Upwelling Solar, Upwelling Longwave

Guest Post by Willis Eschenbach

The CERES dataset contains three main parts—downwelling solar radiation, upwelling solar radiation, and upwelling longwave radiation. With the exception of leap-year variations, the solar dataset does not change from year to year over a few decades at least. It is fixed by unchanging physical laws.

The upwelling longwave radiation and the reflected solar radiation, on the other hand, are under no such restrictions. This gives us the opportunity to see distinguish between my hypothesis that the system responds in such a way as to counteract changes in forcing, and the consensus view that the system responds to changes in forcing by changing the surface temperature.

In the consensus view, the system works as follows. At equilibrium, what is emitted by the earth has to equal the incoming radiation, 340 watts per metre squared (W/m2). Of this, about 100 W/m2 are reflected solar shortwave radiation (which I’ll call “SW” for “shortwave”), and 240 W/m2 of which are upwelling longwave (thermal infrared) radiation (which I’ll call “LW”).

In the consensus view, the system works as follows. When the GHGs increase, the TOA upwelling longwave (LW) radiation decreases because more LW is absorbed. In response, the entire system warms until the longwave gets back to its previous value, 240 W/m2. That plus the 100 W/m2 of reflected solar shortwave radiation (SR) equals the incoming 340 W/m2, and so the equilibrium is restored.

In my view, on the other hand, the system works as follows. When the GHGs increase, the TOA upwelling longwave radiation decreases because more is absorbed. In response, the albedo increases proportionately, increases the SR. This counteracts the decrease in upwelling LW, and leaves the surface temperature unchanged. This is a great simplification, but sufficient for this discussion. Figure 1 shows the difference between the two views, my view and the consensus view.

equilibrium consensus and my view sw and lwFigure 1. What happens as a result of increased absorption of longwave (LW) by greenhouse gases (GHGs), in the consensus view and in my view. “SW” is reflected solar (shortwave) radiation, LW is upwelling longwave radiation, and “surface” is upwelling longwave radiation from the surface.

So what should we expect to find if we look at a map of the correlation (gridcell by gridcell) between SW and LW? Will the correlation be generally negative, as my view suggests, a situation where when the SW goes up the LW goes down?

Or will it be positive, both going either up or down at the same time? Or will the two be somewhat disconnected from each other, with low correlation in either direction, as is suggested by the consensus view? I ask because I was surprised by what I found.

The figure below shows the answer to the question regarding the correlation of the SW and the LW …

correlation upwelling longwave reflected solarFigure 2. Correlation of the month-by-month gridcell values of reflected solar shortwave radiation, and thermal longwave radiation. The dark blue line outlines areas with strong negative correlation (more negative than – 0.5). These are areas where an increase in one kind of upwelling radiation is counteracted by a proportionate decrease in the other kind of upwelling radiation.

How about that? There are only a few tiny areas where the correlation is positive. Everywhere else the correlation is negative, and over much of the tropics and the northern hemisphere the correlation is more negative than – 0.5.

Note that in much of the critical tropical regions, increases in LW are strongly counteracted by decreases in SW, and vice versa.

Let me repeat an earlier comment and graphic in this regard. The amounts of reflected solar (100 W/m2) and upwelling longwave (240 W/m2) are quite different. Despite that, however, the variations in SW and LW are quite similar, both globally and in each hemisphere individually.

boxplots longwave and shortwave anomalies CERFigure 3. Variations in the global monthly area-weighted averages of LW and SW after the removal of the seasonal signal.

This close correspondence in the size of the response supports the idea that the two are reacting to each other.

Anyhow, that’s today’s news from CERES … the longwave and the reflected shortwave is strongly negatively correlated, and averages -0.65 globally. This strongly supports my theory that the earth has a strong active thermoregulation system which functions in part by adjusting the albedo (through the regulation of daily tropical cloud onset time) to maintain the earth within a narrow (± 0.3°C over the 20th century) temperature range.

w.

