The Sea Level Cycles Get More Elusive

Guest Post by Willis Eschenbach

In my last post on the purported existence of the elusive ~60-year cycle in sea levels as claimed in the recent paper “Is there a 60-year oscillation in global mean sea level?”, I used a tool called “periodicity analysis” (discussed here) to investigate cycles in the sea level. However, some people said I wasn’t using the right tool for the job. And since I didn’t find the elusive 60-year cycle, I figured they might be right about periodicity analysis. In the process, however I found a more sensitive tool, which is to just fit a sine wave to the tidal data at each cycle length and measure the peak-to-peak amplitude of the best-fit sine wave. I call this procedure “sinusoidal periodicity”, for a simple reason—I’m a self-taught mathematician, so I don’t know the right name for the procedure. I’m sure this analysis method is known, but since I made it up I don’t know what it’s actually called.

I like to start with a look at the rawest view of the data. In this case, here’s the long-term Stockholm tide gauge record itself, before any further analysis. This is the longest complete monthly tidal gauge record I know of, at 200 years.

Stockholm Monthly Tidal Record 1801-2000Figure 1. Stockholm monthly average sea level. This is a relative sea level, measured against an arbitrary zero point.

As you can see, Stockholm is (geologically speaking) rapidly leaping upwards after the removal of the huge burden of ice and glaciers about 12,000 years ago. As a result, the relative sea level (ocean relative to the land) has been falling steadily for the last 200 years, at a surprisingly stable rate of about 4 mm per year.

In any case, here’s what the sinusoidal periodicity analysis looks like for the Stockholm tide data, both with and without the annual cycle:

sinusoidal periodicity stockholm

Figure 1a. “Sinusoidal Periodicity” of the Stockholm tide gauge data, showing the peak-to-peak amplitude (in millimetres) of the best-fit sine wave at each period length. Upper panel shows the data including the annual variations. In all cases, the underlying dataset is linearly detrended before sinusoidal periodicity analysis. Note the different scales of the two panels.

Now, I could get fond of this kind of sinusoidal analysis. To begin with, it shares one advantage of periodicity analysis, which is that the result is linear in period, rather than linear with frequency as is the case with Fourier transforms and spectral analysis. This means that from monthly data you get results in monthly increments of cycle length. Next, it outperforms periodicity analysis in respect of the removal of the short-period signals. As you can see above, unlike with periodicity analysis, removing the annual signal does not affect the results for the longer-term cycles. The longer cycles are totally unchanged by the removal of the annual cycle. Finally, I very much like the fact that the results are in the same units as the input data, which in this case is millimetres. I can intuitively get a sense of a 150-mm (6 inch) annual swing in the Stockholm sea level as shown above, or a 40 mm (1.5 inch) swing at both ~5.5 and ~31 years.

Let me start with a few comments on the Stockholm results above. The first one is that there is no significant power in the ~ 11-year period of the sunspot cycle, or the 22-year Hale solar cycle, as many people have claimed. There is a small peak at 21 years, but it is weak. After removal of the annual cycle, the next strongest cycles peak at ~5.5, 31.75, and 15 years.

Next, there are clearly cycle lengths which have very little power, such as 19.5, 26.5, and 35 years.

Finally, in this record I don’t see much sign of the proverbial ~60 cycle. In this record, at least, there isn’t much power in any of the longer cycles.

My tentative conclusion from the sinusoidal analysis of the Stockholm tide record is that we are looking at the resonant frequencies (and non-resonant frequencies) of the horizontal movement of the ocean within its surrounding basin.

So let me go through all of the datasets that are 120 years long or longer, using this tool, to see what we find.

So lets move on to the other 22 long-term tidal datasets that I linked to in my last post. I chose 120 years because I’m forced to use shorter datasets than I like. Normally, I wouldn’t consider results from a period less than three times the length of the cycle in question to be significant. However, there’s very few datasets that long, so the next step down is to require at least 120 years of data to look for a 60-year cycle. Less than that and you’re just fooling yourself. So without further ado, here are the strengths of the sinusoidal cycles for the first eight of the 22 datasets …

1-8 sinusoidal periodicity 22 long term tideFigure 2. Sinusoidal amplitude, first eight of the 22 long-term (>120 year) datasets in the PSMSL database. Note that the units are different in different panels.

The first thing that strikes me about these results? The incredible variety. A few examples. Brest has lots of power in the longer-term cycles, with a clear peak at ~65 years. Wismar 2, on the other hand, has very little power in the long-term cycles, but a clear cycle at ~ 28 years. San Francisco has a 55-year peak, but the strongest peak there is at 13 years. In New York, on the other hand, the ~51 year peak is the strongest cycle after the annual cycle. Cuxhaven 2 has a low spot between 55 and 65 years, as does Warnemunde 2, which goes to zero at about 56 years … go figure.

