10/11/agricultural-losses-in-2014-due-to-cold-temperatures/#comment-1759748
I wrote this twelve years ago in an article published Sept 1, 2002 in the Calgary Herald:
“There is even strong evidence that human activity is not causing serious global warming.”
“If solar activity is the main driver of surface temperature rather than CO2 [as I believe], we should begin the next cooling period by 2020 to 2030.”
In 2002, SC24 was projected (by NASA) to be robust and we now know it is a dud. If anything, global cooling will happen sooner and perhaps has already started.
Bundle up this winter – looks like another cold one like last year, especially in Central and Eastern North America.
Regards to all, stay safe and warm, Allan
Re SC25 prediction, here is a note from Leif … … and 2016 IS just around the corner…
http://wattsupwiththat.com/2013/10/28/bbc-real-risk-of-a-maunder-minimum-little-ice-age/#comment-1461494
Allan MacRae says: October 30, 2013 at 11:38 am
Have you made any prediction for SC25?
lsvalgaard says: October 30, 2013 at 11:43 am
A highly speculative one is here: http://www.leif.org/research/apjl2012-Liv-Penn-Svalg.pdf
Come 2016 we should see the new polar field build and from then on I think we can predict with some confidence, not before.
May be the sun is more mysterious than climate scientist presently give it credit. See
http://www.dailymail.co.uk/sciencetech/article-2797310/dark-matter-particles-finally-coming-core-sun.html
Why a small change in TSI and spectrum over a prolonged period of time might have the opposite effect as CO2 is assumed to have. For example, forcings, change in albedo(snow cover), another one is cloud cover and another one is an increase in ice formation. The inertia of the global system suppresses the impact and makes it to look as a slow process. However the coming years it should become visible assuming cycle 25 is even weaker.
Sunspot counting is an archaic ineffective method to look for how the changes to the solar magnetic cycle and changes to the geomagnetic field intensity and orientation cause cyclical planetary warming and cooling and abrupt climate change events. There was and is a physical reason for past gradual cyclically warming and cooling and the abrupt climate change events that initiate and terminate interglacial periods.
As I noted solar wind bursts remove cloud forming ions. Solar wind bursts are caused by both sunspots (coronal mass ejections) and coronal holes. Coronal holes can and have recently occurred late in the solar cycle anomalously in a low latitude position. The coronal holes created solar wind bursts which in turn removed cloud forming ions which hence if a person does not understand the mechanisms make it appear that high GCR/CRF does not cause an increase in cloud cover. The solar wind burst create a space charge differential in the ionosphere which cause an electrical current to flow from high latitude regions to the tropics affecting cloud cover in both regions. In the high latitude regions there is a reduction in cloud cover and in the tropics due to the change in the electrical differential between cloud top and surface a reduction in cumulus nimbus lifetime.
William: The geomagnetic field index is a measurement of disturbances to the geomagnetic field which are caused by solar wind bursts (coronal hole or sunspot). This paper notes there is has been a significant increase in geomagnetic field disturbances caused by very high solar activity.
http://www.ann-geophys.net/27/2045/2009/angeo-27-2045-2009.pdf
Most of you focus on the radiative effect of the sun. I think, gravitational forces must also be considered, as they induce waves (and thus also mixing) in the oceans, but of course also in the atmosphere, and even magma (that could contribute to (underwater) volcanism by inducing stresses att he junction of tectonic plates. .As the viscosites of these three media are extremely different, so will also be the corresponding time constants and phase shifts.
Gravitational forces are linked to the relative position, and the distance between the sun and the earth, the orientation of the earth rotation axis and the speed of this rotation. The moon interacts as a stabilizing gyroscope for the earth. Conjunction /opposition of other (heavy) planets reinforce / deforce the gravitational effects, as can be seen by observing periods of “extreme” high / low tides of the ocean. All this generates a full set of pseudo periodic waves, with periods ranging from hours to millions of year.
