I’ve been looking at the Nikolov and Zeller paper again. Among other things, they claim to be able to calculate the surface temperature Ts of eight different planets and moons from knowing nothing more than the solar irradiation So and the surface pressure Ps for each heavenly body. Dr. Zeller refers to this as their MIRACLE equation. He says:
Why aren’t you all trying to disprove our MIRACLE equation rather than banging your heads against walls trying to prove or disprove who knows what and exclaiming you have problems with this or that? The question is how can we possibly have done it – there is no question that our equations work – if you haven’t verified that it works, why haven’t you? […] Why aren’t you thinking: “hmmmm, N&Z have given us an equation that lo-and-behold when we plug in the measured pressures and calculate Tgb as they suggest, gives us a calculated Ts that also matches measured values! You can’t disprove the equation? So maybe we are cooking the data books somehow, but how?
This is supposed to be evidence that their theory is correct, and people keep telling me ‘but they’ve got real evidence, they can make predictions of planetary temperatures, check it out”. Plus it’s hard to ignore an invitation like Dr. Zellers, so I checked it out.
Figure 1. These are not the equations you are looking for.
They first postulate something called the “Near-surface Atmospheric Thermal Enhancement” or “ATE” effect that makes the earth warmer than it would be without an atmosphere.
The “ATE effect” is measured by something called Nte(Ps), which is defined and estimated in their paper as follows.

where Nte(Ps) is a measure of the “Near-surface Atmospheric Thermal Enhancement” effect.
Nte(Ps) is defined as the actual average surface air temperature of the planet Ts divided by the theoretical “graybody” temperature of the planet Tgb calculated from the total solar insolation So of the planet. Nte(Ps) is estimated using a fitted function of the surface pressure of the planet Ps.
Let me simplify things a bit. Symbolically, the right part of equation (7) can be written as
Nte(Ps) = e^(t1 * Ps ^ t2 + t3 * Ps ^ t4) (7Sym)
where “e” is the base of natural logs and Ps is the surface pressure on the planet or moon. There are four tunable parameters (t1 through t4) that are “fitted” or tuned to the data. In other words, those values are repeatedly adjusted and tuned until the desired fit is obtained. This fitting can be easily done in Excel using the “Solve…” menu item. As you’d expect with four parameters and only eight datapoints, the fit is quite good, and their estimate is quite close to the actual value of Nte(Ps).
Amusingly, the result of equation (7) is then used in another fitted (tuned) equation, number (8). This is:

where So is total solar irradiation.
This is their piece de resistance, their MIRACLE equation, wherein they are saying the surface temperature of eight different planets and moons can be calculated from just two variables— Pr, the surface pressure, and So, the total Solar irradiation. This is what amazes the folks in the crowd so much that they write and tell me there is “evidence” that N&Z are right.
Obviously, there is another tuned parameter in equation (8), so we can rewrite this one symbolically as:
Ts = t5 * (Solar + adjustment ) ^ 1/4 * Nte(Ps). (8Sym)
Let me pause a minute and point something out about equation (8). The total solar irradiation Solar ranges from over 9,000 W/m2 for Mercury down to 1.51 W/m2 for Triton. Look at equation 8. How will adding the adjustment = 0.0001325 to any of those values before taking the fourth root make the slightest bit of difference in the result? That’s just bizarre, that is. They say they put it in so that the formula will be accurate when there is no solar, so it will give the background radiation of 3 Kelvins. Who cares? Truly, it changes Ts by a maximum of a thousandth of a degree for Triton. So for the moment let me remove it, as it makes no practical difference and it’s just confusing things.
Back to the tale. Removing the adjustment and substituting equation 7 into equation 8 we get:
Ts = t5 * Solar^0.25 * e^(t1 * Ps ^ t2 + t3 * Ps ^ t4) (eqn 9)
This is amazing. These guys are seriously claiming that with only eight datapoints and no less than five tunable parameters , they can calculate the surface temperature of the eight planets knowing only their surface pressure and solar irradiation. And with that many knobs to turn, I am sure they can do that. I did it on my own spreadsheet using their figures. I get about the same values for t1 through t5. But that proves nothing at all.
