The cure for anything is salt water—sweat, tears, or the sea.

Guest Post by Willis Eschenbach

There’s an interesting study in Science magazine, entitled “Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000” by Durack et al. (paywalled here, hereinafter D2012). The abstract of D2012 says:

Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle.

Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 T 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

Let’s start with salinity of the ocean, and how it varies around the globe.

Figure 1. Mean salinity of the ocean in “Practical Salinity Units” (PSU). Figure 1(D) from D2012.

One thing that we can see in Figure 1 is that where there is plenty of rain, along the equator and near the poles, the ocean is less salty (lower salinity). Conversely, where there is a lot of evaporation and little rain, the ocean is saltier.

Intrigued by their thesis that “dry regions will become drier and wet regions will become wetter in response to warming”, I pulled out my Argo surface data to take a look at the salinity records, and to get some idea of how the salinity varies with time, temperature, and location. What I found agrees with my general mantra, “Nature simply isn’t that simple”.

I started by dividing the globe up into five regions: North and South Pacific, North and South Atlantic, and Indian Ocean. I like to start my investigations by looking at a large scale, and then work downwards. Here’s the records for the Indian Ocean.

Figure 2. Temperature versus salinity for the Indian Ocean. Colors indicate the year that the observations were taken. Click on the image for a larger version.

There are several things that we can see in this plot. First, there has been no obvious change salinity during the decade. The earlier records (red) are distributed very similarly to the later records (blue).

Next, the shape of the curve is interesting in that it shows a very different salinity response at different temperatures. At the coldest end of the scale, and up to about 5°C, increasing temperature yields decreasing salinity. Next, from 5°C to about 20°C, as temperature rises, salinity increases, meaning less rain.

Finally, above about 20°C, increasing temperature correlates with decreasing salinity, meaning more rain.

Now, let’s consider their claim, that with increasing temperatures “dry regions will become drier and wet regions will become wetter”. This claim rests on the reasonable assumption that the salinity is inversely related to rainfall, because the fresh rainwater dilutes the salty ocean.

But here’s the problem with the claim. Let’s take a look at two areas, both with the same salinity, say 35 PSU.

Figure 3. As in Figure 2, with a yellow line indicating ~ 35 PSU salinity.

Note that the yellow line intersects two areas, one warmer and one cooler. Now presumably, since salinity is a proxy for rainfall, the two areas are equally wet, or are equally dry.

Now, if the temperature increases, one of the areas (the one on the left) will show an increase in salinity (decreasing rain), while the other one will show a decrease in salinity (increasing rain).

But we can replicate this result at each level of salinity. At each level of salinity (and therefore rainfall), when it warms, some areas get wetter and some areas get dryer. Therefore, it is not true to say that as temperature increases “dry regions will become drier and wet regions will become wetter”. In fact, some dry regions will get wetter, and some will get dryer, and the same is true for wet regions.

This is just the Indian Ocean, however. Let’s see what the other areas show. Here’s the same graph, for the South Atlantic.

Figure 4. Temperature-salinity plot for the South Atlantic, with the years indicated by colors.

As I said above, nature simply isn’t that simple, and the South Atlantic is different from the Indian Ocean. In the South Atlantic, as the temperature increases, rainfall decreases. Instead of the wet areas getting wetter and vice-versa, all areas get drier with increasing temperature.

Next, I looked at the South Pacific:

Figure 5. As in Figure 4, for the South Pacific

In the South Pacific, we see yet another pattern. There’s not a whole lot of change in salinity as the temperature varies. How about the North Pacific?

Figure 6. As in Figure 5, for the North Pacific. 

Again, the change in salinity is much smaller that in e.g. the Indian Ocean. However, the same thing is true—for every place that is dry that will get drier if it warms, there is another place that is dry that will get wetter if it warms.

Finally, for complexity, nothing matches the North Atlantic.

Figure 7. As in Figure 6, for the North Atlantic.

Once again, we see that there are dry areas that would get wetter, and wet areas that would get drier, with a temperature increase. However, there are a lot of areas in the North Atlantic that seem not to be following any general trend … complex nature strikes again.

Having looked at how the temperature is related to the salinity for large areas, I decided to look at how the salinity and temperature changed with time for smaller areas. I started with the Pacific, and I picked an area where I could look at ten-degree latitudinal bands. Figure 8 shows those bands.