Look at the waves in the stratosphere associated with changes in solar activity.
http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/gif_files/time_pres_WAVE1_MEAN_ALL_NH_2014.gif
Abstract
Stratospheric Sudden Warmings (SSWs) followed by the formation of an elevated stratopause at ~70–80 km occurred in four of the five recent Arctic winters (2009–2013). We use global high-latitude temperature measurements from the Solar Occultation for Ice Experiment (SOFIE) to analyze the gravity wave (GW) activity in the upper stratosphere and mesosphere (30–90 km) during different phases of the SSW events. We characterize GW activity in terms of temperature fluctuations and the growth of GW potential energy with altitude. At both 40 and 60 km, compared to the non-SSW year of 2011, the GW activity in the SSW years of 2009, 2010, 2012, and 2013 was reduced after the warming, during the occurrence of an isothermal atmosphere and an elevated stratopause. In contrast, at 80 km the GW activity was highly variable between the individual stratospheric warming events. A case study of GW activity during the 2013 warming event and coincident SOFIE observations of water vapor (H2O) from ~40 to 90 km indicate a correlation between increase in wave activity at each altitude and the time of descent of dry air. This study supports previous modeling studies’ findings that enhanced GW activity is responsible for the downward transport of trace species from the mesosphere to the stratosphere following an SSW event.
http://onlinelibrary.wiley.com/doi/10.1002/2014JD021763/abstract
The following is a hopefully working link to Georgieva, Bianchi, and Kirov’s Once Again about Global Warming and Solar Activity.
Once again about global warming and solar activity, by K. Georgieva, 1 , C. Bianchi , 2 and B. Kirov
This link worked for me:
http://sait.oat.ts.astro.it/MSAIt760405/PDF/2005MmSAI..76..969G.pdf
As many are aware planetary cloud cover is modulate by Svensmark’s mechanism where an increase in galactic cosmic rays/cosmic ray flux (GCR/CRF is the confusing historical name for mostly high speed protons which create cloud forming ions in the atmosphere, the first discoverers where not sure whether it was a ray or particle and the idiotic field did not correct the term) causes an increase in cloud cover in high latitude regions and a decrease in GCR/CRF causes an increase in cloud cover in high latitude regions. The level and intensity of GCR/CRF that strike the earth’s atmosphere is dependent on the strength and extent of the solar heliosphere (the solar heliosphere is the name for the tenuous solar wind and pieces of magnetic flux that is created by the solar magnetic cycle and that can extend well past the orbit of Pluto).
CRF/GCR is also modulated by changes to the geomagnetic field intensity and orientation. It was assumed that the geomagnetic field did not and could not rapidly and cyclically change. Over the last 10 years the geomagnetic paleo research indicates that the geomagnetic field does rapidly and cyclically change and the climate change events correlate with the geomagnetic field changes. There is of course a physical reason, a forcing mechanism why the geomagnetic field is cyclically changing and why the changes are more than 10 times faster than the geomagnetic models indicate is possible.
P.S. As noted above cloud cover is also modulated by solar wind bursts (Tinsley’s mechanism) which Tinsley called electroscavenging. Electroscavenging affects cloud cover in high latitude regions and changes cloud properties in the tropics.
As few are aware there is a large region of the geomagnetic field in the vicinity of South America where the geomagnetic field intensity has dropped by 60%. This geomagnetic anomaly is called the South Atlantic geomagnetic anomaly. In the 1990’s the North geomagnetic pole drift velocity suddenly for unexplained reasons started to increased by a factor of five.
Both of these changes to the geomagnetic field intensity and configuration are observational evidence that a geomagnetic field excursion is underway and is accelerating for some unknown reason. The earth’s magnetic field intensity drops by a factor of 5 to 10 during a geomagnetic field excursion. Geomagnetic excursions correlate with the termination of interglacial periods.
A European set of three satellites called ‘SWARM’ was launched in the fall of 2013 to study why the earth’s geomagnetic field intensity is now dropping at 5% per decade rather than 5% per century which is ten times faster than believed possible. The first set of data from the SWARM satellite confirmed that the geomagnetic field intensity is dropping at 5% per decade and showed the large regions of the planet where the field intensity is changing.
http://www.scientificamerican.com/ar…than-expected/
The following research indicates the last geomagnetic polar reversal occurred more than ten times faster than the current geomagnetic computer models indicate is physically possible, with the reversal occurring in less than a hundred years, rather than 1000s of years (computer models of the geomagnetic estimate the duration of a geomagnetic reversal is 1000 to 10,000 years).
http://gji.oxfordjournals.org/conten…/1110.abstract
http://www.sciencedaily.com/releases…1014170841.htm
The following is the Wikipedia summary that summarize the paradox.
http://en.wikipedia.org/wiki/Geomagnetic_reversal
William, I am following your comments with great interest. From your post above, is the following correct:
“As many are aware planetary cloud cover is modulate by Svensmark’s mechanism where an increase in galactic cosmic rays/cosmic ray flux … causes an increase in cloud cover in high latitude regions and a decrease in GCR/CRF causes an increase in cloud cover in high latitude regions….. “
I have seen clouds build and disappear as if by pen and magic eraser. I know the reason for that and it is entirely intrinsic to Earth. You say there is another source of cloud variation and say it with firm words. Please post a link that correlates measured/observed cloud cover with this mechanism you state so firmly.
