While the Antarctic is making new records for more ice this week, we have another press release with “could” science in it.
Timing is everything I guess, but I really have to wonder how “…warming waters in the Southern Ocean are connected intimately with the movement of massive ice-sheets deep in the Antarctic interior.” Oh wait, it’s modeling, never mind.
From the University of New South Wales:
Warming ocean could start big shift of Antarctic ice
Wednesday, 19 September, 2012
Alvin Stone
Fast-flowing and narrow glaciers have the potential to trigger massive changes in the Antarctic ice sheet and contribute to rapid ice-sheet decay and sea-level rise, a new study has found.
Research results published in the journal Proceedings of the National Academy of Sciences reveal in more detail than ever before how warming waters in the Southern Ocean are connected intimately with the movement of massive ice-sheets deep in the Antarctic interior.
“It has long been known that narrow glaciers on the edge of the Antarctica act as discrete arteries termed ice streams, draining the interior of the ice sheet,” says Dr Chris Fogwill, an author of the study and an ARC Future Fellow with the UNSW Climate Change Research Centre.
“However, our results have confirmed recent observations suggesting that ocean warming can trigger increased flow of ice through these narrow corridors. This can cause inland sectors of the ice-sheet – some larger than the state of Victoria – to become thinner and flow faster.”
The researchers, led by Dr Nicholas Golledge from Victoria University of Wellington, New Zealand, tested high-resolution model simulations against reconstructions of the Antarctic ice sheet from 20,000 years ago, during the last glacial maximum.
They used a new model, capable of resolving responses to ice-streams and other fine- scale dynamic features that interact over the entire ice sheet. This had not previously been possible with existing models. They then used this data to analyse the effects of a warming ocean over time.
The results showed that while glacier acceleration triggered by ocean warming is relatively localized, the extent of the resultant ice-sheet thinning is far more widespread. This observation is particularly important in light of recently observed dynamic changes at the margins of Antarctica. It also highlighted areas that are more susceptible than others to changes in ocean temperatures.
The glaciers that responded most rapidly to warming oceans were found in the Weddell Sea, the Admundsen Sea, the central Ross Sea and in the Amery Trough.
The finding is important because of the enormous scale and potential impact the Antarctic ice sheets could have on sea-level rise if they shift rapidly, says Fogwill. “To get a sense of the scale, the Antarctic ice sheet is 3km deep – three times the height of the Blue Mountains in many areas – and it extends across an area that is equivalent to the distance between Perth and Sydney.
“Despite its potential impact, Antarctica’s effect on future sea level was not fully included in the last IPCC report because there was insufficient information about the behaviour of the ice sheet. This research changes that. This new, high-resolution modelling approach will be critical to improving future predictions of Antarctica’s contribution to sea level over the coming century and beyond.”
===========================================================
Related – over at Bishop Hill he explains how the pooh-poohing of the current Antarctic ice surplus really doesn’t hold up when you look at past IPCC predecitions.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
![S_timeseries[1]](http://wattsupwiththat.files.wordpress.com/2012/09/s_timeseries11.png?resize=640%2C512&quality=75)
Funny how climate scientists talk about a high resolution model when they mean an extremely rather than an ultra low resolution one. A high resolution model to real computer modellers is one where there would be at least sixteen bit accuracy calculation on all the variables and no more than one percent error on any single reading.
Given we now have a reference network available that proves the source data is out by ten or more times the claimed difference we can reasonably demand that any actions based on climate change being dumped immediately.
Mildly off-topic, but relevant…
Earlier this month, the BBC’s Environment Correspondent had a feature on their website, and on tv, headed: ‘Arctic ice melting at astonishing rate’.
Having looked at the graphs for Arctic sea ice from the various (unbiased) sources who keep tabs on this matter, I’m surprised he hasn’t come up with a new article, headed: ‘Arctic ice refreezing at astonishing rate’….
Not so news-worthy, perhaps..?
Re; Alvin Stone, September 20, 2012 at 9:42 pm
. . . I have the distinct luxury of being able to ask climate scientists about these and, where I can, I try and reproduce their answers for those who visit the page.
Thanks again to you and all your followers for taking note of this paper and for the commentary of all on this page.
Kind Regards Alvin Stone
. . .
Alvin,
If more climate scientists engage in honest debate, rather than denigrating any who dare to questions ‘the Great and Powerful Oz’ at every turn, the CAGW discussion might be able to move forward much more quickly.
But hiding from FOI requests and claiming ‘the dog ate my homework’ while calling making absurd ‘in the pocket of big oil’ claims against anybody who spots an error in the science is no way to advance science.
Further; every single data adjustment cannot be positive and every single new finding (including ones that contradict prior findings) cannot confirm the CAGW hypothesis. See for example; ‘growing antarctic ice cap confirms global warming’, and now; ‘shrinking antarctic ice cap confirms global warming’.
The real problem is this; scientists cannot be policy advocates. If they are advocates, they are not scientists. Why is that so difficult to understand?
@Billy Liar – You ask
http://www.agu.org/pubs/crossref/2012/2012GL052559.shtml is the answer. 45 meters is a possible local accumulation in places on the Antarctic Peninsula over the last 155 years, based on model output. So not the whole Antarctic, and not in the last few decades. Land ice, not sea ice.