Figure 8. Salinity map as in Figure 1. Yellow boxes show the delineation of the areas analyzed.

First I looked at the Northern Hemisphere in the Pacific.

Figure 9. North Pacific salinities by ten-degree bands. Colors indicate from coldest to warmest for each individual band. Purple dotted line shows the average for the entire North Pacific region. Black line shows a 200-point gaussian average of the salinity. “Sal. Chg.” is the salinity change (expressed as a change per 50 years for comparison with the D2012 study, along with the “p-value” for the trend rounded to three digits. “Temp. Chg.” is the temperature change (expressed as a change per 50 years for comparison with the D2012 study, along with the “p-value” for the trend rounded to three digits. “Sal. Anom.” is the salinity anomaly expressed in relation to the area salinity average (purple dashed line). “PA” is the “pattern amplification” discussed in the paper, which is the salinity change divided by the salinity anomaly. Note that some of the changes are not statistically significant (p greater than 0.05).

The claim made in the paper is that when the salinity is high (positive salinity anomaly), the salinity change should be positive with increasing temperature (dry gets drier), as well as the reverse—when salinitiy is low, the salinity change should be negative with increasing temperature (wet gets wetter).

However, in four of the six areas shown above, this is not the case. Nature is simply not that simple.

Next, Figure 10 shows the corresponding chart for the South Pacific:

Figure 10. As in Figure 9, for the South Pacific.

Once again, nature is not cooperating. First, in many areas there is little change in salinity. From 50°S to 40°S, the annual swing in temperatures is 14°C, but there is almost no annual change in salinity. In addition, the overall change is in the wrong direction. For another example, look at the band from 20°S to 10°S. Salinity is above the area average, but despite that, salinity is higher during the cool part of the year. In addition, temperature dropped, but contrary to predictions, the previously high salinity increased …

I append the corresponding charts for the Atlantic Ocean, which show much the same thing as we see in the Pacific—a confusing mix of responses.

My conclusions? Well, my main conclusion is that there is no general “wet get wetter and dry get drier” changes. For every dry area that is getting wetter with increasing temperature, there is another area which is just as dry that is getting drier with increasing temperature.

My second conclusion is that different parts of the ocean react very differently to increasing temperature. In some areas, neither annual nor decadal changes in temperature make much difference to the salinity. In others they are positively correlated, and in yet others, they are negatively correlated.

Does this make the D2012 paper incorrect? I don’t know, because they didn’t archive the data that they used for the 50 year period 1950-2000. It does, however, indicate that as is usual with the climate, generalizations are hard to draw. Humans always want things reduced to simple relationships like “if temperature goes up, wet areas get wetter and dry areas get drier.” Like Aesop, we prefer simple morals for our fables. Unfortunately, nature is nowhere near that simple.

My best to all,

w.

PS—I have not commented on the use of a combination of traditional salinity measurements and Argo float measurements, and I do not find any comments by the authors of D2012 regarding the topic. However, it would seem that it should be discussed and the two measurements compared where they overlap in time and space.

APPENDIX 1: Salinity charts by latitude band for the Atlantic Ocean. See the captions for Figures 8 and 9 for details.

Appendix 2. Data and code (in the computer language “R”) are here as a zipped archive (WARNING: 32 Mb archive). Data is in an R “save” file called “argo temps.tab”. WARNING 2: The code is not “user-friendly” in any sense, and might best be termed “user-aggressive”. It is NOT designed to be run as a single piece.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

73 Comments
Inline Feedbacks
View all comments
Lance Wallace
May 12, 2012 8:41 pm

Neat stuff as usual, Willis. I had read that piece in Science and confidently predicted that you would debunk it, but it’s always amazing how fast you operate.
Some of the p-values in Figs 9 & 10 are given as “p=0” –can you fix?