As with my last post, the code for this post is available as a separate file, which calls on both the associated files (data and functions). The code for this post itself only contains a grand total of seven lines …

Data (in R format, 220 megabytes)

Functions

R Code

Advertisements

  Subscribe  
newest oldest most voted
Notify of
Michael Kelly

Thank you Willis,
For over ten years, being an educated sort of layman, I have been trying to explain the increased temp/increased water vapor/increased Albedo, equilibrium scenario. Your post has given me one more arrow in my quiver to further state what I feel as the obvious (in my non-scientific opinion), That is the state of equilibrium will always be the result of increased surface absorption/ reduced radiative reflection, for whatever reason.

Santa Baby

Is this the same as the Iris effect? Prof Richard Lindzen

Bad amatuer…BAD BAD AMATUER…shades of Tom Edison, Michael Faraday, and (horrors) the Wright Brothers. Shame on you for making primates out of the Phd’s. Your punishment, watching Lady Gaga, Al Gore, and Ahhhnold Schwartneger give talks on AWG. (Wait, that’s right, under the current administration, “enhanced interrogation” is not allowed. I guess you get by this time!)

Steve Keohane

Cool Willis. Thanks for your work.

Kevin Kilty

Very interesting. I’m not surprised at the result. A large fraction of reflected SW outgoing suggests dense clouds with high tops, which in turn are unusually cool, and which as a result have a smaller than average LW outgoing.
Here is what I see as two issues to examine.
1) This data doesn’t related directly to the problem of increasing GHGs because that is a long-term trend. This data, I think, exhibit the effect I summarize above, which may or may not result from what you propose. How can you demonstrate that the different time scales involved (GHGs versus your data) are not important?
2) You have shown the correlation, but what can you do to establish causation? You need to show that there is a time lag or something–effect follows cause.

Geoff Sherrington

Maybe there is some clarification from the observation of “yellow” areas that seem as if they are pressed against the west sides of continents. Maybe this is a location with different cloud formation properties than other ocean.
I’m a little concerned that -0.65 is still a weak correlation, but then weather data are typically noisy.
The CERES SW window really has a lot of near IR with it (0.3 to 5 micron) and the IR window is close at 8-12 micron, so it’s interesting that you find the 2 bands so negatively correlated.
Maybe a better correlation exists in the more raw data, because you are offered temporally smoothed monthly data. The radiation could well change from orbit to orbit and show as smeared in the final assembled data. Can you get pairs of simultaneous point observations to check this?

Charlie A

Shouldn’t the right hand box of Fig 1 show 390W/m2 ?

Willis
Can you please define the terms SW and LW (I know that it is short wavelength and long wavelength). What I want to know is what is the definition of the wavelengths involved.
Any increase in CO2, and CH4 must, by definition, have an increased absorption waveband and I have yet to see this quantified adequately. Also, from the equations involved, absorption is both temperature and pressure dependent, I have never ever seen any of these models deal with this type of dependency.

bones

Thanks, Willis. Nice work, very clear, however, your results are showing a negative feedback mechanism that tends to stabilize the system. It does not directly address the effect of adding greenhouse gases to the atmosphere, or have I missed something?

rokshox

bones, he addresses the effect of adding greenhouse gases indirectly. We know they have been added, but the negative correlation between LW and SW persists.

dalyplanet

I believe your third cartoon “My View” should have 390 as the surface radiation.
Interesting post Willis

Charlie A says: January 7, 2014 at 9:35 pm
Shouldn’t the right hand box of Fig 1 show 390W/m2 ?
Yes, Charlie is correct. To correspond to Willis’ narrative that an increase in GHG causes a change in albedo rather than a change in surface temperature, the upward LW radiation from the surface should be the same as the “Equilibrium” left panel before the increase in GHG. The GHG absorption in the left panel is 150 W/m2 (ie, 390-240), and is 152 W/m2 is the middle panel that has increased GHG, an increase of 2 W/m2. The right panel is supposed to have the same GHG absorption as the middle panel, but with the incorrect number it has 392-238 = 154 W/m2, or an increase of 4 W/m2 over the left panel case. Correcting the upward LW to 390 W/m2 in the right hand box will make the increased GHG absorption over the left panel case equal 2 W/m2.