I mean … I can only stand in awe at the sheer effrontery of that claim. They are using only eight datapoints and five tunable parameters with a specially-designed ad-hoc equation with no physical basis. And they don’t think that’s odd in the slightest.
I will return to this question of the number of parameters in a bit, because even though it’s gobsmacking what they’ve done there, it’s not the best part of the story. Here’s the sting in the tale. We can also substitute equation (7) into equation (8) in a slightly different way, using the middle term in equation 7. This yields:
Ts = t5 * Solar^0.25 * Ts / Tgb (eqn 10)
This means that if we start out by knowing the surface temperature Ts on the right side of the equation, we can then calculate Ts on the left side … shocking, I know, who would have guessed. Let’s check the rest of the math in equation (10) to see why that works out.
Upon inspection it can be seen that the first part of the right side of equation (10),
t5 * Solar^0.25
is an alternate form of the familiar Stefan-Boltzmann equation relating temperature and radiation. The S-B equation can be written as
T = (Solar / c1) ^ 0.25.
where T is temperature and c1 is a constant equal to the S-B constant times the emissivity. We can rewrite this as
T = 1/(c1^0.25) * Solar^0.25
Setting another constant c2 equal to 1 / (c1^0.25) gives me the Stefan-Boltzmann equation as:
T = c2 * Solar^0.25
But this is exactly the form of the first part of the right side of equation 10. More to the point, it is an approximation of the graybody temperature of the planet Tgb.
We can check this by observing that if emissivity is .9 then constant c1 is 5.103E-8, and c2 is therefore about 66. However, that value will be reduced by the rotation of the planet. Per the N&Z formula in their latest post, that gives a value of about 27.
Their fitted value is 25, not far from the actual value. So curiously, what it turns out they’ve done is to estimate the Stefan-Boltzmann constant by a bizarre curve fitting method. And they did a decent job of that. Actually, pretty impressive considering the number of steps and parameters involved.
But since t5 * Solar^0.25 is an estimation of the graybody temperature of the planet Tgb, that means that Equation 10 reduces from
Ts = t5 * Solar^0.25 * Ts / Tgb (eqn 10)
to
Ts = Tgb * Ts / Tgb.
and finally to
Ts = Ts
TA-DA!
CONCLUSION
Let me recap the underlying effect of what they have done. They are looking at eight planets and moons.
1. They have used an equation
e^(t1 * Ps ^ t2 + t3 * Ps ^ t4)
with four free parameters to yield an estimate of Ts/Tgb based on surface pressure. As one would expect given the fact that there are half as many free parameters as there are data points, and that they are given free choice to pick any form for their equation without limit, this presents no problem at all, and can be done with virtually any dataset.
2. They have used an equation
t5 * Solar^0.25
with one free parameter in order to put together an estimate of Tgb based on total planetary insolation. Since Tgb does depend inter alia on planetary insolation, again this presents no problem.
3. They have multiplied the two estimates together. Since the result is an estimate of Tgb times an estimate of Ts/Tgb, of course this has the effect of cancelling out Tgb.
4. They note that what remains is Ts, and they declare a MIRACLE.
Look, guys … predicting Ts when you start out with Ts? Not all that hard, and with five free parameters and a choice of any equation no matter how non-physically based, that is no MIRACLE of any kind, just another case of rampant curve fitting …
Finally, there is a famous story in science about this kind of pseudo-scientific use of parameters and equations, told by Freeman Dyson:
We began by calculating meson–proton scattering, using a theory of the strong forces known as pseudoscalar meson theory. By the spring of 1953, after heroic efforts, we had plotted theoretical graphs of meson–proton scattering. We joyfully observed that our calculated numbers agreed pretty well with Fermi’s measured numbers. So I made an appointment to meet with Fermi and show him our results. Proudly, I rode the Greyhound bus from Ithaca to Chicago with a package of our theoretical graphs to show to Fermi.
When I arrived in Fermi’s office, I handed the graphs to Fermi, but he hardly glanced at them. He invited me to sit down, and asked me in a friendly way about the health of my wife and our newborn baby son, now fifty years old. Then he delivered his verdict in a quiet, even voice. “There are two ways of doing calculations in theoretical physics”, he said. “One way, and this is the way I prefer, is to have a clear physical picture of the process that you are calculating. The other way is to have a precise and self-consistent mathematical formalism. You have neither.
