
Draft Report by NOAA CSI
The extreme surface warmth over western Russia during July and early August is mostly a product of the strong and persistent blocking high.
…
The indications are that the current blocking event is intrinsic to the natural variability of summer climate in this region…
From the freezer to the stove, so have gone surface temperatures over Russia in 2010. Only recently, the concerns were centered on the hardship inflicted by one of the coldest winters in Russia since the mid-20th Century. The current heat wave is therefore all the more remarkable coming on the heels of such extreme cold.

By early summer, the anomalous temperature patterns began to change compared to prior months. Warmth,—-which was in many ways much welcomed initially, emerged over central Russia during June. These incipient warm conditions escaped notice, mostly because they did not exert negative impacts in so far as the climatological June temperatures of western Russia are about 5°C cooler than their late July peaks. It only became apparent in hindsight that the June warmth was but a mere hint of things to come.

Globally averaged temperatures averaged during the first 6 months of 2010 were the warmest on record (since about 1880) according to analyses produced by NOAA and NASA. Not all areas were warm, however, and in particular most of Russia did not contribute to the record global conditions during the first half of the year.
Unusual heat commenced almost in synchronicity with the turn of the calander to July, as if orchestrated by an overzealous conductor responding to nature’s seasonal cycle. The inflicted areas spanned a wide reach of western Russia, Belorussia, the Ukraine, and the Baltic nations. Through its dogged persistence, the heat wave built in intensity as summer progressed to its normally hottest weeks. By late July and early August, numerous cities witnessed a crescendo of record breaking daily readings near 40°C, more than +10°C warmer than what would normally have been experienced at this warmest time of year.
Click here to download Google Earth KML file.

Western Russia had become an epicenter of anomalously high temperatures in July 2010, though many other land temperatures for July were above normal including eastern North America, Europe, and China.
Preliminary readings suggest that Moscow’s July 2010 temperatures were the warmest month during the prior 130 years. Statistical measures quantify the extreme character of this heat wave, with a greater than 4 standardized anomaly for Moscow during July. In other words, July’s warmth was four times greater than the expected variability of July historical fluctuations about their long-term climatology.
The impacts of the heat are only beginning to reveal themselves. Heat stress has led to human mortality across western Russia, and it is possible that the toll of lost lives will rival that experienced during the 2003 European summer heat wave. High temperatures, and a general absence of rainfall over western Russia has led to drought conditions and widespread crop loss. Wild fires have raged in the region, both over grasslands and forests, severely degrading air quality.



What is the historical context for the July heat wave over western Russia? During the period 1880-2009, the region’s monthly July surface temperatures have experienced several very warm years of about +3°C departures (1931 , 1955, 1981, 1988, and 2002), and comparably cold Julys having about -3°C departure (1950, 1957, 1968, 1976, and 1994). Warm Julys alternating with cold Julys describes the typical sequence of events over western Russia during the last 130 years, with little or no discernible trend in July temperatures since 1880. Yet, the July 2010 anomalies averaged over western Russia will exceed the warmest Julys on record, and such an extreme event demands an explanation.
The Russian heat wave of 2010 has been an extreme and abrupt event. The July heat did not simply follow on the heals of a sequence of progressively warmer summers over recent decades, but stands out as a discrete event that is reminiscent of the often sharp year-to-year swings in this region’s July surface temperatures during the last 130 years. In many ways,the heat wave is a “black swan” event in that it is well beyond the normal expectations in the instrumental record—it is an outlier that is having an extreme societal impact.
Blocks are not an uncommon occurrence over Eurasia in summer, with a episodes of July blocking in the region between 0-60°E evident during the past half century. This region is vulnerable to episodes of blocking owing to physical factors related to the region’s location downstream of the Atlantic westerly jet.

