A Matter of Some Gravity

Guest Post by Willis Eschenbach

A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”

So what is the S-B temperature, theoretical or otherwise?

A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.

The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is

Radiation = Emissivity times SBconstant times Temperature^4

where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.

This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)

Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun  with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.

Figure 1. Planet lit by multiple suns. Image Source.

On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?

Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.

The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:

1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.

2. It allows me to clearly communicate those ideas to others.

In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.

Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:

The poorly-named “greenhouse effect” works as follows:

• The surface of the earth emits energy in the form of thermal longwave radiation.

• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.

• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.

• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.

 OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.

I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.

So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?

But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.

I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.

The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.

So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.

Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.

But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.

And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.

Q.E.D.

Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:

… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.

Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.

And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.

But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …

TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.

w.

NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.

Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.

NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.

But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.

NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:

Water, 0.96

Fresh snow, 0.99

Dry sand, 0.95

Wet sand, 0.96

Forest, deciduous, 0.95

Forest, conifer, 0.97

Leaves Corn, Beans, 0.94

and so on down to things like:

Mouse fur, 0.94

Glass, 0.94

You can see why the error from considering the earth as a blackbody in the IR is quite small.

I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …

5 1 vote
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

1.2K Comments
Inline Feedbacks
View all comments
evilincandescentbulb
January 14, 2012 9:08 am

The Love of AGW Theory “elevator speech”
Free enterprise capitalism and America for that matter are an evil that must be crushed through govcernment regulations on all factors of production and taxing productivity. Fear of AGW is what informs us because the ends justify the means.

lateposter
January 14, 2012 9:13 am

If I understand Jelbring, the elevator speech version of his paper is “the temperature at the surface has to be higher than at altitude due to the adiabatic lapse rate, even without greenhouse gasses”. He then (it seems to me) confuses that with the greenhouse effect.
Willis’ proof appears to me to be unassailable, but his statement that “they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does” is only true for Jelbring because Jelbring re-defines the greenhouse effect as the adiabatic lapse rate.
Leonard Weinstein’s post above has the best explanation of the difference.

ferd berple
January 14, 2012 9:20 am

Let me see if I have this correct. An N2 O2 atmosphere without GHG does not cool by radiation.
Thus, without GHG, the earth’s surface would need to be warmer than it is now, to radiate the equivalent amount of energy to space as is currently radiated by the surface and atmosphere together.
Thus, the only effect that GHG can have on the surface is to cool the surface.
(atmosphere + surface) ^4 is greater than (surface) ^ 4
(atmosphere + surface) ^4 is equal to (hotter surface) ^ 4
Since we know that radiation in must equal radiation out, if N2 and O2 do not radiate, then the only conclusion that is possible is that GHG cools the surface.

Genghis
January 14, 2012 9:21 am

I think some seem to be missing the obvious part here. If you take a volume of gas at a given temperature and compress it, the same gas in a smaller volume now has a higher temperature, due to the compression and resulting density.
Let’s take a long thin tube of air in thermal equilibrium (100km long lets say), and extend if from the surface of the earth outward.
Gravity is going to compress the entire column of air down to about 17km. That compression heats the air and establishes the lapse rate, greatest density at the bottom and less density at the top. The part of the column of air that is most compressed (heated) is closest to the earth with the part at the top of the column not compressed much at all. The air will be denser and warmer closest to the surface (higher compression) gradually getting less dense and cooler as the altitude (less compression) increases. “Even though there is a non-uniform temperature distribution, the column of gas will still be in thermal equilibrium because the non-uniformity simply arises due to the decreasing density of the atmosphere with altitude.”
Now for the fun part. If this column of air is in a perfect insulator, it will be completely stable, warmer at the bottom transitioning to colder air at the top.
Under Willis’s steady state though, he is essentially placing a heating/cooling element at the bottom of the column of gas. This will act much like a pot of boiling water with convection cells rising and falling in response to the comparative temperature differences at the surface boundary layer. While the equilibrium temperature of the atmosphere won’t change, the atmosphere itself will be in constant dynamic change striving to reach equilibrium.
Willis’s heating/cooling surface will remain in equilibrium, emitting exactly as much radiation as it receives.
This by the way is a much better description of how our atmosphere actually works than the greenhouse gas theory.