Willis Eschenbach

dalyplanet says:
January 7, 2014 at 10:21 pm

I believe your third cartoon “My View” should have 390 as the surface radiation.
Interesting post Willis

[Thanks, fixed. -w.]

You have a major error here. You have conserved energy flux, whereas you should conserve energy. The area of the incoming flux is the cross-sectional area of the earth. The area of outgoing flux is the earth’s surface area, which is a factor 4 smaller.

Konrad

Willis,
with regard to the cloud thermostat, the time of day that clouds form is a factor even if the amount of cloud is only marginally increased. Earlier cloud formation leads to greater cooling even if cloud mass is not greatly increased.
Increased radiative gases should cause clouds to form a few minutes earlier after dawn over the oceans in the ITCZ.

Been puzzling lately about an aspect of the greenhouse effect as taught me in college many solstices ago. The story was that greenhouse glass (or gas) was permeable to shortwave incoming radiation but blocked outgoing longwave , and that the shortwave was somehow “converted” to longwave after it was absorbed inside.
Being young and impressionable and knowing well how hot my car got in Davis summers when the windows were closed, I was convinced.
Materials generally emit radiation wavelengths according to their temperature, but different materials have very distinct preferences for wavelengths and tend to both absorb and emit in the same bands. Outside these bands they seemingly ignore the radiation.
How then does a material convert shortwave to longwave?
Water (both surface and clouds), water vapor, and ice all have similar optical properties. they just luuuuv longwave radiation. CO2 loves it as well. They don’t care a fig about shortwave. Except for strong reflectance from clouds in the visible range (an unrelated property), they let it pass through.
All this may be a propos in a roundabout way because to examine the relationship between reflected shortwave and “upwelling” longwave, one must consider the sources. About half of TSI is longwave in the first place. The clouds, water vapor, atmospheric ice, and greenhouse gasses catch it and start flinging it around. The ocean surface catches all that comes its way in the first millimeters and flings it back.
If the extreme negative correlation in the tropical oceans means greater cloud reflectance and less escaping longwave, it could be that the LW escape is short circuited in a more intense photon food fight between the ocean and clouds and the reflection is incidental.
Unless you can explain to me how SW is “converted” to LW…

Willis Eschenbach

phillipbratby says:
January 7, 2014 at 10:42 pm

You have a major error here. You have conserved energy flux, whereas you should conserve energy. The area of the incoming flux is the cross-sectional area of the earth. The area of outgoing flux is the earth’s surface area, which is a factor 4 smaller.

In the CERES data, both the incoming flux and the outgoing flux are averaged 24/7 over their particular gridcell. They are not general measurements of the total global flux. As a result, there is no such error as the one you imagine.
And in general in other datasets, all incoming and outgoing fluxes are calculated on a 24/7 basis, and are adjusted for the situation that you mentioned.
Scientists may be wrong, and often are. But when you think you’ve uncovered a “major error”, something really obvious, well, you should check your facts very carefully before uncapping your electronic pen …
w.

Tim Groves

I also have a layman’s question that I’m sure someone has the answer to but I haven’t noticed it being discussed. The simplified explanations of “the Greenhouse Effect” talk about the Earth absorbing incoming solar SW radiation and emitting LW radiation, some of which is absorbed by “greenhouse” gases such as water vapor and carbon dioxide, which retards the escape of this LW radiation into space and thereby warms the Earth. My question concerns incoming solar LW radiation. Common sense suggests that greenhouse gases in the atmosphere also absorb incoming LW, thereby preventing it from reaching and warming the ground. If the concentration of greenhouse gases rises, they should absorb more of this incoming LW and prevent that from reaching the ground, resulting in cooling.
I’d like to know whether the total amount of LW at frequencies that can be absorbed and emitted by CO2 reaching the top of the atmosphere from the Sun is greater than the total emitted from the Earth’s surface over an equivalent period and whether this could lead to increasing “greenhouse” cooling rather than warming. And I’d like to know how the absorption and emission of this radiation is accounted for by conventional atmospheric greenhouse theory.