Whereas an event of this magnitude was unexpected for the summer of 2010, and indeed there was little if any advance warming from long lead seasonal forecasts, it is nonetheless important to assess the factors that may have been responsible for such an extreme heat wave. There is strong evidence that the immediate cause can be placed at the doorstep of an extreme pattern of atmospheric winds—widely referred to as blocking. In the situation of anticyclonic blocking such as developed over western Russia in early July 2010, the normal west-to-east movement of weather systems is inhibited, with the center of a blocking experiencing persistently quiescent weather.
The sector exhibits high climatological frequency of blocking during July, with an average of 15% of summer days experiencing a blocking conditions. During the first 42 days of the summer of 2010 (thru 11 August) this region has experienced 60% blocking days. This event is the most prolonged blocking event over Western Russia for the period since 1948. The duration of this blocking event has been particularly long, and the intensity of the high pressure anomaly itself has been unusually strong. The intensity of the positive 500mb height anomalies averaged over the geographic region of eastern Europe and western Russia during July 2010 exceeds any prior occurrence of anticyclonic blocking. Preliminary estimates indicate that the strength of the height anomaly at 500mb during July 2010 is equal to nearly 4 times the standard deviation of July heights—a departure amplitude similar to that in the region’s July surface temperatures. Typically, there is little persistence of the circulation pattern from July to August, although the current block that formed in early July has continued with great strength through the second week of August.


The extreme surface warmth over western Russia during July and early August is mostly a product of the strong and persistent blocking high. Surface temperatures have soared as a result of the combination of clear skies, sinking motion within the environment of the high pressure causing compressional heating of air, the lack of any temporary relief owing to the blocking of the typical cold fronts that cool the region intermittently in summer. Add to this scenario the cumulative effect of drought that began in early summer which has caused soils to dry and plants to desiccate to wilting point , thereby causing additional surface warming via land feedbacks as the blocking condition persisted. These are all well-known and studied physical processes that have accompanied summertime blocking and heat waves in the past.
Much of the intensity of the current heat wave, and also the pattern of surface temperature conditions across Eurasia during July 2010, can be recreated from the atmospheric blocking event itself. The diagnostic procedure involves standard methods applied to the historical record of analyzed 500 mb heights and surface temperatures during the prior period of 1900-2008. The method of statistical regression is used to understand how surface temperature changes during a typical blocking occurrence over Russia during July, and is a method that can be used to infer causal relationships.

The temperature pattern accompanying a “garden variety” block consists of a localized +1 to +2°C warming over western Russia, with somewhat weaker coolness toward the Urals. July 2010 was not a garden variety block, but was instead the most extreme block in the post-1900 period. While there is no analogue from which to draw an assessment of the expected impact on temperatures form such a block, one can nonetheless use the historical regression relation in order to infer the impact of this extreme July 2010 block. The process involves multiplying the regression pattern by the standardized departure of the height index observed for July 2010. The calculation offers a meaningful evaluation of the surface temperature response to the extent that the height-temperature relation is linear. The results indicate a surface warming in excess of +5°C is expected over western Russia in response to the July 2010 blocking high, accompanied by a downstream pattern of about -3°C coolness over the Urals and warmth of +2°C to +3*C over northern China, Mongolia, and northeastern Russia.
The comparison of the above reqression map with the observed temperature anomaly map for July 2010 clarifies the cause for this heat wave. The strong agreement between the July 2010 observed pattern of Eurasian surface temperatures and that pattern attributable to the impact of upper tropospheric blocking provides key evidence that the block is the immediate cause for the heat wave (and related temperature conditions over adjacent countries). Blocking events are typically of 1-2 week duration, and by contrast the 2010 situation is highly unusual in that blocking has existed over western Russia on virtually every day form the beginning of July until the middle of August. The cumulative impact of such prolonged blocking has led to the extreme nature of the surface impacts on temperature, soil conditions, and rainfall.
What has been the role of human-induced climate change in the Russian heat wave of 2010? As indicated at the beginning of this report, globally averaged surface temperatures during the first 6 months of 2010 were the warmest since about 1880 based on NOAA and NASA analyses.