Confused yet? Here’s another eight …

9-16 sinusoidal periodicity 22 long term tideFigure 3. Sinusoidal periodicity, second eight of the 22 long-term (>120 year) datasets in the PSMSL database. Note that the units are different in different panels.

Again the unifying theme is the lack of a unifying theme. Vlissingen and Ijmuiden bottom out around 50 years. Helsinki has almost no power in the longer cycles, but the shorter cycles are up to 60 mm in amplitude.. Vlissingen is the reverse. The shorter cycles are down around 15-20 mm, and the longer cycles are up to 60 mm in amplitude. And so on … here’s the final group of six:

17-22 sinusoidal periodicity 22 long term tideFigure 4. Sinusoidal periodicity, final six of the 22 long-term (>120 year) datasets in the PSMSL database. Note that the units are different in different panels.

Still loads of differences. As I noted in my previous post, the only one of the datasets that showed a clear peak at ~55-years was Poti, and I find the same here. Marseilles, on the other hand, has power in the longer term, but without a clear peak. And the other four all bottom out somewhere between 50 and 70 years, no joy there.

In short, although I do think this method of analysis gives a better view, I still cannot find the elusive 60-year cycle. Here’s an overview of all 22 of the datasets, you tell me what you see:

all sinusoidal periodicity 22 long term tideFigure 5. Sinusoidal periodicity, all twenty-two of the long-term tide gauge datasets.

Now, I got started on this quest because of the statement in Abstract of the underlying study, viz:

We find that there is a significant oscillation with a period around 60-years in the majority of the tide gauges examined during the 20th Century …

(As an aside, waffle-words like “a period around 60-years” drive me spare. The period that they actually tested for was 55-years … so why not state that in the abstract? Whenever one of these good cycle-folk says “a period around” I know they are investigating the upper end of the stress-strain curve of veracity … but I digress.)

So they claim a 55-year cycle in “the majority of the tide gauges” … sorry, I’m still not seeing it. The Poti record in violet in Figure 5 is about the only tide gauge to show a significant 55-year peak.

On average (black line), for these tide gauge records, the strongest cycle is 6 years 4 months. There is another peak at 18 years 1 month. All of them have low spots at 12-14 years and at 24 years … and other than that, they have very little in common. In particular, there seems to be no common cycles longer than about thirty years or so.

So once again, I have to throw this out as an opportunity for those of you who think the authors were right and who believe that there IS a 55-year cycle “in the majority of the tide gauges”. Here’s your chance to prove me wrong, that’s the game of science. Note again that I’m not saying there is no 55-year signal in the tide data. I’m saying I’ve looked for it in a couple of different ways now, and gotten the same negative result.

I threw out this same opportunity in my last post on the subject … to date, nobody has shown such a cycle exists in the tide data. Oh, there are the usual number of people who also can’t find the signal, but who insist on telling me how smart they are and how stupid I am for not finding it. Despite that, so far, nobody has demonstrated the 55-year signal exists in a majority of the tide gauges.

So please, folks. Yes, I’m a self-taught scientist. And yes, I’ve never taken a class in signal analysis. I’ve only taken two college science classes in my life, Introductory Physics 101 and Introductory Chemistry 101. I freely admit I have little formal education.

But if you can’t find the 55-year signal either, then please don’t bother telling me how smart you are or listing all the mistakes you think I’m making. If you’re so smart, find the signal first. Then you can explain to me where I went wrong.

What’s next for me? Calculating the 95% CIs for the sinusoidal periodicity, including autocorrelation. And finding a way to calculate it faster, as usual optimization is slow, double optimization (phase and amplitude) is slower, and each analysis requires about a thousand such optimizations. It takes about 20 seconds on my machine, doable, but I’d like some faster method.

Best regards to each of you,

w.

As Always: Please quote the exact words that you disagree with, it avoids endless misunderstandings.

Also: Claims without substantiation get little traction here. Please provide links, citations, locations, observations and the like, it’s science after all. I’m tired of people popping up all breathless to tell us about something they read somewhere about what happened some unknown amount of time ago in some unspecified location … links and facts are your friend.

Data: All PSMSL stations in one large Excel file, All Tide Data.xlsx

Just the 22 longest stations as shown in Figs. 2-4 as a CSV text file, Tide Data 22 Longest.csv .