Edim

Where’s the non-radiative surface cooling by the atmosphere?
http://pmm.nasa.gov/education/sites/default/files/article_images/components2.gif
The non-radiative fluxes dominate.
Surface heat exchange (cooling side)
Convection and evaporation (sensible and latent): 59%
Radiation (incl. directly to space): 41%

Richard111

Sorry, I have to ask this. How does CO2 absorb long wave radiation from the surface?
CO2 in the atmosphere is warmed by kinetic collisions with other molecules to local air temperature. The properties of CO2 indicate that the CO2 will be RADIATING over some 3,800 lines covering 13 to 17 microns. This same band of radiation is emitted from the surface.
If the CO2 happened to absorb some of that radiation when it has already emitted an equivalent amount of radiation then there will be no change to the energy levels in the CO2.
My understanding is that the surface does not emit in 2.7 and 4.3 micron bands so there is no effect there.
Please, just what energy is CO2 absorbing from the surface? Reflected sunlight? I really would like to know as all my studies just leave me more baffled.

Willis said:
“When the GHGs increase, the TOA upwelling longwave radiation decreases because more is absorbed. In response, the albedo increases proportionately, increases the SR. This counteracts the decrease in upwelling LW, and leaves the surface temperature unchanged”
All my work since 2008 has been based on that proposition and I have stated it multiple times in multiple locations.
Where we differ is that I see the ultimate determinant of the set point surface temperature as atmospheric mass held within a gravity field and irradiated from an external source.
Is the reason for that difference that Willis still gives undue prominence to the assumed need for GHGs to initiate the necessary convective overturning ?
It isn’t a matter of ‘pressure’ since ‘pressure’ is merely a proxy for the combined effect on density of mass and gravity.
It is varying mass densities caused by uneven surface heating that sets up the convective circulation which then applies the negative system response whenever the combined thermal effect of radiation and conduction goes out of line with the amount of energy required to maintain radiative balance for the whole system.
GHGs and especially water vapour are merely lubricants for the convective process.
The visible climate response from our perspective is shifting climate zones but the effects of variations from sun and oceans are so huge that we could never identify our miniscule contribution.
This post from Willis is the ultimate logical conclusion to be derived from his initial thermostat hypothesis (which was limited to tropical convection) but still requires recognition of the physical processes behind it all.

Greg

This is good demonstration Willis. Probably the most direct evidence yet of regulation happening.
Perhaps a finer colour scale would help the colour guide jumps from -0.6 to -1 which is a huge difference and makes it a but hard to judge how well it correlates.
I’m not surprised though , this is very much in line with what my volcanic stack plots showed (though this is much more concrete proof). I showed it was mainly tropical ocean with ex-tropics showing less recovery and stability. I also showed NH was less stable and linked this to larger land area.
The volcanic data is a nice complement to this though because it shows the response to a strong and specific perturbation, not some hypothetical degree of centennial scale change.
http://climategrog.wordpress.com/?attachment_id=310
What did surprise me in your graph is four decorrelated areas against the major continents. The Peruvian region is readily understood as upwelling cold water of La Nina providing a strong (non radiative) external input the disrupts the broader correlation.
However, the other three did surprise me, seeming just a clear and strong.
There would seem to be a relationship with the major ocean gyres pulling down colder polar waters into the loop. This again would suggest that the feedback is primarily sensitive to impinging radiation than SST itself.
I think these four zones that you have found demonstrate and importan phenomenon and should provide key insight into how this regulator works.
Nice work.