I was slightly stunned, but ventured to ask him why he did not consider the pseudoscalar meson theory to be a selfconsistent mathematical formalism. He replied, “Quantum electrodynamics is a good theory because the forces are weak, and when the formalism is ambiguous we have a clear physical picture to guide us. With the pseudoscalar meson theory there is no physical picture, and the forces are so strong that nothing converges. To reach your calculated results, you had to introduce arbitrary cut-off procedures that are not based either on solid physics or on solid mathematics.”
In desperation I asked Fermi whether he was not impressed by the agreement between our calculated numbers and his measured numbers. He replied, “How many arbitrary parameters did you use for your calculations?”
I thought for a moment about our cut-off procedures and said, “Four.”
He said, “I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” With that, the conversation was over. I thanked Fermi for his time and trouble, and sadly took the next bus back to Ithaca to tell the bad news to the students.
The Nikolov and Zeller equation contains five parameters and only eight data points. I rest my case that it is not a MIRACLE that they can make the elephant wiggle his trunk, but an expected and trivial result of their faulty procedures.
My regards to everyone,
w.
PS—There is, of course, a technical term for what they have done, as there are no new mistakes under the sun. It is called “overfitting”. As Wikipedia says, “Overfitting generally occurs when a model is excessively complex, such as having too many parameters relative to the number of observations.” Five parameters is far, far too many relative to eight observations, that is a guaranteed overfit.
PPS—One problem with N&Z’s MIRACLE equation is that they have not statistically tested it in any way.
One way to see if their fit is even remotely valid is to leave out some of the datapoints and fit it again. Of course with only eight datapoints to start with, this is problematic … but in any case if the fitted parameters come out radically different when you do that, this casts a lot of doubt on your fit. I encourage N&Z to do this and report back on their results. I’d do it, but they don’t believe me, so what’s the point?
Aother way to check their fit is to divide the dataset in half, do the fit on one half, and then check the results on the other half. This is because fitted equations like they are using are known to perform very poorly “out of sample”, that is to say on data not used to fit the parameters. Given only eight data points and four parameters for equation 7, of course this is again problematic, since if you divide the set in half you end up with as many parameters as data points … you’d think that might be a clue that the procedure is sketchy but what do I know, I was born yesterday. In any case I encourage N&Z to perform that test as well. My results from that test say that their fit is meaningless, but perhaps their test results will be different.
[UPDATE] One of the commenters below said:
Willis – go ahead – fit an elephant. Please!
Seriously N&Z are only demonstrating in algebra what has been observed in experiments, that heating a gas in a sealed container increases both pressure and temperature.
OK, here’s my shot at emulating the surface temperature using nothing but the data in the N&Z chart of planetary body properties:
Figure 1. Willis’s emulation of the surface temperature of the planetary bodies.
My equation contains one more variable and two less parameters than the N&Z equation. Remember their equation was:
Ts = 25.3966 * Solar^0.25 * e^(0.233001 * Pressure ^ 0.0651203 + 0.0015393 * Pressure ^ 0.385232)
My equation, on the other hand, is:
Ts = 0.8 * Tgb + 6.9 * Density + 0.2 * Gravity)
Note that I am absolutely not making any claim that temperature is determined by density and gravity. I am merely showing that fitting a few points with a few variables and a few parameters is not all that difficult. It also shows that one can get the answer without using surface pressure at all. Finally, it shows that neither my emulation nor N&Z’s emulation of the planetary temperatures are worth a bucket of warm spit …
[UPDATE 2] I figured that since I was doing miracles with the N&Z miracle equation, I shouldn’t stop there. I should see if I could beat them at their own game, and make a simpler miracle. Once again, their equation:
Ts = 25.3966 * Solar^0.25 * e^(0.233001 * Pressure ^ 0.0651203 + 0.0015393 * Pressure ^ 0.385232)
My simplified version of their equation looks like this:
Ts = 25.394 * Solar^0.25 * e^(0.092 * Pressure ^ 0.17)
Curiously, my simplified version actually has a slightly lower RMS error than the N&Z version, so I did indeed beat them at their own game. My equation is not only simpler, it is more accurate. They’re free to use my simplified miracle equation, no royalties necessary. Here are the fits:
Figure 2. A simpler version of the N&Z equation 8
Again, I make no claim that this improves things. The mere fact that I can do it with two less tuned parameters (three instead of five) than N&Z used does not suddenly mean that it is not overfitted.