A time series of 12-month running mean globally averaged surface temperatures anomalies from NASA data further indicates that the latest 12-month period is likely warmer than the prior record warmest year of 1998 (relative to an 1880-2009 period of analysis).

This current condition in global mean surface temperature is thus consistent with prior conclusions of the IPCC Fourth Assessment Report that “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level”. The IPCC Synthesis Report goes on to state that “most of the observed increase in global average temperatures since the mid-20th Century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations”.
A comprehensive analysis of observed changes in extreme daily temperatures for the period 1901-2003 also reveals symptoms of a warming planet with a majority of stations over western Russia and eastern Europe (and also over Canada) showing significant increasing trends of warm daytime and warm nighttime temperatures.
Despite this strong evidence for a warming planet, greenhouse gas forcing fails to explain the 2010 heat wave over western Russia. The natural process of atmospheric blocking, and the climate impacts induced by such blocking, are the principal cause for this heat wave. It is not known whether, or to what exent, greenhouse gas emissions may affect the frequency or intensity of blocking during summer. It is important to note that observations reveal no trend in a daily frequency of July blocking over the period since 1948, nor is there an appreciable trend in the absolute values of upper tropospheric summertime heights over western Russia for the period since 1900.

The indications are that the current blocking event is intrinsic to the natural variability of summer climate in this region, a region which has a climatological vulnerability to blocking and associated heat waves (e.g., 1960, 1972, 1988). A high index value for blocking days is not a necessary condition for high July surface temperature over western Russia—the warm summers of 1981, 1999, 2001, and 2002 did not experience an unusual number of blocking days.
A clear understanding of the causes for the 2010 Russian heat wave is important for informing decision makers and the public on whether they need to transition from a preparedness mode of precautionary responses to an adaptation mode involving investment responses and actions. Our assessment indicates that, owing to the mainly natural cause for this heat wave, it is very unlikely that a similar event will recur next summer or in the immediate future (next decade). Whereas this phenomena has been principally related to a natural extreme event, its impacts may very well forebode the impact that a projected warming of surface temperatures could have by the end of the 21st Century due to greenhouse gas increases.
. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. “]
The 2007 IPCC report highlights surface temperature projections for the period 2090-2099 under a business-as-ususal scenario that reveals +5°C to +7°C warming warming of annually average temperatures over much of Eurasia under an aggressive A2 scenario.
As we learn from our 2010 experience what a sustained heat wave of +5°C to+10°C implies for human health, water resources, and agricultural productivity, a more meaningful appreciation for the potential consequences of the projected climate changes will emerge. It is clear that the random occurrence of a summertime block in the presence of the projected changes in future surface temperature would produce heat waves materially more severe than the 2010 event.
If the heat wave over Russia caused by a blocking high is a black swan, what color of swan visits in January, and for whom does the swan toll?
Might as well look for the Blue Swan, and stock up on firewood.
Which brings me to a question for those of you with a better understanding of
these factors.
What effects CAN we expect from this atmospheric shrinkage and associated
Swannage in the NH when the season once again trends toward the chilly ?
TomRude says:
August 20, 2010 at 7:58 am
Show me how it is wrong instead of just making disparaging remarks.
Question about the DMI chart of temps above 80 north.
All summer long, they have been on among the margin of the coldest, almost ALWAYS below normal.
Now we see a spike.
http://ocean.dmi.dk/arctic/meant80n.uk.php
Is this because the block has finally released and that bubble of heat that baked western Russia has now been knocked away to dissipate at the poles, affecting Arctic temperatures in a positive manner?
Any thoughts on this would be appreciated.
Chris
Norfolk, VA, USA
erlhapp says
