The Mystery of Equation 8

I’ve been looking at the Nikolov and Zeller paper again. Among other things, they claim to be able to calculate the surface temperature Ts of eight different planets and moons from knowing nothing more than the solar irradiation So and the surface pressure Ps for each heavenly body. Dr. Zeller refers to this as their MIRACLE equation. He says:

Why aren’t you all trying to disprove our MIRACLE equation rather than banging your heads against walls trying to prove or disprove who knows what and exclaiming you have problems with this or that? The question is how can we possibly have done it – there is no question that our equations work – if you haven’t verified that it works, why haven’t you? […] Why aren’t you thinking: “hmmmm, N&Z have given us an equation that lo-and-behold when we plug in the measured pressures and calculate Tgb as they suggest, gives us a calculated Ts that also matches measured values! You can’t disprove the equation? So maybe we are cooking the data books somehow, but how?

This is supposed to be evidence that their theory is correct, and people keep telling me ‘but they’ve got real evidence, they can make predictions of planetary temperatures, check it out”. Plus it’s hard to ignore an invitation like Dr. Zellers, so I checked it out.

Figure 1. These are not the equations you are looking for.

They first postulate something called the “Near-surface Atmospheric Thermal Enhancement” or “ATE” effect that makes the earth warmer than it would be without an atmosphere.

The “ATE effect” is measured by something called Nte(Ps), which is defined and estimated in their paper as follows.

where Nte(Ps) is a measure of the “Near-surface Atmospheric Thermal Enhancement” effect.

Nte(Ps) is defined as the actual average surface air temperature of the planet Ts divided by the theoretical “graybody” temperature of the planet Tgb calculated from the total solar insolation So of the planet. Nte(Ps) is estimated using a fitted function of the surface pressure of the planet Ps.

Let me simplify things a bit. Symbolically, the right part of equation (7) can be written as

Nte(Ps) = e^(t1 * Ps ^ t2 + t3 * Ps ^ t4)       (7Sym)

where “e” is the base of natural logs and Ps is the surface pressure on the planet or moon. There are four tunable parameters (t1 through t4) that are “fitted” or tuned to the data. In other words, those values are repeatedly adjusted and tuned until the desired fit is obtained. This fitting can be easily done in Excel using the “Solve…” menu item. As you’d expect with four parameters and only eight datapoints, the fit is quite good, and their estimate is quite close to the actual value of Nte(Ps).

Amusingly, the result of equation (7) is then used in another fitted (tuned) equation, number (8). This is:

where So is total solar irradiation.

This is their piece de resistance, their MIRACLE equation, wherein they are saying the surface temperature of eight different planets and moons can be calculated from just two variables— Pr, the surface pressure, and So, the total Solar irradiation. This is what amazes the folks in the crowd so much that they write and tell me there is “evidence” that N&Z are right.

Obviously, there is another tuned parameter in equation (8), so we can rewrite this one symbolically as:

Ts = t5 * (Solar + adjustment ) ^ 1/4 * Nte(Ps).        (8Sym)

Let me pause a minute and point something out about equation (8). The total solar irradiation Solar ranges from over 9,000 W/m2 for Mercury down to 1.51 W/m2 for Triton. Look at equation 8. How will adding the adjustment = 0.0001325 to any of those values before taking the fourth root make the slightest bit of difference in the result? That’s just bizarre, that is. They say they put it in so that the formula will be accurate when there is no solar, so it will give the background radiation of 3 Kelvins. Who cares? Truly, it changes Ts by a maximum of a thousandth of a degree for Triton. So for the moment let me remove it, as it makes no practical difference and it’s just confusing things.

Back to the tale. Removing the adjustment and substituting equation 7 into equation 8 we get:

Ts = t5 * Solar^0.25 * e^(t1 * Ps ^ t2 + t3 * Ps ^ t4) (eqn 9)

This is amazing. These guys are seriously claiming that with only eight datapoints and no less than five tunable parameters , they can calculate the surface temperature of the eight planets knowing only their surface pressure and solar irradiation. And with that many knobs to turn, I am sure they can do that. I did it on my own spreadsheet using their figures. I get about the same values for t1 through t5. But that proves nothing at all.

I mean … I can only stand in awe at the sheer effrontery of that claim. They are using only eight datapoints and five tunable parameters with a specially-designed ad-hoc equation with no physical basis. And they don’t think that’s odd in the slightest.