Both the simplified and the complex version of the N&Z equations are nothing but curve fitting. This is proven by the fact that we already have three simple and very different equations that hindcast the planetary temperatures. That’s the beauty of a fitted equation, if you are clever you can fit a lot using only a little … but THAT DOESN’T MEAN THAT PRESSURE DETERMINES TEMPERATURE.
For example, I can do the same thing without using pressure at all, but using density instead. Here’s that equation:
Ts = 25.491 * Solar^0.25 * e^(0.603 * Density ^ 0.201)
And here’s the results:
Figure 3. An emulation of the planetary temperatures, using density instead of pressure.
Does this now mean that the planetary temperature is really controlled by density? Of course not, this whole thing is an exercise in curve fitting.
w.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.




assman says:
January 23, 2012 at 7:31 pm
Indeed, which is why I pointed out that they have “five free parameters and a choice of any equation no matter how non-physically based”.
The form they use is quite curious. I’ve never seen it used before. It is the sum of two fractional powers of the same variable, Pr. Odd.
w.
w.;
Play devil’s advocate against yourself: if the N&Z hypothesis were correct, what form would you expect the equation(s) to take?
At:
http://wattsupwiththat.com/2012/01/19/perpetuum-mobile/#comment-873856
I would be interested in your response. GK
Antony
Are there 4-8 other planets/moons where Ts, So and Nte are known?
If yes, plug them into their magical equation 8 and see what you get. Just because you don’t understand the physical causes of the relationship which yields that equation does not mean the equation is valueless! If the data for the other planets/moons fit the equation, then they are on to something and CO2 is eliminated as a climate (temperature) forcing! QED. We can figure out the physics later. Einstein made predictions based on his equations and many of them were later verified. I, for one, would like to drive this stake in the heart of AGW and stop the hoax for good!
Bill
Great explanation – you sat down and plucked the keystone from their tower, now just a lovely pile of rubble…
But the larger mystery remains.
The gobsmacking absence of actual evidence of AGW…
The mind blowing arrogance that having a vague understanding of energy flows of the climate system allows climatologists to have CONFIDENCE in their statements that the system is heating “too fast” to be normal so they must blame mankind’s production of the trace gas Co2…
That’s the vast and murky mystery of “Can’t Equate”…
Willis – I think that you have got a bit of circluar reasoning going on there.
Let me explain how I see it.
(1) N&Z calculate Tgb (gray body temperature) as a function of Irradiance.
I trust that you are not objecting to that?
The temperature of solar bodies is primarliy due to solar irradiance?
The reason for that one free paramater, is because (from the viepoint of solar bodies) both irradiance and and grey body temperature are measured in arbitary units.
Otherwise Tgb would equal the fourth root of irradiance, measured in appropriate units.
OK do far – we can deduct one free dimension.
(If not it’s back to physics 101 for both you and me).
(2) Again you are being too hard in claiming that as Ts = Tgb * Nte
and Nte = Ts/ Tgb and so Ts = Tgb * Ts / Tgb or Ts = Ts
Very —– well very.
You did mention that the value of Nte was a value thatwas merely curve fitted?
In other words, the value of Nte is the value and THE ONLY VALUE available in the whole numbering system, where Nte doesequal Ts / Tgb.
It’s been engineered that way.
So it’s true that you have proved that Ts = Ts, but it’s not very relevant.
(I did that some days ago but realised that it is a complete red herring for the reason I have just pointed out.
The real meaning od Nte comes from equation 7 in the original N&Z paper, where they show that Nte is a function of atmospheric pressure.
I do agree that it is a rather awkward function and have spent some days working on that as well.
I surmise that its complexity is due to several small assumptions that are not completely correct.
I intend to take that up with the authors eventually, as it does not make any significant differnce to their theory, I’m content to leave it for the moment.