You state a fact, but your fact is in reality, a hypothesis yet to be proved. However, I will concede that you apparently believe it is a fact. Fine. Back it up with cloud observation data. We do have some you know. And the effect would be nearly instant.
How did you miss this?
http://wattsupwiththat.com/2013/09/04/svensmarks-cosmic-ray-theory-of-clouds-and-global-warming-looks-to-be-confirmed/
It was even in the papers at the time.
As for observations of clouds in nature to go with the lab results:
http://www.atmos-chem-phys-discuss.net/12/3595/2012/acpd-12-3595-2012.html
“Effects of cosmic ray decreases on cloud microphysics
J. Svensmark, M. B. Enghoff, and H. Svensmark
National Space Institute, Technical University of Denmark, Copenhagen, Denmark
Abstract. Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (<2 sigma). The magnitude of the signals agree with derived values, based on simple equations for atmospheric parameters. Furthermore principal components analysis gives a total significance of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray ionization. These results support the suggestion that ions play a significant role in the life-cycle of clouds."
Sorry, but your anecdotal observations of cloud formation at random moments don't count. Systematic observation of cloud formation during & analysis of Forbush events does.
Unfortunately milo, your sited paper was not accepted for publication. So I prefer not to see it as definitive to your case. I am surprised you do.
On your planet that a European journal doesn’t chose to print a paper makes it invalid? Have you ever heard of Climategate? You call yourself a skeptic?
Comment on what the researchers found, please, not whether it passed muster by the CACA pal review Team.
Besides which, as noted, untold numbers of valid papers over the past century, at least, have found the solar cycle signal & the effect of clouds on albedo. Did you learn from Willis to find fault with single papers, whether justified or not, while ignoring the reams of good science destructive of your cherished delusions?
Before commenting on climatology, how about actually studying it?
Milo, I highly recommend reading this text. It outlines the very issue we often discuss here. Cherry picking induced bias in research. No wonder your sited paper will not see the light of day.
http://www.atmos-chem-phys-discuss.net/12/C1000/2012/acpd-12-C1000-2012-supplement.pdf
…and dispassionate discourse enlarges our shared understanding while vehement writing does not.
Let me get this straight. You object to a letter by Svensmark, et al, in the open access portion of the Journal of Atmospheric Chemistry and Physics of the EGU, while taking as gospel what you read here from Bob Tisdale and Willis Eschenbach, whose climatological work can’t get published in mainstream science periodicals?
Strange.
But not to worry, since the same observations noted by Svensmark, et al, 2012, have repeatedly been noted by other scientists. The quickest, most cursory search would have produced many such studies.
For instance, this came up, which is not the most resounding support for Forbush decreases, but indicative:
Forbush decreases – clouds relation in the neutron monitor era
A. Dragi´c1, I. Aniˇcin1, R. Banjanac1, V. Udoviˇci´c1, D. Jokovi´c1, D. Maleti´c1, and J. Puzovi´c2
1Institute of Physics, University of Belgrade, Pregrevica 118, Belgrade, Serbia
2Faculty of Physics, University of Belgrade, Studentski trg 16, Belgrade, Serbia
Received: 15 November 2010 – Revised: 15 February 2011 – Accepted: 23 March 2011 – Published: 31 August 2011
Abstract. The proposed influence of cosmic rays on cloud
formation is tested for the effect of sudden intensity changes
of CR (Forbush decreases) on cloudiness. An attempt is
made to widen the investigated period covered by satellite
observation of cloudiness. As an indicator of cloud cover,
the diurnal temperature range (DTR – a quantity anticorrelated
with cloudiness) is used. The superposed epoch analysis
on a set of isolated Forbush decreases is conducted and
the results for a region of Europe are presented. The effect
of Forbush decrease on DTR is statistically significant only
if the analysis is restricted to high amplitude FDs (above the
threshold value of 7% with the respect to undisturbed CR intensity).