John West

”In the consensus view, the system works as follows. When the GHGs increase, the TOA upwelling longwave (LW) radiation decreases because more LW is absorbed. In response, the entire system warms until the longwave gets back to its previous value, 240 W/m2. That plus the 100 W/m2 of reflected solar shortwave radiation (SR) equals the incoming 340 W/m2, and so the equilibrium is restored.”
While this is perhaps the most succinct explanation of the consensus view I have ever seen it glosses over several key points that expose some of the additional problems with the view:
In the consensus view, the system works as follows. When the GHGs increase, the TOA upwelling longwave (LW) radiation decreases and downwelling IR increases because more LW is absorbed. The increased downwelling radiation decreases the surface net radiation transfer to the atmosphere by radiation. Assuming no other energy transfers from the surface to the atmosphere increase, the surface warms and due to the Stephan-Boltzmann Law must emit more radiation. The entire system warms until the longwave gets back to its previous value, 240 W/m2. That plus the 100 W/m2 of reflected solar shortwave radiation (SR) equals the incoming 340 W/m2, and so the equilibrium is restored.
This portion seems to be shared by both views:
”the TOA upwelling longwave (LW) radiation decreases because more LW is absorbed”
Is there any real world evidence for this?
Another view:
When GHGs increase, both the TOA upwelling longwave (LW) radiation and downwelling longwave (LW) radiation increase because more LW is absorbed therefore more LW is emitted, not being a black or grey body GHGs emit what they absorb* (as opposed to emitting in proportion to their temperature). The increased downwelling radiation decreases the surface net radiation transfer to the atmosphere (slows the cooling) by radiation causing more energy to be transferred to the atmosphere by other processes like evapotranspiration thus keeping the surface temperature relatively unchanged since it is temperature gradients that drive heat transfer not radiation balances. The increased water cycle activity (i.e.: evaporation) increases the albedo of the atmosphere decreasing the solar energy absorption thus leaving the temperature of the atmosphere relatively unchanged as well (the increase in LW is offset by the decrease in SW). So, if there were a panel in figure 1 for this view the numbers would be around 101,241, & 390.
* More technically correct would be to say they may emit IR due to energy gained by absorbing IR or through collisions depending on a host of variables.

Schrodinger's Cat

I favour your explanation. I have always had grave doubts about the claimed amplification of CO2 warming by water vapour since this would be potentially dangerous for our water planet. Any forcing that raised the temperature and resulting evaporation could trigger runaway warming by means of this positive feedback loop. Given that our climate is remarkably stable, positive feedback seems very unlikely.
Water vapour is a GHG, so there must be another mechanism to limit or prevent the amplification scenario. This is cloud formation which acts as a cooling sun shade through reflection of incoming shortwave. Furthermore, cloud formation removes water vapour GHG from the atmosphere. This, I think, is the GHG warming limiter or thermostat.
I guess the GHG induced warming increases water vapour but also convection, transporting the vapour to higher in the atmosphere where it condenses to form clouds. In a dynamic process, this may not even be noticeable.

Dear Willis, very fine work. Thanks

Schrodinger's Cat

The GHG model predicts the famous hot spot over the tropics and increased humidity, neither of which have ever been found. This alternative mechanism has no need for these effects.

Note that beneath a completely transparent atmosphere the job of adjusting albedo is dealt with by winds causing the uplift of surface dust.
We can see some evidence for that on Mars which lacks water.
Periodically, the Martian winds become strong enough to create planet wide dust storms. That is the convective adjustment process in action on a dry planet.