Kevin Kilty
January 14, 2012 9:24 am

ferd berple says:
January 14, 2012 at 8:56 am
The argument that theory trumps observation is what has led so many astray. Here is a practical demonstration of a device that is theoretically impossible.

Badly done experiments can prove almost anything–thankfully here one of the participants at least tries to explain why the experiment does not debunk Newton. This thing works for the same reason that thrust deflectors on a jet engine slow the jet airplane. Newton rules!

Bill Hunter
January 14, 2012 9:25 am

“You are doing nothing but guessing and speculating, often in impossible directions. Gravity can’t run an engine of any kind. If it could, you’d have perpetual motion.”
Willis, you need to give what I wrote more thought than that! Does convection work without gravity? No! Gravity is a condition necessary, not a condition sufficient.
I am not a scientist but have experience in practical passive solar design. One can maintain water in an insulated tank at a warmer than average temperature using passive solar principles and convection by placing the collectors below the storage.
The poor emissivity of the bulk of gases in the atmosphere acts as the insulation.
The irrationality I posited was a semantic irrationality. Claiming an average temperature at the collector (surface) when what is being measured is the water in the insulated tank (air 6ft above the surface). Thus the average temperature of the surface needs to be lower than claimed because they are instead measuring the stored temperature.
This is actually pretty simple when you recognize accepted rules of radiation that something is as good of a radiator as it is as an absorber. In building insulation one does this by placing shiny non-radiative surfaces in the insulation space. The foil is hotter, approaching the insulated space temperature, and radiates less.
Assuming the average temperature of the surface is 288K by measuring air 6 feet above a convecting surface provides a one-way path for heat into the atmosphere that becomes trapped there. There is no convection process to deliver it back to the surface as in the solar collector system placed below the storage.
I think the only way you could disprove this is by actually measuring the surface, the real surface, and still come up with 288K. As a check using the NASA budget of 30% of solar energy transferred via convection one can calculate that as 84% of the greenhouse effect. Throw in a factor for the earth’s surface not being 1.0 but maybe more like .9, a dash of UHI, a pinch of cloud IR reflectivity, and maybe a spoonful of error resulting from weather stations favoring low altitude locations and you may have the recipe.
Keep in mind that its the diurnal cycle and perhaps the curavture of the earth that makes this happen. If the globe received it average radiation uniformly the passive solar water system would not work either.

ferd berple
January 14, 2012 9:37 am

Mathematical proof that GHG cools the surface of planet earth
In an atmosphere with GHG
total energy incoming from sun = net energy emitted to space by GHG atmosphere + net energy emitted to space by surface(1)
In an atmosphere without GHG (non radiating),
total energy incoming from sun = net energy emitted to space by surface(2)
Therefore this can be rewritten as:
net energy emitted to space by atmosphere + net energy emitted to space by surface(1) = net energy emitted to space by surface(2)
Which then becomes:
net energy emitted to space by GHG atmosphere = net energy emitted to space by surface(2) – net energy emitted to space by surface(1)
Since we know that “net energy emitted to space by GHG atmosphere” > 0
We can rewrite this as
net energy emitted to space by surface(2) – net energy emitted to space by surface(1) > 0
Thus
net energy emitted to space by surface(2) > net energy emitted to space by surface(1)
Since we know that net energy radiated to space is a function of temperature, we can then say:
Temperature surface(2) > Temperature surface(1)
QED

Alan D McIntire
January 14, 2012 9:44 am

There’s a cart/horse problem not mentioned previously. The constitution of an atmosphere is affected by chemistry- With a warming of the planet, much of the carbon in Venus’s rocks went into the atmosphere- cool the planet by other means, and much of Venus’s CO2 would wind up back in the soil. In other words, one could argue that Venus has a dense atmosphere because it’s hot, rather than argue that it’s hot because it has a dense atmosphere.