Paul Vaughan
May 12, 2012 8:56 pm

Willis wrote: “Humans always want things reduced to simple relationships like “if temperature goes up, wet areas get wetter and dry areas get drier.””
Well-said.
Varying aggregation criteria easily introduces statistical paradox, so to learn terrestrial climate fundamentals, we need to pay special attention to variables that are globally constrained.
The education system badly needs a compulsory course for all students: Paradox 101. Generations later, humanity might look a whole lot less goofy than climate & solar scientists do today.
Precipitable Water:
http://i52.tinypic.com/9r3pt2.png
Monthly Maximum of Daily Precipitation:
http://i41.tinypic.com/34gasr7.png
Evaporation Minus Precipitation:
http://i43.tinypic.com/2isvynb.png
Column-integrated Water Vapor Flux with their Convergence:
http://i51.tinypic.com/126fc77.png
Credit: Climatology animations have been assembled using JRA-25 Atlas [ http://ds.data.jma.go.jp/gmd/jra/atlas/eng/atlas-tope.htm ] images. JRA-25 long-term reanalysis is a collaboration of Japan Meteorological Agency (JMA) & Central Research Institute of Electric Power Industry (CRIEPI).
http://i49.tinypic.com/fp1edv.png
http://i49.tinypic.com/219q848.png

Dexter Trask
May 12, 2012 8:57 pm

“User-aggressive” would also seem to be an apt description of nature as well…

a jones
May 12, 2012 9:01 pm

Yes. Indeed seawater gets rid of Triffids too you know. Less sure about what it does to so called climatologists though: where many seem to inhabit a science fiction world of their own where they are invincible. In their dreams anyway.
Kindest Regards

May 12, 2012 9:03 pm

If they cover the 1950 to 2000 time frame, how do they handle the cooling from 1950 to 1978, representing the majority of this time frame? Or do they use somebody’s “adjusted” data that disappears this cooling phase? Do they report “intensification” throughout this period or did it decrease with cooling?

May 12, 2012 9:08 pm

Done with your usual thorough analytic thought, Willis. I appreciate your contributions and thank you for them. It would appear from this analysis that we are faced with another poorly done paper in the name of science. I am disappointed with the dismal performances of much in science today.

Kasuha
May 12, 2012 9:27 pm

Thanks for pointing out an interesting paper, and thanks for interesting play with numbers and dots, but I don’t really see how they connect to each other.
First thing that I can see on the paper is, it’s yet another paper saying that models got it wrong.
Second thing is, it is known fact that in historical times when the temperature was higher than today, water cycle was more intense as well. Among others, some 6000 years ago Sahara was much greener than today.
And third thing is, the approach “that’s nice what you found there but when I analyse the data my way I see nothing” does not prove anything. Looking at your graphs I’d even say that they support conclusions of the paper, but more detailed analysis would need to be done.

Eyal Porat
May 12, 2012 9:36 pm

Thank you Willis for yet another very readable and informative post and a further example of why the debate is not over.
It keeps me amazed how people try to simplify the climate’s behaviour to match their pre-perceived targets.
Over simplification is good for explaining processes, but not for explaining vast and complex systems (as oceans and climate).
The equation warmer=drier is, on its face, a simpilfied and childish claim.
We know that colder could be dryer too…

May 12, 2012 9:39 pm

Great, Willis. Now why don’t you address what they actually did?
Lead author Paul Durack said that by looking at observed ocean salinity changes and the relationship between salinity, rainfall and evaporation in climate models, they determined the water cycle has become 4 percent stronger from 1950-2000. This is twice the response projected by current generation global climate models.
Your analysis above doesn’t say anything about evaporation.

Interstellar Bill
May 12, 2012 9:52 pm

Obviously none of the reviewers spent any time on any such critical analysis. Presumably they were too eager to affrim the predictibly bad news. When I read my snail-mail issue I was struck by the AGW-catechism tone of the very opening
“Fundamental thermodynamics and climate models suggest”
First of all, fundamental thermodynamics does NOT ‘suggest’, it enforces.
Second, tinker-toy models with harumphy official names are not in any way to be given equivalent judgemental weight to ‘fundamental thermodynamics’.
Third, the only suggestion in this entire paper is by your assumption of ‘fixed relative humidity’. Did you ever think to check any data to see if you assumed correctly? Hint: you didn’t. Did you ponder where all that extra heat is supposed to come from?
Also,, can we drop the ‘Reveal’ in the title? How about using the same word we use in deference to ACLU sensibilities: Ocean Salinities ALLEGE Strong Global Water-Cycle Intensification…
Wow! Not just any old ‘intensification’, but a “STRONG’ intensification, one that they ‘FOUND’ (paragraph 2) in 21st century climate projections. I wonder how hard they had to search for that? Hmmmmm.
They conclude with alleging that in ‘the 2-3 C warmer world’ of 2100, their ‘results’ imply a ’16-24% amplification’. This is twice as bad as what the best Gee-Whiz model had already ‘predicted’
So we’re just plain screwed, folks (but, conveniently, not right away).
I used to read Science & Nature for a weekly knowledge infusion, but now I get the bonus of laughing at their mawkish AGW pseudo-science, then waiting for WUWT to skewer it fully. History before my very eyes!