TimTheToolMan

Willis writes “In the consensus view, the system works as follows. When the GHGs increase, the TOA upwelling longwave (LW) radiation decreases because more LW is absorbed. In response, the entire system warms until the longwave gets back to its previous value, 240 W/m2.”
Although this description isn’t strictly incorrect it is simplified to the point where it is misleading. You only need to change it a bit to actually make it the consensus view, however. Something like this…
In the consensus view, the system works as follows. When the GHGs increase, the TOA upwelling longwave (LW) radiation decreases because the average altitude increases at which it can leave and this greater altitude is colder.
In response, the entire system warms until the temperature of the new higher average altitude is such that the LW leaving gets back to its previous value, 240 W/m2.”
Personally I think the consensus view itself is a crock because its just one part of a complex process that naturally maximises its entropy and hence “the whole system” doesn’t want to warm.

bit chilly

great work again willis . the climate “scientists” will not like it though.far too simple and no funding required for carrer extending “research”.

On Lovelock’s Daisy world the white daisies are favored as radiative forcing rises because they reflect more sunlight thereby maintaining surface temperatures.
Clouds are the white daisies on Earth.

TomVonk

All 3 diagrams are wrong.
Let us consider the system called “GHGs” in the pictures. According to the pictures it absorbs 390 W/m² and emits 240W/m² (averaged values over 24 hours).
Therefore it “keeps” 390 – 240 = 150.
Where can this “kept” power (W/m² is a power unit) go ?
Well the only place is the heating of the whole atmospheric column.
An atmospheric column of 1 m² with a pressure of 1 atm weighs about 10 000 kg.
The specific heat capacity of air at 0°C is Cp ~ 1000 J/kg/K. We neglect here the variation with temperature because we only want an order of magnitude.
So in 1 second (1 W = 1 J/s) the atmospheric column with base of 1m² will increase its temperature by 150/(1000 x 10000) = 0.000015 °C.
Using here dQ = Cp . m . dT.
How long would it take for the column to reach 450 °C where it would basically burn everything and boil the oceans ?
Well 450/0.000015 = 30 000 000 seconds = 1 year.
As the oceans are obviously not boiling, the pictures are wrong and in reality if the ground emits 390 W/m², then whatever the GHG emit (here 240 W/m²) is also what they absorb (here 240 W/m²)

Up until now I knew negative feedbacks would dominate because the climate signal appeared to me to have the features I expect from a system with strong negative feedback. There was no concrete proof I was right, but experience and judgement told me I was.
Now you have shown me that there really is proof for what I would at best describe as a “well founded hunch”.
I’ve recently been working on uclimate.com and through that work I’ve not only discovered just how many sceptics are actively blogging, but as the “links” page shows, sceptics are far more active than warmists. That backs up my perception that the warmists have gone into retreat.

Greg

Willis, your code ran a treat, no messing, very nice. I see you’ve change the range of colour scale which is better, but it would be much better with more than six fixed increments. It can’t see where to change that. Is it hard-coded in the map library you use?

Mike Ozanne

Willis, you’ve made the same mistake again, using real data and finding a stable system. You need a proper model where any stability is just the the Global Warming Tiger lulling you into a false sense of security before it pounces….

richard verney

Willis
In your diagrams you depict in coming solar as being reflected off the top of the cloud.
You depict incoming solar as reflecting off the surface and then it appears that it passes straight through the cloud and out into space..
Why is not some part of the solar that is reflected off the surface onto the underside of the cloud, reflected back off the underside of the cloud downwards back to the surface.
If a cloud, its top, can reflect incoming solar back out to space, why cannot a cloud, its underside, reflect reflected solar from the surface back towards the surface?
After all even on a cloudy day with low level cloud it is not dark which suggests that solar is being rflected from the underside of a cloud back towards the surface. Further when a cloud interrupts solar, it is not pitch black in the shaddow area of the cloud. This suggests that either some part of the incoming solar penetrates its way through the cloud, or some solar that has been reflected from the surface, interacts with the underside of the cloud and is re-reflected back towards the surface thereby illuminating the surface in a diffused manner.

TimTheTolMan said:
“In response, the entire system warms until the temperature of the new higher average altitude is such that the LW leaving gets back to its previous value, 240 W/m2.”
Yes, as I’ve said so many times, the higher radiating altitude becomes warmer and so lets energy out faster whereas the AGW view is that the higher radiating altitude is colder and so lets energy out more slowly.
The higher, warmer, radiating point removes the need for any significant surface warming but does involve circulation adjustments.