Coldish
January 14, 2012 9:45 am

Thanks, Willis, for another interesting post.
Edim says:
January 14, 2012 at 1:01 am
“How would Earth’s surface temperature change if atmospheric pressure were doubled, that is, increased to 2 atm by adding more N2 (and nothing else)?”
Leonard Weinstein’s comment (above) seems to be relevant to Edim’s question. I don’t claim expertise in this field, I’m still learning, and would welcome correction, but as I currently understand it this is what might happen.
1. The mass of the atmosphere would be aproximately doubled.
2. The newly added N2 would be quickly mixed with the existing atmospheric components, included the radiative gases.
3. The mean height of emission of out-going long-wave radiation (OLR) would be increased. By how much I don’t know, but I don’t think it would be doubled.
4. If the lapse rate remained the same the average surface temperature would rise. By how much would depend on the magnitude and sign of the feedback factor.

Bill Hunter
January 14, 2012 9:49 am

An addendum to the above. Most people apply an electric pump to their passive solar designs (making it a little less than passive) because they want the collectors on the roof and the insulated storage in the basement. So then convection works against you so you have to provide a pump for the transport of warm water to the basement during the day and a valve to limit convection of the warm water in the basement to the roof at night. But the lack of emissivity of the storage still makes it work.

Gina Becker
January 14, 2012 9:57 am

As a chemical engineer, I support Willis’ conclusions completely. It’s nonsense that a GHG free atmosphere will affect the temperature. The field of climate science is full of such nonsense, and it doesn’t help the skeptics cause to unskeptically perpetuate their own.

PeterGeorge
January 14, 2012 9:59 am

One can’t have an atmosphere at 0K – absolute zero – because it would be a solid, not a gaseous atmosphere.
At any temperature above 0K the atmosphere must be radiating, and the energy it radiates must get replaced somehow, or it would cool and liquify, then solidfy.
In your model, where is the atmosphere getting its energy? What is its temperature? How much is it radiating?
Does this atmosphere have a lapse rate? Is it, or is it not warmer at the bottom of the pile than at the top? Why?
If we add more gas to this atmosphere will the difference in temp between the top and bottom of the atmospheric column increase, decrease, or remain unchanged?
In my limited experience with solving physics problems, one needs a complete, coherent model. Otherwise one gets silly, meaningless answers. I’ve never seen such a model in any discussion of the “greenhouse effect.” Why is that?

JimOfCP
January 14, 2012 10:03 am

So, Willis. Did you choose the 9-12 micron range because it hits the water and CO2 main bands? Some other reason?

ferd berple
January 14, 2012 10:06 am

Guest Post by Willis Eschenbach
TO CONCLUDE: I’m interested in people who can either show that my proof is wrong
There is no free lunch. If the GHG atmosphere is radiating, then there must be a reduction in radiation somewhere else.

Hans Jelbring
January 14, 2012 10:08 am

lateposter says: January 14, 2012 at 9:13 am
No you don´t understand the content of my E&E, 2003 paper correctly. Willis has been putting words in my mouth that I have never said and he refuses to adress what is written in my peer reviwed paper, since 8 years. There certainly are no “Elevator version” of my paper which is based on first principal physics. It means that what I have written is either true or false. There is nothing inbetween. After 8 years nobody has falsified it and Willis attempt here is subclass for a number of reasons.
See the reference given by Tallbloke here 3:35 PM “The Greenhouse Effect as a function of atmospheric mass” and get firsthand information. I certainly appreciate a number of comments in this thread where the authors can discriminate between an approximate model and to what degree its properties can be applied to any real planetary atmosphere. There is little or any use for Willis model in this respect but there is plenty of use with the model I have describe. The former cannot be verified in any planetary atmospheres. The one I describe can be verified by observational evidence in Venus, Titan, Jupiter, Saturn, Uranus, Neptun. Mars fails for a simple reason. Its atmosphere is not massiv enough. The earth´s atmosphere is in the middle between Mars and Venus and is especially tricky to handle. There are so many physical processes that are involved changing the static average tmperature rate from -9.8 K/km to about 6.5 K/km. Some poeple in this thread has notice the importance of atmospheric surface mass per unit area. This is the first and last comment I will do on this thread.
Thanks
Hans Jelbring