The magnitude of the effect on DTR is estimated to
be (0.38±0.06) C.
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDIQFjAC&url=http%3A%2F%2Fwww.astrophys-space-sci-trans.net%2F7%2F315%2F2011%2Fastra-7-315-2011.pdf&ei=aulCVLiaM6mWigLY64CoBA&usg=AFQjCNE0LgTifsZnYu-FgYL_1ESbZTXn6w&sig2=6msDblQ50kdSMWBUv7_boA&bvm=bv.77648437,d.cGE
Or, had you ever bothered to study the subject, you’d already know about Forbush decreases, to which observation Mosher so strenuously objects on this blog. And you’d know that CERN has experimentally demonstrated the underlying physical mechanism behind these observations.
Now aren’t you embarrassed?
Making completely baseless assertions such as that any possible solar cycle signal is totally submerged in atmospheric phenomena deserves rebuke. There is zero evidence to support that unfounded claim, & all the evidence in the world against it. The problem is that you haven’t studied the subject & indeed apparently prefer to remain blissfully ignorant of it.
Now kindly respond to the substance of the many Forbush decrease findings & the experimental research supporting the GCR cloud hypothesis, rather than siding with the Team’s publication gatekeepers, as you do with them on the subject of volcanoes & the LIA.
Sturgis, your citation actually scores a point for no discernable affect in global temperature data.
“The effect of Forbush decrease on DTR is statistically significant only
if the analysis is restricted to high amplitude FDs (above the
threshold value of 7% with the respect to undisturbed CR intensity).
The magnitude of the effect on DTR is estimated to
be (0.38±0.06) C.”
Because this paper also refers to a non-random subsample of Forbush events, and even then produces an effect that would not be detectable in any form due to signal noise in our current temperature series, I rest my case on the laurels of your cited evidence.
“although Willis Eschenbach in a series of posts here at WUWT has shown that the solar signal is often not easily detected in climate records.”
No, the solar signal is clearly detected!
The paper by Tung and Camp shows that:
Surface warming by the solar cycle as revealed by the composite mean
difference projection:
http://depts.washington.edu/amath/old_website/research/articles/Tung/journals/GRL-solar-07.pdf
Some here have quibbled with Judith Lean’s reconstruction of TSI & UV time
series, but I’m convinced.
My understanding is that even Judith now quibbles with it. Does that mean you are still convinced of Judith’s previous reconstruction while she has moved beyond it?
Of course. Revisions by Lean, et al don’t change the conclusions of Tung & Champ, IMO. But if you think they’re no longer valid, please show why.
You can read about her revisions, thanks to SORCE, here:
http://www.nrl.navy.mil/media/news-releases/2014/dr-judith-lean-receives-double-honors-in-geophysical-research-letters-top-40
Recall that SORCE is how science learned about the unexpected large fluctuation in the UV component of TSI, as well as leading to lowered estimates for that value. The implications for the climatic effect of this surprise variation in solar irradiance were huge, & still completely missing from CACA GIGO GCMs.
Girma, that study did NOT use actual temperature data. Instead, it used a NCEP computer model reconstruction of past temperatures. As such, while it is revealing as to the existence of solar cycles IN COMPUTER MODEL OUPUTS, it says nothing about solar cycles here on the real earth.
In addition, as Pamela pointed out, it uses the Lean reconstruction … which even Lean has now backed away from.
Next, they have done a curious thing—they have taken the average of the “solar max” and the “solar min” temperatures, and calculated the difference … but since their data starts with a solar min cycle and ends with a solar max cycle, this is bound to show a trend and a difference, just as if you’d done the same thing using a sine wave.
Finally, it’s the usual piece of anti-scientific bunkum, with no code as used and no data as used. As Mosher observed, that’s an advertisement for someone’s claims, not science in any form.