Stockholm data as an excel worksheet, eckman_2003_stockholm.xls 

Code: The function I wrote to do the analysis is called “sinepower”, available here. If that link doesn’t work for you, try here. The function doesn’t call any external functions or packages … but it’s slow. There’s a worked example at the end of the file, after the function definition, that imports the 22-station CSV file. Suggestions welcome.

 

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

144 Comments
Inline Feedbacks
View all comments
milodonharlani
May 1, 2014 9:24 pm

thingadonta says:
May 1, 2014 at 9:21 pm
Relevant, IMHO.
CO2 isn’t a pimple on the glutes of solar effects upon earth’s climate, among other factors orders of magnitude more important.

DavidQ
May 1, 2014 9:26 pm

The cause of the 60 year cycle, is the heartbeat of Gaia…. No cycle, no Gaia. /sarc.
I do have an observational question: The Baltic is 416,266km2, rising 4mm a year, leads to a global sea level rise of 1.66km3. Perhaps I am wrong as there might be some subduction elsewhere?

Nick Stokes
May 1, 2014 9:30 pm

“I don’t know the right name for the procedure”
Isn’t it just a standard Fourier Transform graphed against period instead of frequency?

May 1, 2014 9:33 pm

I believe the Bay of Fundi has the most amplified tides in the world. Greater and lesser degrees of harmonic amplification occur everywhere. Bottom slope, channel width, moment, blah blah. This is why you don’t look for signal in sea level.
Sure, San Francisco may have a 55 year cycle because the PDO Nina phase increases Ekman transport away from the coast. Fish know this and come in spite of the lower tides. But this is an atmospheric and not a tidal phenomenon.

May 1, 2014 9:48 pm

Milo.
The pacific salmon are not the climate.
The pdo is not the climate.
It pains me to point this out.
Climate is long term weather statistics. Not fish.

Chuck
May 1, 2014 10:03 pm

the FFT has very poor resolution at long periods.
The resolution is the same, you just need to interpolate the frequency spectrum using the sinc function or, alternatively, extend the data with zeros before the transform. Both spectra have the same values, they are just sampled differently by the two methods.

milodonharlani
May 1, 2014 10:05 pm

Willis Eschenbach says:
May 1, 2014 at 9:52 pm
Maybe “we” haven’t, but I have. I don’t care whether you or anyone else has. I know where high tide was at Seaside, Oregon in the 1920s, when my grandfather’s company built the seawall there & where it is now, as well as in the 1950s, ’60s, ’70s, ’80s, ’90s & ’00s, directly observed by me from pop bottles buried in the sand during earlier decades & since recovered. Maybe there has been some downward movement of this part of the continent from the uplift in the Puget Sound region & points north, due to the melting of glaciers, but not much. We’re talking massive continents here, not the little island of Great Britain.
How about this? You, Mosher & I go to whatever community on the coast of Oregon, Washington, BC or Alaska will endure our road show & each make our case for or against a decadal fluctuation in sea level and/or associated biological proxies. I’ll abide by whatever decision local people most familiar with sea level changes & associated effects make after hearing our respective schpiels.
Deal or no deal?

milodonharlani
May 1, 2014 10:15 pm

But before you & Mosher decide to take your show on the road with me, please consider these data from Astoria, near Warrenton, where my grandad & grandmother are buried:
http://tidesandcurrents.noaa.gov/sltrends/50yr.shtml?stnid=9439040
Just so that you know.

milodonharlani
May 1, 2014 10:30 pm
Shawnhet
May 1, 2014 10:35 pm

Frankly, I don’t know why we should be hanging our hat on sea level as the only useful metric to detect the climate cycles.
It is pretty clear that there is a wide variety of independent evidence for such cycles – see here for instance:
http://www.climate.unibe.ch/~stocker/papers/stocker92cc.pdf
Cheers, 🙂