“I suggest that the sudden warming of the Antarctic stratosphere in July, which is unprecedented in the modern record, (See http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/) is responsible for a global increase in ozone concentration in the lower stratosphere.”
==================================
I am always fascinated with sudden stratospheric warmings so you piqued my interest on this one.
I could not get your link to work and when I checked the vertical cross-section of the Antarctic polar vortex, and I see a small sudden warm up around Aug 1.
Not nearly as dramatic as ones I have seen in the Arctic, so I am asking, is this one truly the most “unprecedented” in the modern record for the Antarctic?
[PS I respect your opinion so I am just asking for verification here.]
Thanks.
Chris
Norfolk, VA, USA
erlhapp says:
August 20, 2010 at 5:51 pm
Is there anything in the atmosphere that isn’t a greenhouise gas?
I wonder.
Julienne Stroeve says:
August 20, 2010 at 11:14 am
Lester Brown gave an interesting talk yesterday in Aspen about the heat wave in Russia and its impact on crops, and that as a result they will have to become a grain importer this year rather than an exporter as they lost 30% of their grain this year.
________________________________________
Russia has lots of grain in storage and so do other countries. Farmers are hoping for an increase in price from wheat futures but there is a plentiful supply.
_________________________________________
Jimash says:
August 20, 2010 at 6:40 pm
Might as well look for the Blue Swan, and stock up on firewood.
Which brings me to a question for those of you with a better understanding of
these factors.
What effects CAN we expect from this atmospheric shrinkage and associated
Swannage in the NH when the season once again trends toward the chilly ?
—————————————————————————————
I burned 7 cords of wood last winter, I usually burn 5. This year I plan to put up 8 cords as the aspen leaves are already turning and the temperature is slightly below normal … it hailed this evening and it is still sitting on the ground and I haven’t gotten my hay in … the birds have started migrating south already but that IS normal for this time of year. Winter is coming. Need to get my geothermal unit started up for the heating season and order some propane for backup. It usually snows at least once here in September. Darn that was one short Alberta summer. Horses and dogs are already getting winter hair growth.
Sorry I did not post the vertical cross-section of the austral polar vortex in my previous post. Here it is….from a normal CPC link:
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/hgt.aao.shtml
Chris
Norfolk, VA, USA
savethesharks says:
August 20, 2010 at 8:57 pm
Re sudden stratospheric warmings:
“I am always fascinated with sudden stratospheric warmings so you piqued my interest on this one.
I could not get your link to work and when I checked the vertical cross-section of the Antarctic polar vortex, and I see a small sudden warm up around Aug 1.
Not nearly as dramatic as ones I have seen in the Arctic, so I am asking, is this one truly the most “unprecedented” in the modern record for the Antarctic?”
Sorry, Chris, checking I find that the link I had is superseded by http://www.cpc.noaa.gov/products/stratosphere/strat-trop/
In particular try T Mean, Annual SH 2010 which you will find at http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/gif_files/time_pres_TEMP_MEAN_ALL_SH_2010.gif
It’s plain to see that the warming extended down to the lowest levels of the troposphere.
And then you must bring up the SH data for previous years back to 1979. Don’t look at the anomaly data. Just look at the ‘T Mean’ and you will see the contrast. This is a big event in the southern Hemisphere context produced by a dramatic collapse in surface pressure and consequently, a collapse in the vortex.
savethesharks says:
August 20, 2010 at 10:46 pm
Re monitoring Sudden stratospheric warmings and sudden increases in ozone.
Polar temperatures into the stratosphere can also be monitored here:
http://www.cpc.noaa.gov/products/stratosphere/temperature/
Ozone content at high latitudes and the change in the vortex can be monitored here:
http://www.cpc.noaa.gov/products/stratosphere/strat_a_f/
Conventional climate science attributes SSW to heat flux and planetary waves. There is no account taken of changes in surface pressure and the dynamics of the vortex. The ideological blinkers determine that any change in the ‘ozone hole’ must be due to the activities of man. There are some things that can not, indeed, must not be seen.
Changing pressure differentials driving the trades must also be ‘invisible’.
Behold the emperor in all his finery!
Wayne