Paul Vaughan
May 12, 2012 9:53 pm

Oakden Wolf (May 12, 2012 at 9:39 pm) wrote:
“[…] the water cycle has become 4 percent stronger from 1950-2000.”

http://i49.tinypic.com/219q848.png

gnomish
May 12, 2012 9:55 pm

and if the rain falls back into the sea from whence it came – all the assumptions are invalid.

DavidA
May 12, 2012 10:04 pm

I enjoyed reading it. Just a comment: “One thing that we can see in Figure 1 is that where there is plenty of rain, along the equator and near the poles” – ice melt around the poles comes into play?

gnomish
May 12, 2012 10:58 pm

heh-
“Since nothing can ever be proven in science”
prove that one!

Scarface
May 12, 2012 11:59 pm

Willis, it almost looks as if the graphs of the oceans need a 3rd dimension. Have you looked at that possibility?

Brian H
May 13, 2012 12:11 am

Ah, the map is strikingly different from the territory, it seems!

son of mulder
May 13, 2012 12:40 am

Has any consideration been given to how ocean currents contribute to the time evolution of salinity at any particular place as I’m sure ocean currents also contribute to evaporation and moving salty water? I assume salinity arose from salt deposits close to the seabed that are now exhausted (zero sum game) or is salinity subject to sources and sinks in any sort of way? Without consideration of these points I can’t see how conclusions can be drawn from the data or how the original predictions could be sensibly made.

thingadonta
May 13, 2012 12:41 am

“dry regions will become drier and wet regions will become wetter in response to warming”
Sounds cute, but you don’t even need graphs to sense that this doesnt necessarily work. A region which is dry because it is next to an adjacent cold area, will tend to get wetter if the adjacent cold area heats up, because the cold area is no longer as cold. So a warmer world, for these areas, will tend to make these dry areas wetter.
An example is the Sahara, it is well known to be wetter when the world was warmer in the Holocene, probably for the same sort of reasons as above; when adjacent Europe/Atlantic is colder, the Sahara is drier. The Amazon is also drier when colder, as in the Ice Ages.
Another example is the continental west coasts, which are dry because of the cold currents next to them, when this cold water heats up, they tend to get wetter-which is happening in the NW of Australia (but not in the SW of Australia, curiously).

dalyplanet
May 13, 2012 12:49 am

Thank you Willis Eschenbach for another beautiful exposition of ARGO data. And the thought provoking article. I also want to thank you for the amazing discussion produced from your Bern Model article. My understanding of the CO2 cycle puzzle was greatly enhanced. Thank you to all the great posters rgbatduke particularly but all. I really learned a lot, completely new conceptualization of the process by the descriptive words of rocket science and for simplicity, diagrams.
Only on WUWT !

May 13, 2012 1:17 am

Willis
I love your deconstructing work. Is there any way you can set it all on a more complete historical and objective basis, I mean, something like:
Nature etc major climate publications….. xxx
Same publications deconstructed by Willis here …. yyy
Same publications deconstructed by others here …. zzz
Roots of studies in alarmist statements… jjj
Conclusions for Science…… kkkkk
– well, written-up in a way that is a bit more, what is it, nuanced than that! Perhaps even a book. You know I still dispute your conclusions re some of the radically new material that challenges long-accepted physics and maths. But these deconstructions of yours, where standard methods and standard accepted laws of science are used, or rather, as you show, abused, and commonsense and patterned complexity are neglected in favour of shocking conclusions to trivial studies, are IMHO really important.

May 13, 2012 1:40 am

Willis, re evaporation – you may have seen the paper by Roderick et al in Geograpical Compass 2009 http://biology.anu.edu.au/CMS/FileUploads/file/Farquhar/271RodericketalPanreviewIGeogCompass2009_000.pdf
It shows pan evaporation reducing over the last 50 years contrary to expectations. I think Roderick was side lined at ANU as a result.

1 2 3