I will return to this question of the number of parameters in a bit, because even though it’s gobsmacking what they’ve done there, it’s not the best part of the story. Here’s the sting in the tale. We can also substitute equation (7)  into equation (8) in a slightly different way, using the middle term in equation 7. This yields:

Ts = t5 * Solar^0.25 * Ts / Tgb  (eqn 10)

This means that if we start out by knowing the surface temperature Ts on the right side of the equation, we can then calculate Ts on the left side … shocking, I know, who would have guessed. Let’s check the rest of the math in equation (10) to see why that works out.

Upon inspection it can be seen that the first part of the right side of equation (10),

t5 * Solar^0.25

is an alternate form of the familiar Stefan-Boltzmann equation relating temperature and radiation. The S-B equation can be written as

T = (Solar / c1) ^ 0.25.

where T is temperature and c1 is a constant equal to the S-B constant times the emissivity. We can rewrite this as

T = 1/(c1^0.25) * Solar^0.25

Setting another constant c2 equal to 1 / (c1^0.25) gives me the Stefan-Boltzmann equation as:

T = c2 * Solar^0.25

But this is exactly the form of the first part of the right side of equation 10. More to the point, it is an approximation of the graybody temperature of the planet Tgb.

We can check this by observing that if emissivity is .9 then constant c1 is 5.103E-8, and c2 is therefore about 66. However, that value will be reduced by the rotation of the planet. Per the N&Z formula in their latest post, that gives a value of about 27.

Their fitted value is 25, not far from the actual value. So curiously, what it turns out they’ve done is to estimate the Stefan-Boltzmann constant by a bizarre curve fitting method. And they did a decent job of that. Actually, pretty impressive considering the number of steps and parameters involved.

But since  t5  * Solar^0.25  is an estimation of the graybody temperature of the planet Tgb, that means that Equation 10 reduces from

Ts = t5 * Solar^0.25 * Ts / Tgb (eqn 10)

to

Ts = Tgb * Ts / Tgb.

and finally to

Ts = Ts

TA-DA!

CONCLUSION

Let me recap the underlying effect of what they have done. They are looking at eight planets and moons.

1. They have used an equation

e^(t1 * Ps ^ t2 + t3 * Ps ^ t4)

with four free parameters to yield an estimate of Ts/Tgb based on surface pressure. As one would expect given the fact that there are half as many free parameters as there are data points, and that they are given free choice to pick any form for their equation without limit, this presents no problem at all, and can be done with virtually any dataset.

2. They have used an equation

t5 * Solar^0.25

with one free parameter in order to put together an estimate of Tgb based on total planetary insolation. Since Tgb does depend inter alia on planetary insolation, again this presents no problem.

3. They have multiplied the two estimates together. Since the result is an estimate of Tgb times an estimate of Ts/Tgb, of course this has the effect of cancelling out Tgb.

4. They note that what remains is Ts, and they declare a MIRACLE.

Look, guys … predicting Ts when you start out with Ts? Not all that hard, and with five free parameters and a choice of any equation no matter how non-physically based, that is no MIRACLE of any kind, just another case of rampant curve fitting …

Finally, there is a famous story in science about this kind of pseudo-scientific use of parameters and equations, told by Freeman Dyson:

We began by calculating meson–proton scattering, using a theory of the strong forces known as pseudoscalar meson theory. By the spring of 1953, after heroic efforts, we had plotted theoretical graphs of meson–proton scattering. We joyfully observed that our calculated numbers agreed pretty well with Fermi’s measured numbers. So I made an appointment to meet with Fermi and show him our results. Proudly, I rode the Greyhound bus from Ithaca to Chicago with a package of our theoretical graphs to show to Fermi.

When I arrived in Fermi’s office, I handed the graphs to Fermi, but he hardly glanced at them. He invited me to sit down, and asked me in a friendly way about the health of my wife and our newborn baby son, now fifty years old. Then he delivered his verdict in a quiet, even voice. “There are two ways of doing calculations in theoretical physics”, he said. “One way, and this is the way I prefer, is to have a clear physical picture of the process that you are calculating. The other way is to have a precise and self-consistent mathematical formalism. You have neither.

I was slightly stunned, but ventured to ask him why he did not consider the pseudoscalar meson theory to be a selfconsistent mathematical formalism. He replied, “Quantum electrodynamics is a good theory because the forces are weak, and when the formalism is ambiguous we have a clear physical picture to guide us. With the pseudoscalar meson theory there is no physical picture, and the forces are so strong that nothing converges. To reach your calculated results, you had to introduce arbitrary cut-off procedures that are not based either on solid physics or on solid mathematics.”

In desperation I asked Fermi whether he was not impressed by the agreement between our calculated numbers and his measured numbers. He replied, “How many arbitrary parameters did you use for your calculations?”

I thought for a moment about our cut-off procedures and said, “Four.”