MikeB

About half of TSI is longwave in the first place

You probably say this because someone told you that half of the incoming solar radiation is in the infrared. But this is the near infrared, it is not longwave infrared. The proportion of solar radiation with wavelength greater than 5 microns is negligible in comparison to the radiation emitted from the Earth’s surface itself. It’s safe to say that if we detect radiation shorter than 4 microns then it is from the Sun (or a rocket engine or a furnace) and that infrared radiation above 5 microns is from the Earth or its atmosphere.
All warm bodies emit electromagnetic radiation. The distribution of that radiation accords with Planck’s Law and depends only on the body’s temperature and its emissivity. To find where the peak emission will be simply divide body’s absolute temperature into 3000. For example, a body at a typical Earth temperature of 300K will have a peak emission of 3000/300 = 10microns. On the other hand the Sun, with a surface temperature of 6000K, will emit its peak radiation at 3000/6000 = 0.5 microns. This is Wien’s Law (or more exactly an approximation to it. Use 2897 instead of 3000 for a precise answer).

How then does a material convert shortwave to longwave?

You can see from the above that a material will emit according to its own temperature. Since the Sun at 6000K does not manage to heat the Earth to 6000K but only to, say, 300K, then the Earth radiation will be LW and the Sun’s radiation is SW.

In Willis’s Fig 1 diagrams just replace the vast majority of what he terms GHG absorption with conductive absorption by the mass of the atmosphere and then there you have it.
If there is too much atmospheric absorption the surface radiates more out than comes in so the system cools and if there is too little atmospheric absorption the surface radiates less out than comes in and the system cools.
Convection changes to negate the thermal changes either way.
You have to consider the system as a whole and not just the surface because the practical effect of atmospheric mass floating above the surface is to ‘smear’ the location of the surface up through the vertical column.
That is why you cannot apply S-B at a surface beneath an atmosphere containing any mass at all.

Whoops, a typo:
if there is too little atmospheric absorption the surface radiates less out than comes in and the system WARMS.

Greg

“if there is too little atmospheric absorption the surface radiates less out than comes in and the system WARMS.”
That’ll that new “convection absorption” I presume. So once the surface warms due to lack of “convection absorption”, according to S-B it will emit LWIR which will get conventionally absorbed by the atmosphere and re-radiated.
We are back to the usual physical description.

MikeB

StephenWilde, as always, I find it very difficult to understand what you are trying to say. What for example is ‘conductive absorption’, a term meaningless to me?
The important thing to understand is that the radiation from the surface of the Earth, or anything else for that matter, depends only on that body’s own temperature and emissivity. Nothing else! It doesn’t care what is happening in the atmosphere somewhere else. It is not effected by convection, evaporation etc., just its own intrinsic properties of temperature and emissivity. It’s quite simple really, why make it more complicated.
By the way, what is meant by “an atmosphere containing any mass at all”. Are there some atmospheres with no mass?

Greg

richard verney says:
In your diagrams you depict in coming solar as being reflected off the top of the cloud. ….
Once it interacts with Earth , rather than flying past, SW will either be reflected (after one or many reflections) or be absorbed. In the latter case it ends up as heat. You don’t need a ray diagram for each photon.

‘conductive absorption’ (not convective absorption) is just conduction but I added the term ‘absorption’ to match the term ‘GHG absorption’ used by Willis.
Gases absorb energy by conduction from a surface and such absorbed energy is not available for radiation out whilst it remains absorbed.
The length of time that energy is stored by the atmosphere’s mass before it is returned to the surface determines the scale of the mass induced greenhouse effect.
Convection both takes away upwards the energy conducted to the air at the surface and then returns it again on the descent half of the cycle for a zero net energy exchange with the surface.
The time taken for the convective cycle creates the greenhouse effect and radiative gases speed that cycle up so as to offset the slowing of energy transmission caused by their re-radiation back to the surface.
Exactly as proposed by Willis but he doesn’t seem to acknowledge the role of conduction.