Greg
May 1, 2014 10:36 pm

Great Willis, looks like progress.
However, I think there’s one fundamental point that you’re missing about this which is leading you to misinterpret the many individual plots and the overlay where you see the all the records have very different spectra in the longer periods.
GE Smith: “2) on a similar vein, since my (now somewhat weak) brain thinks that a linear trend oughta morph into some recognizable “spectral” feature ”
I suggest you create an artificial time series that is a long steady rise plus a bit of your favourite model noise, white,red, pink, whatever, then do yourself a spectrum
Now do a few samples with lengths that match , say, your first eight tidal records, in terms of the number of data points. Plot them side by side or overlay.
I think you will find the results similar to what you have produced above.
The point is that a lot of the long periods are there to reproduce the steady rise. As we know, if you do a Fourier synthesis of any data and try to use it to project the future, it will just produce a repetition of the data window. In the case of a steady rise, it will produce a saw-tooth. If your data sample is shorter (longer) the teeth on the saw will be shorter (longer) . Thus the frequencies that make the series will be different and mainly dependent on the length of the data available.
http://mathworld.wolfram.com/FourierSeriesSawtoothWave.html
Note that both the frequencies and the amplitudes are a function of 1/L , where L is the length of the saw-teeth, ie the length of the tidal series in your post.
This is what the condition of stationarity (in particular stationary mean) is all about for FT methods.
If you do the test I suggested, I think it will demonstrate to you that this is what is happening.

milodonharlani
May 1, 2014 10:40 pm

Shawnhet says:
May 1, 2014 at 10:35 pm
I’m OK with centennial scale cycles ruled in large part by oceanic circulation, along with decennial scale by the sun & millennial to hundred millennial scale by orbital mechanics.

Kasuha
May 1, 2014 10:42 pm

Your “sinusoidal periodicity analysis” seems to me to be a simplified form of wavelet analysis:
http://paos.colorado.edu/research/wavelets/

May 1, 2014 10:42 pm

Using your “Tide Data 22 Longest.csv” I had a look at the longest fairly continuous data which was “Wismar” using CATS software available at Cycles Research Institute. This allows accurate cycles period determinations as well as Bartel’s test of significance. The longer cycles found (and p values in brackets) are listed for p<.05:
27.3 y (.020), 10.94 y (.027), 6.33 y (.049), 3.606 y (.027), 3.253 y (.004), 2.925 y (.031), 2.474 y (.0256), also 1.000 y (<10^-8), 0.500 y (<10^-8) but nothing at 1/3 or 1/4 year.
Note that 6.33 y is rather near to the Chandler wobble modulation period which is no surprise.
Of course 11 y is the sunspot cycle period and 27 years is a common cycle appearing in many natural and human series.
It would be possible to repeat this for all the 21 other data series.

Greg
May 1, 2014 10:48 pm

What to do?
Well Stockholm look like it has a very linear long term component, presumably attributable to post-glacial rebound. Fitting and removing this a linear fn would get rid of the saw-tooth problem and let your technique better examine the frequency content.
The other way is first diff. , or the discrete form of the time derivative. A linear rise will then become a fixed constant and will be the zero frequency point in the spectrum ( infinite freq , it you prefer), this separate from the rest and not messing up the spectrum. If there is a 60y pure harmonic in the TS it will still be there in d/dt . However if it a non harmonic repetition ( much more likely IMO ) it will not be so simple, although some 60y base component should still be there.

Greg
May 1, 2014 10:57 pm

What to do part II.
The other thing that can be done to see whether there is a common frequency is cross-correlation. ( I guess R must have some fn to do that too ).
For example do CC of Stockholm and another long record and do your freq. analysis on the result. If there is some common variability it should come out. Similar detrending rules will probably be required.
There will be a lot of variability that is due to local resonances as you said but if there is a common signal this may be the best shot at finding it.

Greg
May 1, 2014 11:00 pm

“Note that 6.33 y is rather near to the Chandler wobble modulation period which is no surprise.”
Hi Ray, could you explain a little about how that is related to Chandler? thx.

May 1, 2014 11:18 pm

The only 55 year feature that strikes me is the periodic low averages at Stockholm. Maybe the lack of storm surges or calm weather for extended months. Other then that, water sloshing from currents and storm tracks from one area to another look to me to be most likely cause. Sea Level is a fluid thing. 😉 pg

DonV
May 1, 2014 11:46 pm

Cool analysis, Willis! I imagine if the yearly “resonance” peak is an order of magnitude higher than longer periods, then the monthly and daily “resonance” peaks are even that much higher still.
Can I suggest that someone plot this data in such a manner that the X-Axis is not linear but rather logarithmic? Or would it be antilogarithmic? Whatever, . . . find the geometric progression power that spaces each of the peaks out so they are about the same width. This would help the eye determine if the peaks and valleys show any pattern, not that I think any pattern will emerge.
I think you are right though Willis when you suggested that what we are looking at is very, very, very low frequency resonant “waves” that are oscillating in a fixed cavity. I suspect that if you made measurments in a circular direction away from the measurement point you could relate the resonance peaks to specific radial distances where the water hits an opposing shore and “reflects” back. All of the different resonance peaks correspond to each distance just like sound in a flute, or any other standing wave instrument. The ocean is producing ultra-low frequency music?