He said, “I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” With that, the conversation was over. I thanked Fermi for his time and trouble, and sadly took the next bus back to Ithaca to tell the bad news to the students.

The Nikolov and Zeller equation contains five parameters and only eight data points. I rest my case that it is not a MIRACLE that they can make the elephant wiggle his trunk, but an expected and trivial result of their faulty procedures.

My regards to everyone,

w.

PS—There is, of course, a technical term for what they have done, as there are no new mistakes under the sun. It is called “overfitting”. As Wikipedia says, “Overfitting generally occurs when a model is excessively complex, such as having  too many parameters relative to the number of observations.” Five parameters is far, far too many relative to eight observations, that is a guaranteed overfit.

PPS—One problem with N&Z’s MIRACLE equation is that they have not statistically tested it in any way.

One way to see if their fit is even remotely valid is to leave out some of the datapoints and fit it again. Of course with only eight datapoints to start with, this is problematic … but in any case if the fitted parameters come out radically different when you do that, this casts a lot of doubt on your fit. I encourage N&Z to do this and report back on their results. I’d do it, but they don’t believe me, so what’s the point?

Aother way to check their fit is to divide the dataset in half, do the fit on one half, and then check the results on the other half. This is because fitted equations like they are using are known to perform very poorly “out of sample”, that is to say on data not used to  fit the parameters. Given only eight data points and four parameters for equation 7, of course this is again problematic, since if you divide the set in half you end up with as many parameters as data points … you’d think that might be a clue that the procedure is sketchy but what do I know, I was born yesterday. In any case I encourage N&Z to perform that test as well. My results from that test say that their fit is meaningless, but perhaps their test results will be different.

[UPDATE] One of the commenters below said:

Willis – go ahead – fit an elephant. Please!

Seriously N&Z are only demonstrating in algebra what has been observed in experiments, that heating a gas in a sealed container increases both pressure and temperature.

OK, here’s my shot at emulating the surface temperature using nothing but the data in the N&Z chart of planetary body properties:

Figure 1. Willis’s emulation of the surface temperature of the planetary bodies.

My equation contains one more variable and two less parameters than the N&Z equation. Remember their equation was:

Ts = 25.3966 * Solar^0.25 * e^(0.233001 * Pressure ^ 0.0651203 + 0.0015393 * Pressure ^ 0.385232)

My equation, on the other hand, is:

Ts = 0.8 * Tgb + 6.9 * Density + 0.2 * Gravity)

Note that I am absolutely not making any claim that temperature is determined by density and gravity. I am merely showing that fitting a few points with a few variables and a few parameters is not all that difficult. It also shows that one can get the answer without using surface pressure at all. Finally, it shows that neither my emulation nor N&Z’s emulation of the planetary temperatures are worth a bucket of warm spit …

[UPDATE 2] I figured that since I was doing miracles with the N&Z miracle equation, I shouldn’t stop there. I should see if I could beat them at their own game, and make a simpler miracle. Once again, their equation:

Ts = 25.3966 * Solar^0.25 * e^(0.233001 * Pressure ^ 0.0651203 + 0.0015393 * Pressure ^ 0.385232)

My simplified version of their equation looks like this:

Ts = 25.394 * Solar^0.25 * e^(0.092 * Pressure ^ 0.17)

Curiously, my simplified version actually has a slightly lower RMS error than the N&Z version, so I did indeed beat them at their own game. My equation is not only simpler, it is more accurate. They’re free to use my simplified miracle equation, no royalties necessary. Here are the fits:

Figure 2. A simpler version of the N&Z equation 8

Again, I make no claim that this improves things. The mere fact that I can do it with two less tuned parameters (three instead of five) than N&Z used does not suddenly mean that it is not overfitted.

Both the simplified and the complex version of the N&Z equations are nothing but curve fitting. This is proven by the fact that we already have three simple and very different equations that hindcast the planetary temperatures. That’s the beauty of a fitted equation, if you are clever you can fit a lot using only a little … but THAT DOESN’T MEAN THAT PRESSURE DETERMINES TEMPERATURE.

For example, I can do the same thing without using pressure at all, but using density instead. Here’s that equation:

Ts = 25.491 * Solar^0.25 * e^(0.603 * Density ^ 0.201)

And here’s the results:

Figure 3. An emulation of the planetary temperatures, using density instead of pressure.

Does this now mean that the planetary temperature is really controlled by density? Of course not, this whole thing is an exercise in curve fitting.

w.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

518 Comments
Inline Feedbacks
View all comments
Joel Shore
January 26, 2012 9:10 am

Tilo Reber says:

Okay, let’s move on. Why do you consider Konrad Hartmann’s experiment “ill conceived and carried out”.