“By the way, what is meant by “an atmosphere containing any mass at all”. Are there some atmospheres with no mass?”
I was pointing out that the amount of mass is not critical but that some mass is needed for the conductive interaction with the surface.
When one considers concepts such as a perfectly transparent atmosphere then that is implicitly an atmosphere with no mass at all because any mass at all prevents perfect transparency.
It was not me who first started using such unrealistic terminology.

Kelvin Vaughan

At noon I am measuring a clear sky at -30°C, the ground is 7°C and the air temperature is of 9°C. When it is cloudy at Noon the cloud temperature is 5°C and the ground and air temperatures are 8°C.
A big change in sky temperature doesn’t make a lot of difference to the ground and air temperature.

cba


phillipbratby says:
January 7, 2014 at 10:42 pm
You have a major error here. You have conserved energy flux, whereas you should conserve energy. The area of the incoming flux is the cross-sectional area of the earth. The area of outgoing flux is the earth’s surface area, which is a factor 4 smaller.

You’ve got it backwards. Incoming flux is like sunlight hitting a disk of radius R, area PI*R^2, while outgoing flux is from the whole surface of a sphere, 4*PI*R^2.

TheBigYinJames

That’s a lot of words to say “heat causes clouds”. This is hardly a new hypothesis for us on this side of the fence.

cba

Willis,
One of the things I’ve noticed is that when one goes to the simplified Stefan’s law model concepts, they fail to realize that for a given altitude ‘shell’ of atmosphere, when additional GHGs are added, not only is more radiation absorbed, but also the emissivity increases, requiring less temperature to emit the same amount of power. What’s more, that radiation amount is increased for upward as well as downward, requiring more energy transport to that shell in order to maintain the same temperature. Finally, that shell is not really like a solid surface at a given temperature but has only a very small amount of absorption and emission according to the spectrum of the combined GHGs and its temperature so adding GHGs require the increase in the emissivity factor – which is really just an engineering kludge when what is really happening is highly wavelength dependent.
Note that the increased radiation does not totally compensate for the added GHG absorption. Also, what is absorbed tends to be absorbed quickly and emitted quickly so far as distances go. Strong absorption areas of the spectrum have very short paths anyway. As one travels upwards though the pressure drops and the spectral lines get narrower, affecting a smaller amount of the spectrum.
Your basic model idea is very much along the ideas I’ve concluded (and have not had any time to work on for a few years now – which is along Lindzen’s IRIS theory ). Keep up the good work, I think you’re on a roll.

Bill Illis

Cloud feedback is Negative.
The -1.0 W/m2/century SW reflectance trendline on a temperature change calculated of 0.3C/century signals a feedback value of -3.33 W/m2/K. The IPCC AR5 report put the cloud feedback at +0.7 W/m2/K.
Using this -3.33 W/m2/K value for the cloud feedback drops CO2 climate sensitivity to 0.75C per doubling from the theory’s 3.0C per doubling.

jhborn

Suppose that the bulk of the inter-month cloudiness-anomaly variation is random. A consequent reflected-short-wave-radiation variation and, I assume, opposite surface-temperature anomaly variation would likely result in the negative correlation between upwelling long- and short-wave variations that Mr. Eschenbach illustrates.
And that would occur even in the absence of any dependence of albedo on temperature.
Of course, this causation-direction assumption ignores Mr. Eschenbach’s previous observations concerning earlier tropical-thunderstorm occurrence on hotter days. Still, there must be some random (or at least chaotic, which is the same thing for present purposes) component to the albedo signal.
I assume there’s no really good way of teasing these different-causal-direction effects apart, but perhaps someone can see how the data’s time scales might tend to favor one over the other?