For example, they say that they did a “Monte Carlo analysis” to determine statistical validity. A MC analysis is quite tricky to do, and depends exquisitely on how you produce the pseudodata. You want your pseudodata to have the same characteristics (mean, SD, skew, kurtosis, autocorrelation, etc.) as the real data … but here’s all they offer as a description:
IF I understand their test correctly, it is worse than useless. They’ve taken a dataset with a very high autocorrelation, and by randomly mixing it, destroyed the autocorrelation structure entirely. Also, by allowing replacements, they’ve also screwed with both the mean and the SD, and likely the skew and kurtosis as well. That’s what can only be described as an epic fail of a Monte Carlo test, IF (as it seems) that’s what they did … but we don’t really know what they did, do we, because we don’t have their code.
You can swallow it whole if you wish … I’ll pass.
All in all? Sorry, Girma, but they’ve only shown what happens in Modelworld, they used the Lean TSI reconstruction, they’ve provided no data as used and no code as used, their Monte Carlo test is a joke, and as a result, back here in the real world the solar signal is NOT clearly detected in any sense.
Look, guys, it’s far from enough to point to some peer-reviewed, published study and claim that the question is settled. The ugly reality is that many, perhaps most peer reviewed climate studies are wrong. You need to read the study critically and think about it critically. The Tung and Camp study is a farce, it has nothing to do with the real world, and the statistical claims are a joke.
w.
There is a physical reason for all observations. (There is now the start of cooling of the ocean due to the increase in GCR/CRF).
http://www.ospo.noaa.gov/data/sst/anomaly/2014/anomnight.10.16.2014.gif
The following are hopefully working links to the geomagnetic field papers and announcements.
http://www.scientificamerican.com/article/earth-s-magnetic-field-flip-could-happen-sooner-than-expected/
http://www.spacenews.com/article/launch-report/38301swarm-satellite-trio-launched-to-study-earth%E2%80%99s-magnetic-field
http://gji.oxfordjournals.org/content/199/2/1110.abstract
http://www.sciencedaily.com/releases/2014/10/141014170841.htm
http://sciences.blogs.liberation.fr/home/files/Courtillot07EPSL.pdf
I have a question, aimed at anyone with the data.
Twenty years ago one of the arguments I used against AGW was that there were a number of solar bodies that were warming up without any combustion of hydrocarbons (Mars, Jupiter moons, Uranus etc) . So it was obviously the Sun’s fault.
Does anyone know what the status is on the various heavenly bodies currently. Are they still warming, are they in a pause, or have their orbits changed so that they are cooling?
Nobody has printed anything (gotten a paper through the CAGW-filter of the CAGW-centric-pall-review/CAGW-philiac-government-funding bureaucracy and review process.
I cannot tell if anybody is looking for extra-terrrestial CSGW effects either! After all, somebody finding such an effect would upset everybody else’s CAGW-centric funding apparatus.
Overall Solar Activity increases and decreases in correlation with orbital changes, this has been the case over the past 400 years seen in this graph below.
My advice to all the scientists using CO2 as the main factor in climate fluctuations and TSI as a minimal factor is to continue to do so. This way it will be so much easier to avoid hundreds of failed global climate models.
The blue line is sunspots recorded, right? But what is your black line?
Yes the blue line is a sunspot record, this sunspot record is Leif’s, The orange points are a 10 year sample of the orbital changes over the past 400 years. the black line is a basic moving average trend of the 10 year sample.
This is an observational based plot not a model. And yes the added forecast is accurate.
Interesting clouds in the photo above, eh?
Anthony,
Could you feature the following paper as it shows a clear solar signal in the global mean temperature?
http://depts.washington.edu/amath/old_website/research/articles/Tung/journals/GRL-solar-07.pdf
For me, this paper is the “smoking gun” for the current solar maximum to be the cause of the global warming of the 20th century.
Regards,
That’s from 2007 and we covered it then
Girma you appear to have missed Willis Eschenbach’s reply to you about the paper – see above. The gun was smoking even though they shot themselves in the foot.
”
Willis Eschenbach
October 18, 2014 at 5:46 pm
Girma, that study did NOT use actual temperature data. Instead, it used a NCEP computer model reconstruction of past temperatures. As such, while it is revealing as to the existence of solar cycles IN COMPUTER MODEL OUPUTS, it says nothing about solar cycles here on the real earth……”
Its worth reading the rest of the reply if you understand the statistical methodology.
In the first post “What will happen during a new Maunder Minimum,” Figure 1 shows an IPCC AR5 chart of “natural” vs anthropogenic forcing.