The main problem with the experiment is it doesn’t show what people are claiming it shows. Assuming he did the experiment correctly, he showed that a box filled with air at elevated pressure and exposed to sunlight was at a higher temperature than the box not at elevated pressure.
However, he has not in any way bothered to figure out what conventional physics would predict for this case. His boxes contain air that has greenhouse gases in it, for example. The one at higher pressure will have more greenhouse gases…and will also have broader absorption bands.
One does not abandon a century of physics because someone does an experiment and doesn’t know how to intelligently interpret the results!

John Day
January 26, 2012 10:06 am

.

John Day says:
January 25, 2012 at 5:20 pm
He is saying that if you want to raise the surface temperature of the moon by 133K, then you’ll need to increase the irradiance by 14,800 W/m²
Whereas what they should really do to raise by most of that 133K is to use a reasonable value for the parameter they have omitted which is responsible for the low mean value they get, namely the heat capacity of the surface.

My recollection was that they were talking about the volumetric heat capacity of air, which _is_ neglible compared to the surface (air=~0.001J/(cc*K) vs >1 for solids)
@N&Z
> Radiative transfer alone cannot explain this effect (e.g. Figs. 2 & 3)
> given the negligible heat storage capacity of air,
> no matter how detailed the model is.
Phil, while we’re waiting for Ned to respond to this, can you point us to where he said surface heat capacity was zero?

January 26, 2012 10:10 am

DwP – do you have in mind a better experimental set-up? The argufying can continue until the conversion of the Jews, but a simple experiment might stop it in its tracks.

Joel Shore
January 26, 2012 10:22 am

John Day says:

Phil, while we’re waiting for Ned to respond to this, can you point us to where he said surface heat capacity was zero?

The value of T_sb, i.e., the surface temperature of an airless planet is computed under the assumption that the local instantaneous temperature is determined by requiring radiative balance with the local instantaneous solar insolation. This thus assumes no heat storage and no heat transport (other than via radiation).

January 26, 2012 10:44 am

John Day says:
January 26, 2012 at 10:06 am
.
Phil, while we’re waiting for Ned to respond to this, can you point us to where he said surface heat capacity was zero?

The fact that in their model the surface temperature drops to zero means that the surface heat capacity is zero.

Bryan
January 26, 2012 11:37 am

Phil. says:
January 26, 2012 at 10:44 am
“The fact that in their model the surface temperature drops to zero means that the surface heat capacity is zero.”
What surface heat capacity was used for the K&T 97,and 2008 Energy Budget diagrams?
An accurate way to determine a surface temperature given the various heat and radiation fluxes and thermal capacities seems to elude most attempts.

Joel Shore
January 26, 2012 12:03 pm

Bryan says:

What surface heat capacity was used for the K&T 97,and 2008 Energy Budget diagrams?

Their diagram is not based on any assumption for the heat capacity. The values are average energy fluxes obtained from various empirical data.

John Day
January 26, 2012 12:20 pm

@Willis
> John Day, you had said to me that you were going to answer my
> question to Ned in place of Ned himself answering it.
Again you’re putting words in my mouth Willis. I never said “I will answer that question in place of Ned”. As Yoda would say: “Suggests dishonesty putting words in my mouth”
I merely responded to the question you posed to Ned. Does it make any difference if my response preceded Ned’s response? Or not?
Why are you not jumping on Joel, who responded to a question I directed to you, before you responded?
Is there some Law that says: “The Questions posed Here may have only one Response”? Or that they must be responded to in some rigid order?
I don’t think so.
Now, having said that, what would be my response _if_ I were responding _for_ Ned?
Answer: I don’t know. I’ll let Ned answer it.
😐

January 26, 2012 12:59 pm

Eli being a kindly bunny will offer Ned a way out that even Willis will agree with, simply derive those five parameters from first principles for any one planet.
Another amusing exercise would be to do a sensitivity analysis.
REPLY: In what may be a singularity, Eli and I find ourselves in agreement on this one – Anthony

John Day
January 26, 2012 2:02 pm

Willis,
Calm down. It’s OK for someone to comment on or even answer a question, or parts of a question, intended for someone else. It happens all the time here.
There was no intent on my part to exclude Ned from answering the question that was directed to him.
It seems to me that you posed that question merely to ridicule Ned for using the wrong units with regard to “how much radiation would it take? ” etc. Actually you were wrong. Irradiance is measured in power per unit area not energy.
Will you admit you were wrong on that?
@Willis

Now, you’ve gotten all coy and shy, suddenly you are not interested in answering for Ned … now you say
I’ll let Ned answer it.

