By Andy May
Some have speculated that the distribution of relative humidity would remain roughly constant as climate changes (Allen and Ingram 2002). Specific humidity can be thought of as “absolute” humidity or the total amount of water vapor in the atmosphere. We will call this amount “TPW” or total precipitable water with units of kg/m2. As temperatures rise, the Clausius-Clapeyron relationship states that the equilibrium vapor pressure above the oceans should increase and thus, if relative humidity stays the same, the total water vapor or specific humidity will increase. The precise relationship between specific humidity and temperature in the real world is unknown but is estimated to be between 0.6 to 18% (10-90%ile range) per degree Celsius from global climate model results (Allen and Ingram 2002).
Carl Mears and colleagues (Mears, et al. 2018) have recently published a satellite microwave brightness record of TPW from 1988 to 2017 showing TPW, over the world’s ice-free oceans, increasing in lockstep with global mean temperature. This surprised me since Benestad (Benestad 2016), (Partridge, Arking and Pook 2009), (Miskolczi 2014) and (Miskolczi 2010) have previously reported that TPW, as computed from weather balloon data, has gone down recently, although their time periods were earlier and longer than the record shown in Mears, et al.
CO2 does not have a large direct effect on temperature, Ramathan and Coakley estimated that the direct effect of doubling CO2, with no feedbacks, would cause temperatures to rise 1.2°C, which is no big deal (Ramanathan and Coakley 1978). Water vapor is a much more powerful greenhouse gas, it has twice the radiative effect (or “greenhouse” effect) of CO2 according to Pierrehumbert (Pierrehumbert 2011) and transports thermal energy around the Earth in ocean currents and as latent heat in water vapor via atmospheric convection. If adding man-made CO2 to the atmosphere somehow, directly or indirectly, causes the amount of atmospheric water vapor to increase, then this “feedback” could cause temperatures to rise more than we would see from adding CO2 alone. Water vapor is the dominant greenhouse gas, according to (Soden, et al. 2005). Likewise, if adding CO2 somehow caused water vapor to decrease or some reflective clouds to increase, the resulting negative feedback could cause temperatures to go down or stay the same. No one really knows how much water vapor feedback, or even if it is positive or negative, is occurring. For this reason, there is considerable interest in determining the current atmospheric water vapor trend.
Figure 1 shows the NCEP weather reanalysis version 1 (Kalnay, et al. 1996) total specific humidity converted to kg/m2 up to about 8 km (300 mb) as an orange line. This value is based mostly upon weather balloon, surface data and after-the-fact analysis of weather using a global weather (not climate) forecasting model. The yellow line is from the NCEP reanalysis 2 global weather model (Kanamitsu, et al. 2002), it provides a total atmosphere TPW estimate, but only goes back to 1979. The gray line is the HADCRUT version 4 global surface temperature anomaly and the blue line is the RSS ice-free ocean TPW estimate from satellite microwave measurements. The RSS estimate is much higher presumably because it only uses samples over oceans that have no sea ice. The RSS data is only available from 1988 to present. Besides the problems with sea-ice, the RSS data has missing data due to rain events and the measurements used can be affected by clouds (Vonder Harr, Bytheway and Forsythe 2012).
Figure 1. Various estimates of total precipitable water (TPW) in the atmosphere compared to the HADCRUT4 temperature anomaly.
The two NCEP analyses are global estimates from models that are calibrated using actual measurements, thus they are “reanalyses.” Their advantage over the RSS estimate is they are truly global and have values for every map grid. The reanalysis grid for NCEP reanalysis 1 for 2017 is shown in Figure 2. The NCEP reanalysis 1 model had several problems as described in (Kanamitsu, et al. 2002), but most have been fixed as discussed in the reanalysis 1 web site. The data for all of the TPW estimates displayed here was downloaded in May or June of 2018.