So back to square one.
By the way, you did ask for an escellator explanation of their theory.
I gave what I called and escellator explanation in an earlier post which you may have missed.
It was very brief – two lines and can perhaps be better described as a satellite explanation.
I have recently made a longer, clearer and more detailed explanation in a comment to Jeff Id’s Air Vent, which you may like to look up.
John Day says:
January 23, 2012 at 6:47 pm
John, first you claimed that my use of “overfitting” was somehow saying that N&Z were dishonest. I said that was not the case.There was an option in there for you to say “Sorry I accused you of calling N&Z dishonest when you hadn’t”.
You correctly note that I and most other folks think the use of 5 free parameters plus free choice of any kind of equation is overfitting.
One logical conclusion from noticing that is it might be prudent to try some fitting yourself, to see how easy it is to fit a few data points with a fistful of parameters.
It doesn’t take a whole lot of parameters. Four is plenty to do what they’ve done, particularly when given free choice of any fitting equation.
Finally, the idea that you can identify an overfit equation because it will be “full of ‘wiggles'” and that a smooth curve is “natural” is … umm … well, I’m reforming here, so I’ll just call it unsupported in the literature to the best of my knowledge, and set my incredulity aside.
w.
Thanks Willis. Well done.
LT is very happy to see some skepticism here.
Brian H says:
January 23, 2012 at 8:00 pm
1. I don’t really understand what the N&Z hypothesis is, so I can’t say anything about that.
2. I don’t expect there to be any MIRACLE equations of that form or any form at all.
w.
Brain H,
The form of the equation is this: Ts = (Ts/Tgb) * Tgb
John Day says:
January 23, 2012 at 7:46 pm
Because this thread is about equation 8. The clue is in the title.
Along those lines, I ask everyone kindly to not debate the whole theory, gravity, the ideal gas law, or any other extraneous stuff on this thread. Please confine yourselves to the topic of the thread, the alleged “evidence” that their theory works. There is a “comments” thread open for your general discussions.
w.
Its really just sinking in for me that the prevailing model of planetary temperature doesn’t include atmospheric pressure!
How do GCMs do with Venus?
There swwms to be a lot of confusion about N&Z’s theory and how it fits in to the overall picture.
So I repeat her, the comment tht I made at the Air Vent.
The following is my understanding og their theory.
——————————————————————-
The so called greenhouse effect is an artifact of a failed experimental configuration, first perpertrated by John Tyndall over 100 years ago and repeated endlessly ever since.
Carbon dioxide, by its molecular weight and atomic structure, expands more rapidly under heat than does an average sample of air. This causes increased pressure in the sealed container holding the carbon dioxide sample, relative to the container holding just air. Increased pressure results in the temperature of the carbon dioxide to rise higher than the air in the other container. That is the so called greenhouse effect.
HOWEVER, when the pressure in the two vessels are allowed to equate, such as by providing a hole in the top for the excess gas to escape to the outside air, then the temperature in each vessel rises to a lower level than before and the temperature in both containers remains the same. Bye Bye, greehouse effect. This has also been demonstrated on a number of occasions, but with far less noise and propaganda than the false greehouse effect.
Now, when we turn to the real atmosphere, we see that gravity draws more air molecules towards the surface and leaves fewer higher up, where in any event, there is more room for them to expand as the diameter of the atmosphere keeps increasing, the further up you go from the surface, so pressure is lower for both reasons.
More molecules near the surface means higher pressure than further up. Higher pressure, as already demonstrated, means higher temperature near the surface and lower temperature further up. However, there is no net increase in temperature or energy for the whole atmosphere, only a redistribution.
Let me quote: “Adiabatic changes in temperature occur due to changes in pressure of a gas while not adding or subtracting any heat”.
“”””” John Day says:
January 23, 2012 at 1:40 pm
tallbloke says:
January 23, 2012 at 12:43 pm
George E. Smith; says:
January 23, 2012 at 12:05 pm
There will be no permanent increase in the Temperature following a pressure increase; unless that cooling is somehow prohibited…
Hi George; that was Ira’s argument, but it isn’t initial compression and consequent transient heating we are talking about here. It’s simply the way nature has compressible gases and gravity arranged in a pressure gradient as an ongoing condition which causes there to be lots more warmth near the surface when illuminated by a star. Simply put, there are lots more molecules per cc to hold kinetic energy (and therefore heat) near the surface than at high altitude. And the nearest star warms them up.