In that chart, why is the “forcing” of atmospheric water vapor not included in the “natural” column, or failing that, why isn’t the extra forcing due to supposed anthropogenic emissions at least expressed as a ratio or component of the TOTAL forcing from all GHG, including water vapor? If anthropogenic GHGs are a requirement for evaporation to take place, this is news to me. The primary effects of atmospheric water vapor are (conservatively) 3 or 4 times greater than that of CO2. So why does the IPCC talk about “forcing” without including this largest and completely natural forcing?
Other facets of that table seems to be a bit of bait and switch, too. While I concede that humans emit and are responsible for some increase in atmospheric CO2 and other GHGs, this table appears to blame ALL the GHGs (other than H2O) on human emissions, as if the natural world didn’t contribute anything. AND it also blames all cloud aerosol effects on humans, too. Aren’t there a few natural cloud aerosols? Did clouds never form prior to the industrial age?
Can someone who thinks it’s correct explain and defend the logic of this table to me?
Here’s the link: http://www.climatedialogue.org/what-will-happen-during-a-new-maunder-minimum/
Actually Willis, I’ll challenge you a little further with that requirement:
Assume there is a 1000 year long term temperature cycle (and a shorter 60-70 year cycle we will ignore for a few minutes). That single long-term cycle is, obviously, shown by the long-term temperature records, right? Those go up and down.
Now, if there were only two “forcings” controlling that single temperature cycle, a reasonable question is: “When did the forcings change to make the temperature go up and down?” And, naturally, one would – like Marcel just did – associate a peak in the temperature record with a peak in a positive forcing, and the dips in the temperature record with either a peak in a negative forcing, or a maximum dip in a positive forcing.
After, that is the “natural, everybody knows it” consensus, right?
I submit instead the opposite: The “forcings” remained constant. Their summed “feedback” however are the gains and losses from the earth’s total thermodynamic system – which, on a minute-by-minute, hour-by-hour basis – IS NEVER in equilibrium and is NEVER in any ideal “steady state” from which it has been “forced” away from a natural temperature by man’s action.
Pick a boundary: Top of Atmosphere for example is the most convenient boundary around the earth’s sphere.
Heat energy is rather always Radiated Inbound, Radiated Outbound, Being Stored (going from a hotter mass in one region to a colder mass in another region), or Being Released (going from a hotter mass in one region to a colder mass in another region.) Include phase changes (melting and freezing ice, melting and freezing rock, evaporation and condensation of water vapor) in those Storage mechanisms.
Radiation losses increase as (T kelvin)^4
Temperatures rise, and losses increase.
Temperatures fall globally, and losses decrease.
The “forcing” function did not change.
The negative effect from a constant “forcing” was greatest at the time of maximum temperature.
The positive effect from a constant “forcing” was greatest at time of lowest temperature.
(Plus the varying lag times for storage and release of the thermal energy within the system boundary.) But heat losses, gains, and transitions continued during the maximum, crossing, and minimum points. When losses = gains, were we at the “average”? Were they both “zero”? Or were they changing the fastest? Length of day (amount of solar energy arriving each minute) each year is after all, changing fastest at the spring and fall equinoxes, NOT at mid-winter or mid-summer.
When temperatures were at their peak in 1100, they did not begin to fall because a single short “forcing” event that occurred in the Dark Ages of 450-475 AD, nor did they fall because of a future 70-90 year Maunder Minimum centered around 1630.
Perhaps, it is as equally correct to say today’s 2000 Modern Maximum Period is due to a reduced negative forcing 450 years ago – more accurately, a “reduced negative forcing” that has lasted from 1650 through 2000. (Or was its effect only from 1850 through 1996?) That today’s 2000-2010 short term peak is in the end/middle/beginning of it’s current “pause” only means that immediately energy losses over the whole year = immediate energy gains over the whole year. As long as immediate energy losses exceed immediate energy gains, we will continue to cool from the 2000-2010 Modern Warm Period. And, as it happens, that IS what is occurring as Antarctic sea ice continues to expand to new record highs, and Arctic sea ice continues to retreat and cause increased heat losses 7 months of the year.
Thus, we should look for one or more 450 – 550 year continuous – or very slowly changing – influences whose NET EFFECT is OUT-OF-PHASE with the long-term temperature record, but whose NET EFFECT the same LENGTH as the long-term temperature record.