Joel Shore
January 14, 2012 10:08 am

Thanks, Willis, for the nice post.
Bill Illis says:

What is the physics explanation for why temperatures of a gas/star/planet increase as it is gravitationally compressed?

If an object is truly undergoing gravitational collapse then you can have some gravitational potential energy being converted to other forms of energy (in particular, thermal energy). Hence, there truly is another source of energy besides the energy being received from the sun.

Why does matter do this?
I think the answer to this question will point to the answer about an atmosphere in gravitational equilibrium.

Yes…Comparison to this case shows why for gravitational collapse, you can truly have more energy coming out than you are receiving from the sun. However, for gravitational equilibrium, all that you can have is energy being moved around and, at the end of the day, you have to have only as much energy being emitted back out into space as is being absorbed from the sun.
So, the Earth is not undergoing gravitational collapse and hence it must be emitting ~240 W/m^2 back into space. And, indeed, measurements from satellites confirm this is what it is doing. The fact that the surface is emitting 390 W/m^2 has nothing to do with an internal energy source but is simply because some of the emissions from the surface are absorbed by the atmosphere, i.e., there is a radiative greenhouse effect.
erl happ says:

But the cooler latitudes in fact emit more energy than is acquired in solar radiation. The warmer latitudes emit less. The denser atmosphere increases the residence time and the amount of energy stored in the system, hence the temperature.
Last sentence is the elevator statement

And, one easily shown to be nonsense.
First of all, what we are interested in is the global energy balance. Yes, radiative energy does not balance locally because there is considerable movement of energy around on the Earth, as well as storage and release of energy. That is a good reason why we look at global energy balance and not local balance.
Second of all, your notion that some sort of energy storage can be invoked is not reasonable. What you would have to argue is that there is such a huge store of energy that the Earth can continuously emit 150 W/m^2 more than it absorbs without cooling down. Sorry, but this ain’t going to happen. To a good approximation, any energy storage that is occurring (e.g., due to plants converting sunlight into chemical energy) is balanced by energy release that is occuring (e.g., due to plants decaying). Also, the amounts involved are pretty small. For example, despite the fact that we are going through fossil fuel reserves much faster than they were created, we are only releasing about 0.02 W/m^2 of thermal energy by burning them, which is 4 orders of magnitude less than the 150 W/m^2 deficit.

Alan D McIntire
January 14, 2012 10:09 am

Willis Eschenbach and others have assumed that without water vapor, the lapse rate for a planet would be constant,
It wouldn’t. Lapse rate also depends on temperature. As the temperature cools with height, the
lapse rate drops
let atmospheric density = r., pressure= p, temperature = T, gas constant for dry air = R,
lapse rate = L.
T0 = ground temperature, p0= ground pressure, height = H
Then
L = (gr/RT)(dT/dp)
With constant density,, at current surface pressure, the lapse rate would b
:L = g/R = 3.42 C per kilometer. Such an atmosphere would have a specific finite height.
With constant temperature, the pressure would be proportional to the log of the pressure
height 2 – height 1 would be 29.3* ground temperature *( lnp1/lnp2)
With constant lapse rate
p = p0 ( 1 – (LH/T0))^(g/RL)
Needless to say, in the real world atmospheric density is not constant, nor does it drop off
exponentially with height- which would imply a constant temperature atmosphere, nor
is the lapse rate constant, It’s a messy average of those 3 ideal cases.

adolfogiurfa
January 14, 2012 10:09 am

…because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.
OMG!..The Earth has no lid!…We urgently need to release the millions of degrees under the ground down there, according to Al Gore!