TB is correct. George is somehow hung up on the notion of ‘heat generated by compression’. “””””
Well John, If YOU think I am “hung up” on anything you are sadly mistaken; and it is obvious that you have never pumped up a car or bike tire with a hand pump.
The act of reducing the volume of a fixed mass of gas, requires applying a force proportional to an area, during a distance travelled by some “wall” reducing the volume. Some trivial calculus will show that the work done by a small change in volume dV, is simply PdV. That work is simply dissipated as “heat”, which will raise the Temperature of the gas above its orignial ambient Temperature. Unless you know of a container with zero thermal conductivity walls, that excess “heat” energy will leak out to the surroundings and the Temperature will re-establish equilibrium with the environment. The pressure will fall slightly during the cooling phase as required by the gas law, and the final equilibrium result will be a smaller volume at a higher pressure, at exactly the same Temperature as the environment; which presumably is thermally massive compared to our container of gas.
If the container of gas DOES NOT COOL DOWN as YOU seem to say it won’t, then your container becomes a perpetual supply of heating to the environment. Gee who knew you could warm your house just by pressurizing it.
The heating of a stellar mass of gas to form a star, is a consequence of the work done by the force of gravity, against the increasing gas pressure, that results from the eventual occurrence of collisions between the gas molecules once they are close enough to each other to have collisions. That heating and gravitational collapse, will continue unabated, until the Temperature, pressure, and molecular interraction time reaches the critical surface that defines the onset of thermonuclear hydrogen “burning”; hydrogen being the principal gas of the universe.
Then it will stop as thermo-nuclear energy takes over the heating to compensate for the radiation loss from the much cooler outer surface of the star. The core can’t rapidly cool, since the outer layers are opaque to the high energy photons, emitted at the “burning” site.
If anyone is “hung up” it is you who believe that a constant pressure can maintain a constant Temperature rise above the environment Temperature.
Any Temperature gradient in this unified theory of climate is a simple consequence of the non-equilibrium continual supply of external energy that is converted to heating at the bottom of the atmosphere, and subsequently must leak out through that atmosphere by a variety of thermal processes, some of which require a Temperature gradient (conduction for example).
I didn’t come down in the last shower, and you will have to do a lot better to try and get me “hung up.”
What I meant to say was:
There seems to be a lot of confusion about N&Z’s theory and how it fits into the overall picture.
So I repeat above, the comment that I made at the Air Vent.
The following is my understanding of their theory.
—————————————————————————-
I’m sure that there are typos as well in the main comment from the Air Vent.
I can do no more than apologise yet once again for my very poor typing and spelling.
@Willis
> There was an option to say “Sorry I accused you of
> calling N&Z dishonest when you hadn’t”.
Read my remarks carefully. I didn’t “accuse you of calling N&Z dishonest”. You’re blowing my statements out of proportion. I said it suggested dishonesty.
I’ll accept that you don’t really believe they’re ‘dishonest’. But look at your own words, which still suggest you believe this to be a form of “conning”
“Let me be very clear. I don’t think N&Z are dishonest, that’s not my reading at all. I think they actually believe what they are claiming.
I got _conned_ one time by a guy named Bill…”
Actually, the tone of your remarks and many of the others here suggest that N&K are a pair of complete idiots for claiming that a smooth curve (representing a natural law) could be modelled with a small number of parameters. (When the truth is that their regression formula elegantly represents what they have _learned_ about the relationship between kinetic warming and radiative warming)
I think you (and the others) owe N&Z an apology for insulting their intelligence with these remarks.
And I think you also owe us explanation of your views on the Ideal Gas Law issue, which is crucial for understanding the N&K theory (which I pointed out to you on 30 December http://wattsupwiththat.com/2011/12/29/unified-theory-of-climate/#comment-848028).
And don’t be so danged emotional. I still admire and respect your efforts in supporting getting the truth out on climate issues.