You say: “I burned 7 cords of wood last winter, I usually burn 5. This year I plan to put up 8 cords as the aspen leaves are already turning and the temperature is slightly below normal.”
Take your guide from the experience of this years southern winter. Could be you will need 9 cords. Should be lots of cold air out of the Arctic. The trend since 1990 is for the pressure differential between 80-90N and the equator to increase. See fig 5 in my latest paper at http://climatechange1.wordpress.com/
Pressure at 80-90N is directly related to the Arctic Oscillation index but you need to flip the index to see the relationship. Conventionally a falling AOI tells you that atmospheric pressure is increasing in the high northern latitudes.
It is the relative increase in atmospheric pressure over Antarctica that accounts for the polar front sweeping far north into Brazil this southern winter. A momentary failure in that pressure will produce the sudden stratospheric warming that peaked 3d-5th August 2010. It’s the contrast that is spectacular.
rbateman says:
August 20, 2010 at 9:11 pm
“Is there anything in the atmosphere that isn’t a greenhouise gas?”
There is none so spectacularly greenhouse in nature as ozone. If we observe it working we can see, as a matter of direct observation’ that downward transfer of energy is a nonsense. See http://climatechange1.wordpress.com/2008/11/08/earth-laboratory-tests-the-greenhouse-theory-once-a-year-every-year-and-finds-it-wanting-every-time/
savethesharks says:
August 20, 2010 at 8:45 pm
Question about the DMI chart of temps above 80 north.
All summer long, they have been on among the margin of the coldest, almost ALWAYS below normal.
Now we see a spike.
http://ocean.dmi.dk/arctic/meant80n.uk.php
Is this because the block has finally released and that bubble of heat that baked western Russia has now been knocked away to dissipate at the poles, affecting Arctic temperatures in a positive manner?
Any thoughts on this would be appreciated.
My thoughts: The increase in temperature in the Arctic is a product of a fall in atmospheric pressure. The fall occurred at both poles simultaneously. The effect was more dramatic in the south than the north because the arctic vortex is at its weakest in midsummer. Nevertheless there is an effect.
If you line up the figures for the AO and the AOI one above the other you will see a symmetry. The force that shifts the atmosphere away from the poles frequently acts on both poles at the same time. This is most readily observed when the Arctic vortex is strongest.
The fall in pressure in July (north and south) can be seen in figure 5 in my latest post at http://climatechange1.wordpress.com/
And you wait until they get a similar blocking event in January. Minus 50oc anyone?
Oh, sorry, that would just be weather.
David Ball,
humour?
TomRude, that’s what I thought your response would be. Nada. It makes me laugh every time someone says how wrong or outdated my father is, yet they all seem to come back to the exact same conclusions that he has been saying for thirty years +. Slander and deride all you like, for in the end, good honest science shall prevail. Those who are rude would do well to remember that Karma still functions on the internet. Behave as you would face to face.
stevengoddard says:
August 19, 2010 at 10:16 pm
Hot weather is climate. El Nino is climate
______
? You are being sarcastic of course.
Silver Robot says:
August 20, 2010 at 9:58 am
R. Gates says:
August 20, 2010 at 8:05 am
…it may, or may not be the case that AGW could increase the frequency of these types of events. But it would be worthy of further investigation.
——————————————————————-
What AGW? There is no AGW. If you believe AGW is real, then prove it before smuggling it into the debate as a valid premise.
______________
Reply:
Thanks for snipping off the first part of my post which gives a direct quote from the article, and makes the point about the unknown potential connection between the frequency of these kinds of events and GHG’s. The article says:
“It is not known whether, or to what exent, greenhouse gas emissions may affect the frequency or intensity of blocking during summer.”
The suggestion that this would be an area worthy of further scientific study is valid one, you your ad hominem attack on me, which I deleted here, is put into its proper perspective.
The “Crackpot” can’t prove it so he claims “ad hominem” /sarc! ROTFLMAO!
David Ball, reading this NOAA report, or the New Scientist article on the work by Blackburn and the link you offered, I do not see much difference between the two: same Rossby waves, same Jet Stream responsible for blocking.
I wonder what winter will be in Moscow. Will it be extraordinary cold or mild? Are there any anomalies expected?