Further, that long-term net influence need NOT be a perfect continuous wave of constant period and amplitude. If a varying period is found in the temperature record, then a varying length but periodic influence MUST be looked for. (A fault of the orbital-balance-rotation theories! They keep trying to find non-constant temperature effects (which may likely be the summed results of several varying length slowly-changing forcings) into co-relations found in the peaks and valleys from the constant periods of the proposed orbital and barycentric influences. Now, IF – and ONLY IF – those orbital influences are found NOT to be periodic, but themselves vary at the SAME varying PERIODS of the long-term (or short term) temperature records and/or sunspot records, then they would have a much stronger podium to stand behind.)
Whatever influence is found “is what it is” but – if the temperature record has a varying period, then the influence can ONLY be discovered by looking AWAY from anything that has a constant period during this 12,000 year glacial interval.
A decreasing positive influence, or an increasing negative influence, is actually more what we do see in the long-term temperature record as the Minoan Optimum was hotter than the Roman Optimum, which was hotter than the Medieval Optimum, which was hotter that today’s CO2-aided/CO2-speeded-up/CO2-influenced Modern Optimum Period.
The Sun provides the Earth with 386.4 x 10^22 joules of energy each year (after albedo reflection).
The Earth is currently accumulating that energy at 0.62 x 10^22 joules of energy each year (or 0.16%).
–> 386.4 10^22 joules coming in: –> 385.8 10^22 joules going back out: –> Slight warming trend as a result.
It is not hard to imagine the Sun’s energy just varying by 0.2% over long time-scales such it causes a long-term slow accumulation of energy or a long-term slow drawdown of energy.
That is what is missing from the debate. The Earth can very slowly accumulate and lose energy. Just tiny amounts per year but over 30, 50, 1000 years, it adds up to a large temperature differential.
Bill, I get a 0.1554% difference, between your gozinta, and gozouta numbers (to the same number of significant digits of course.)
I wouldn’t believe ANY measure particularly of the gozouta, to even 0.1%; maybe not even 1%.
The earth does not radiate over 4pi steradians, at some single black body Temperature,and I’m not aware of any 4pi continuous monitoring of the exiting radiant energy.
And it seems to me, that such a small energy flux imbalance would have to be monitored to that resolution or accuracy over that whole, 30, 50, 0r 1,000 year time frame. I might buy the 30 years, but not the longer periods. And I wouldn’t believe ANY proxy for actual measurements.
My take on the solar/climate connection the why and how it may occur.
Many of us are of the opinion that the chances of cooling going forward are near 100%.
CO2 is a non player in the global climate picture as past historical data has shown.
CO2 and the GHG effects are a result of the climate not the cause in my opinion.
I maintain these 5 factors cause the climate to change and they are:
Initial State Of The Climate – How close climate is to threshold inter-glacial/glacial conditions
Milankovitch Cycles – Consisting of tilt , precession , and eccentricity of orbit. Low tilt, aphelion occurring in N.H. summer favorable for cooling.
Earth Magnetic Field Strength – which will moderate or enhance solar variability effects through the modulation of cosmic rays.
Solar Variability – which will effect the climate through primary changes and secondary effects. My logic here is if something that drives something (the sun drives the climate) changes it has to effect the item it drives.
Some secondary/primary solar effects are ozone distribution and concentration changes which effects the atmospheric circulation and perhaps translates to more cloud/snow cover- higher albebo.
Galactic Cosmic Ray concentration changes translates to cloud cover variance thus albedo changes.
Volcanic Activity – which would put more SO2 in the stratosphere causing a warming of the stratosphere but cooling of the earth surface due to increase scattering and reflection of incoming sunlight.
Solar Irradiance Changes-Visible /Long wave UV light changes which will effect ocean warming/cooling.
Ocean/Land Arrangements which over time are always different. Today favorable for cooling in my opinion.
How long (duration) and degree of magnitude change of these items combined with the GIVEN state of the climate and how they all phase (come together) will result in what kind of climate outcome, comes about from the given changes in these items. Never quite the same and non linear with possible thresholds.. Hence the best that can be forecasted for climatic change is only in a broad general sense.
In that regard in broad terms my climatic forecast going forward is for global temperatures to trend down in a jig-saw pattern while the atmospheric circulation remains
THE CRITERIA
Solar Flux avg. sub 90
Solar Wind avg. sub 350 km/sec
AP index avg. sub 5.0
Cosmic ray counts north of 6500 counts per minute
Total Solar Irradiance off .15% or more
EUV light average 0-105 nm sub 100 units (or off 100% or more) and longer UV light emissions around 300 nm off by several percent.