You’re twisting my words again Willis. What part of “I don’t know.” did you fail to understand?
😐

Tilo Reber
January 26, 2012 4:10 pm

Joel Shore: “The one at higher pressure will have more greenhouse gases…and will also have broader absorption bands.”
2C from a fraction of greenhouse gases in a cylinder that is about 4 inches across. I don’t think so. I think you are grasping for straws.
“One does not abandon a century of physics because someone does an experiment and doesn’t know how to intelligently interpret the results!”
I’m still waiting for you to intelligently interpret the results. It’s simply your opinion that anyone is abandoning a century of physics. It’s just as likely that your interpretation of how the laws of physics apply to that experiment are in error.

Tilo Reber
January 26, 2012 4:23 pm

DeWitt Payne: For one, PETG isn’t perfectly rigid. If you put it under pressure the bottle will expand. Since the painted surface isn’t flat, it can’t all be perpendicular to the incoming sunlight. But a pressurized bottle would have an increased diameter so it would absorb more solar energy and get hotter. And that’s just one thing off the top of my head.
So, let me see. Your claim would be that if a bottle that was, say, twice the diameter, was used, then the difference in temperature would be even larger. He got 2C out of a tiny amout of diameter increase. So if he repeated the experiment with one that was twice the diameter we should expect a temperature difference that would be greater than, say, 10C – without pressurization of either bottle. And the increase in internal volume, plus the increase in radiative surface for shedding heat, according to you, would not compensate for the extra captured sunlight. Have I got that right? Is that your position?

Bryan
January 26, 2012 4:50 pm

I said
What surface heat capacity was used for the K&T 97,and 2008 Energy Budget diagrams?
Joel Shore said
“Their diagram is not based on any assumption for the heat capacity. The values are average energy fluxes obtained from various empirical data.”
The values just happened by accident to coincide with a emissivity of unity.
The Earth surface as a perfect back body.
Some would suspect a calculator and a careless attitude to reality from the ‘team’.

Tilo Reber
January 26, 2012 4:57 pm

kzeller: “Tilo, I gotta tell you this is my 1st blog experience. Prior to this I was a solid “We are ONE, I AM’r” now based on WUWT hard facts data I’m back to the good ‘ole duality paradigm.”
Sorry about the late response, Karl. I decided to go ski Copper today. Let’s hope that this is one of those internal party politics cases, where they throw the kitchen sink and then kiss and make up after it’s over.

Tilo Reber
January 26, 2012 5:07 pm

thepompousgit: says: “What on earth is this supposed to mean?”
It’s a metaphor, pomp – where two somewhat well known metaphysical/spiritual positions are maped to two blogging experiences; one expected, another received.

DeWitt Payne
January 26, 2012 5:28 pm

Tilo Reber says:
January 26, 2012 at 4:23 pm

So, let me see. Your claim would be that if a bottle that was, say, twice the diameter, was used, then the difference in temperature would be even larger. He got 2C out of a tiny amout of diameter increase. So if he repeated the experiment with one that was twice the diameter we should expect a temperature difference that would be greater than, say, 10C – without pressurization of either bottle. And the increase in internal volume, plus the increase in radiative surface for shedding heat, according to you, would not compensate for the extra captured sunlight. Have I got that right? Is that your position?

How do you know the diameter increase was tiny? Was it measured? You mean if he compared two bottles with different diameters? Of course the temperature would be different. The larger bottle would have a higher effective surface area exposed to sunlight than the smaller bottle. Given that polyester is opaque to thermal IR, a large enough bottle might actually melt if it was well insulated. It would certainly exceed the glass transition temperature and distort. I’ve melted a box constructed from EFP with a black painted metal plate on the bottom exposed to sunlight and the box covered with a polyethylene film.

January 26, 2012 5:35 pm

Richard M says: January 26, 2012 at 5:20 am
‘And, if you read what I actually wrote you’ll see the word “discovered” and not the word “produced”. Nick, this is one reason why you have such low credibility at WUWT. You tried to change the meaning of what I said…’

You said:
“You mean like Miskolczi’s 230 observations over 25 years…”
and then later
“My only reference was to the empirical data he discovered.”
Sounds to me like you’re trying very hard to suggest that Miskolczi produced some experimental observations, instead of just looking up numbers in a standard database (TIGR).

DeWitt Payne
January 26, 2012 5:41 pm

Tilo Reber,
Here’s some more. Was the temperature inside the hot water bottle monitored? Was the pressure monitored or was it just assumed to be constant? This experiment is nowhere near as simple as the Wood experiment, and he managed to botch that.

1 11 12 13 14 15 21