Kevin Kilty
January 14, 2012 10:09 am

Phil’s Dad says:
January 14, 2012 at 9:01 am
I’m not sure about lapse rate warming being the answer as lapse rate cooling in the convection cycle would tend to cancel it out however… does gravity (which can do work) add energy to the equation such that radiation in + work done by gravity = radiation out? (Where the heck does gravity come from anyway?)

Let’s put this gravitational work in its proper perspective…
[SNIP: Let’s not. Lets stick to the topic of the thread. -w.]

Joel Shore
January 14, 2012 10:13 am

ferd berple says:

Mathematical proof that GHG cools the surface of planet earth

You are just embarrassing yourself. An atmosphere with GHGs doesn’t just emit radiation, it also absorbs radiation from the surface. And, in fact, it absorbs more from the surface than it emits back out into space. (It has to emit as much in total as it absorbs overall, but some of what it emits goes back to the surface, not out into space.)

There is no free lunch. If the GHG atmosphere is radiating, then there must be a reduction in radiation somewhere else.

And, what law of physics is this…and how does it pertain to anything being talked about?

ferd berple
January 14, 2012 10:18 am

Gina Becker says:
January 14, 2012 at 9:57 am
It’s nonsense that a GHG free atmosphere will affect the temperature.
Stand at sea level in an atmosphere free of GHG. Now stand at the top of a mountain in an atmosphere free of GHG. There will be an affect on temperature.
The problem comes in assuming that GHG warms the surface. In fact the opposite is true. GHG cools the surface, in the same way it cools that atmosphere, by radiating LWR to space that would otherwise remain trapped in a non-radiating atmosphere.
This effect is most noticeable in the upper atmosphere, where temperatures can reach 1500C in the absence of GHG cooling.

Stephen Wilde
January 14, 2012 10:19 am

The contributor known as wayne previously summarised my position on this issue which has been in my mind for several years as a very important aspect of the climate debate.
Willis did not address wayne’s version so here it is in my words:
[SNIP: vague, wandering, unscientific, and off topic. -w.]

January 14, 2012 10:23 am

OK, I made a fool of myself with “Stefan-Boltzmann”.
My mistake.

Andy West
January 14, 2012 10:24 am

hmmm… my elevator attempt above no doubt falls apart if convection stops, as it eventually will if no photons at all can ever be emitted, as indeed roy spencer points out. Isothermic. But that calls into question the usefulness of the model, as some have noted above. If the original papers had used this model, then fair game, but Tallbloke seems to suggest this was not the case. maybe a more interesting model would be to use just nitrogen and oxygen at earth ratio and pressure. Awful lot of it, so still significant emission despite low emmissitivity. Just a thought…

Capo
January 14, 2012 10:39 am

Willis
Your proof is of course correct. Did you realize why Jelbring and N&Z-“theories” give quite nice values? The deeper reason is the lapse rate, the dry lapse rate given by g/c_p. There it is, the effect of gravity. The “theories” are equivalent to lapse rate calculation, but they miss the central point: Where to start with, what is the right height h?
The answer ist given by ghg-theory: it’s the height, where the ghg-concentration is optical thin enough, that IR-radiation is able to escape to space.
(Therefore I like the following explanation of GHG-theory more: Adding more GHGs will elevate the level, where radiation can escape to space. It’s colder there, so earth emits less energy than it receives. The atmosphere will warm, until it radiates in the elevated level the same energy as before.)
Another indirect proof:
Imagine a planet moving around a black hole or wandering through empty space without a star like the sun. According to Jelbring or N&Z this planet should have the same temperatur as the planet moving around the sun. Nonsense.

1 6 7 8 9 10 48