IMF around 4.0 nt or lower.
The above solar parameter averages following several years of sub solar activity in general which commenced in year 2005..
IF , these average solar parameters are the rule going forward for the remainder of this decade expect global average temperatures to fall by -.5C, with the largest global temperature declines occurring over the high latitudes of N.H. land areas.
The decline in temperatures should begin to take place within six months after the ending of the maximum of solar cycle 24.
ONE ADDED NOT ABOUT THE EARTH’S MAGENETIC FIELD
Earth’s Impending Magnetic Flip” – Scientific American
Posted on September 30, 2014 by BobFelix
“A geomagnetic reversal may happen sooner than expected,” says this article in Scientific American.
“The European Space Agency’s satellite array dubbed “Swarm” revealed that Earth’s magnetic field is weakening 10 times faster than previously thought, decreasing in strength about 5 percent a decade rather than 5 percent a century,” the article continues. “A weakening magnetic field may indicate an impending reversal.”
Three of the characters in the Climate Dialogue banner appear to be smoking heavily, btw.
🙂
Ban imagery of smoking then. burn books etc..
A reasonable dialogue on solar changes versus EAS changes contains a fundamental debate on models related to the solar dynamic.
John
I want to add this, thresholds, lag times,the initial state of the climate(how close to glacial/interglacial conditions climate is), land/ocean arrangements, earth magnetic field strength , phase of Milankovitch Cycles ,random terrestrial events ,concentrations of galactic cosmic rays within 5 light years of earth due to super nova or lack of for example, the fact that the climate is non linear is why many times the solar/climate correlation becomes obscured, and why GIVEN solar variability(with associated primary and secondary effects) will not result in the same GIVEN climate response.
What is needed is for the sun to enter extreme quiet conditions or active conditions to give a more clear cut solar/climate connection which I outlined in my previous post.
The solar criteria I suggested needed to impact the climate to make it more likely to become colder, which I suggest can happen if the prolonged solar minimum continues and becomes more established going forward.
If the suns polar field remains unchanged for an extended amount of time it will falsify the current solar dynamo theory. If the negative/positive magnetic poles remain at the geographic poles of the sun for an extended period what will happen? The dynamo does not have an explanation for this, this is unlikely to happen anytime soon, but it will happen and it has happened. Earth has a stable geographical polar magnetic field, and many stars do.
[On this site, do not post a video link without an introduction or description of that video. .mod]
Gotta love the subtle satire! Thanks Admad.
Yep, Sol’s in the dumps recently since most of humanity discounts him. Sceptics can relate Sol. He used to be known to give us the time of day, now it’s been claimed by vibrating gases. He used to be known to give us the warm temperatures, now even that’s been claimed by vibrating gases. What’s an old sun to do ??
Lets pray nothing.
The sun is not static, it changes, whether in number of solar flares, solar wind, various type of frequencies etc, then it affects the climate, since hello, no sun and then we really have significant climate change. The question is how and how much does changes in the suns various outputs affect earths climate.
The answer is extremely difficult to determine since not only the sun, but atmospheric gasses, water vapour, various physical processes, constantly evolving land and water eco systems, land and undersea volcanoes, how many people fart in New Jersey in a given time frame, the list just goes on and on, there are too many unpredictable factors working in a chaotic way to determine specifically what any 1 factor contributes to temperature change. Yes a reseacher can plug a bunch of observed data, proxy data, extraploated data, averaged data, derived data, cherry picked, apple picked, watermelon picked and best guess data, into a spreadsheet and then graph it and say, “A ha I got it! It’s the _________ (fill in the blank).”
What the researcher has is an interesting exercise that may get us an inch closer to understanding climate, but not the magic lever that controls temperature, which then controls climate and then hurts all life on earth.
Probably the biggest sin of climate science is the irrational belief in the singular magic lever that controls all.
In long periods of time (44 years) the sun decides on climate change in middle and high latitudes.
“how many people fart in New Jersey in a given time frame,”
Does this replace the flapping butterfly wings starting a hurricane concept?
On the news, “The storm was caused by a significant fart in a bar in New Jersey.”