😐
I can do better than N & Z! I have developed an equation which tells me exactly what the aliens on the other planets are thinking right now! YOU CAN”T PROVE IT’S WRONG!!!
Bill Yarber says:
January 23, 2012 at 8:07 pm
First, Bill, I’m the author of the post, not Anthony. Are there other planetoids? I don’t know. But you have the cart before the horse.
It is up to them to actually establish their ideas in the manner you describe BEFORE they proclaim a MIRACLE. It’s not our job to do that.
w.
“”””” Look at my response to Tallbloke and GeoSmith …
http://wattsupwiththat.com/2012/01/22/unified-theory-of-climate-reply-to-comments/#comment-873665
… particular the derivation of the Ideal Gas Law.
http://en.wikipedia.org/wiki/Ideal_gas_law#Derivations
Note that the temperature T of a system in equilibrium can be computed from the just kinetic energy of the moving gas particles and their mutual collisions (density, implying pressure). We don’t need to know the radiative aspects of the system to compute the temperature! What part of the Ideal Gas Law do you not understand here? “””””
So what part of THIS SYTEM IS “NOT” IN EQUILIBRIUM is it that YOU do not understand. It is not even a closed system, since you yourself said it is being illuminated by a star which is constantly feeding energy into the system.
OOoops !! the ideal gas law applies ONLY to closed systems in thermal equilibrium. Gee!! that requires the whole system to be at a single uniform Temperature.
AusieDan says:
January 23, 2012 at 8:37 pm
Dan, they have not shown that Nte is a function of pressure. They have used a very carefully designed equation with four parameters to fit it to the Nte. This kind of fitting is meaningless, with four parameters you can fit an elephant.
So no, they have shown no such thing as Nte being a function of pressure. Nor is there any reason to think it should be a simple function of pressure, given the number of other factors involved in the climate.
w.
John Day says
I think you’re looking at this in the wrong way. You say ‘overfitting’, which suggests they are somehow dishonestly trying to ‘cook’ a formula to fit 8 examples.
——-
No it does not say they are dishonest at all.
It does say they are very, very naive in the area of data analysis. Overfitting is a mistake any science or engineering or social science or economics graduate is taught to avoid.
Something is seriously wrong with the basic education of these 2 PhD’s.
As I read this work, I started to smile, then to grin, then to say out loud: “Aha!” This is fun stuff. I wish understood it all as well as you do, Willis. Keep it up.
— John Andrews; in Knoxville.
@Willis
What is your opinion of Roy Spencer’s use of 5 fitting parameters (the same as N&Z) to predict the surface temperature of just ONE planet, namely the Earth?
my source:
http://www.skepticalscience.com/just-put-the-model-down-roy.html
follow up question:
Is the underlying physics of Spencer’s model questionable as well?
I look forward to your response.
The demonstration that the equations are a tautology is not as convincing as I first thought. If you start from equation (8) and rearrange it to a more sensible form you just get
Tbg = 25.3966 S^0.25
which as you say if just the Stefan-Boltzmann equation for a grey body, with the emissivity absorbed into the constant. So this is hardly surprising.
Then from equation 7 you get
Ts = Tgb * exp(t1 * Ps ^ t2 + t3 * Ps ^ t4)
I do not see that rearranging it to give Ts=Ts actually shows anything – you have inserted the tautology, not them.
On the other hand, that fitted expression is very dubious . Note that the insolation is all in Tbg. The rest of the expression is fitted to pressures. However though it is said that there are 8 planets used, three of them are essentially the same – Mercury, the Moon and Europa all have P=0, so
are not independent data values, and Titan has P almost zero. So I do not think the fit says anything except that you can fit 5 points with 4 parameters.
George E Smith says
Note that the temperature T of a system in equilibrium can be computed from the just kinetic energy of the moving gas particles and their mutual collisions (density, implying pressure). We don’t need to know the radiative aspects of the system to compute the temperature! What part of the Ideal Gas Law do you not understand here? “””””
——-
Somewhat ironically George claims that temperature can be calculated from —mutual—- collisions of gas molecules. This is not true.
The ideal gas theory considers molecules to be too small to collide with each other and ignores that factor as being
Seems George needs to spend some time actually studying the ideal as law