The specific humidity reanalysis results are not based solely on weather balloon radiosonde data, but the NCEP reanalysis 1 is more reliant on them than the reanalysis 2 project. Both projects also use land-based weather station data, ship data, aircraft and satellite data. Some have concluded that the radiosonde humidity data prior to 1973 and north of 50°N and south of 50°S is unreliable. Paltridge, et al. excluded this data and confirmed the negative overall trends in TPW, at least in the upper troposphere.
Figure 2. The NCEP reanalysis 1 grid of average TPW for 2017 in kg/m2. Data source: NCEP reanalysis 1.
The RSS grids are much sparser as can be seen in Figure 3. The white areas (land- and ice-covered areas) of Figure 3 have no values which, in part, explains why the average RSS TPW values are so much larger than the NCEP values. The color scales used in all the maps are the same. Besides excluding areas containing sea-ice, areas with “moderate and high rain rates” are excluded from the RSS dataset, this introduces a systemic “non-rainy” bias to the dataset (Mears, et al. 2018). However, Mear’s and colleague’s dataset is probably a fairly accurate representation of TPW over the areas sampled. The problem with it is that the land areas and most of the polar regions are excluded and it only goes back to 1988. This is very unfortunate since the AMO began to turn significantly positive in 1988, which makes the RSS comparison to global temperature look “cherry-picked.”
Figure 3. The RSS satellite microwave measured TPW over the ice-free oceans, moderate to severe rain events are excluded. Data source: Remote Sensing Systems.
The NCEP internet retrieval program would not allow me to download the reanalysis 2 TPW data for 2017 for some reason, but I did get the 2017 “canned” dataset from their website, it is shown in Figure 4. The data retrieval was done from here.
Figure 4. The NCEP reanalysis 2 TPW for 2016. Data source and description: NCEP Reanalysis 2.
Compare Figure 4 to Figure 2, they are similar, except around the Pakistan/Tibet/China border. This shows as a cool, dry area in reanalysis 2 and as a wet anomaly in reanalysis 1. The NCEP reanalysis 2 shows more water vapor in the tropics than the reanalysis 1, this makes the reanalysis 2 averages higher. Further the reanalysis 2 TPW is for the whole atmosphere, whereas the reanalysis 1 TPW is only to 300 mbar (~8 km).
All three estimates shown in Figure 1 show an increase in TPW from around 1990 to the present, but the RSS increase is more dramatic. The increase in global average temperature begins in 1976, 14-16 years earlier. In Figure 2, we can see that the NASA CO2 record shows a rapid increase in trend beginning even earlier in the 1950s.
Figure 5. The NASA CO2 reconstruction from 1850 to the present. Data source NASA.
Because of the large differences in the various estimates of TPW, the relationship with global temperature is difficult to see. Figure 6 is a close up of the RSS TPW and HADCRUT4.
Figure 6. RSS TPW plotted with HADCRUT4. Data sources: RSS and Met Office Hadley Centre.
In Figure 6, we see a close correlation between global temperatures and the RSS ocean TPW measurements from satellite microwave data. Even the details match well. In Figure 7 we see the longer NCEP reanalysis 2 record compared to HADCRUT4. Again, there is a close match in detail, but the trends from 1979 to 1992 are opposite.
Figure 7. The NCEP reanalysis 2 TPW record compared to HADCRUT4. Data sources: NCEP Reanalysis 2 and Met Office Hadley Centre.
Finally, in Figure 8, we see the NCEP reanalysis 1 record, which goes back to 1948, compared to HADCRUT4. The records match well from the present to the early 1980s and then begin to diverge, the divergence becomes extreme in the 1950s. Roy Spencer has blamed this on the poor-quality hygrometers used in weather balloons in the early days. Perhaps, but weather balloon data is not the only data used in these reanalyses. The NCEP reanalysis 2 results are almost certainly better than the reanalysis 1 results, but they are tantalizing short, beginning in 1979. We need 20-30 years more data to see if the influence of global mean temperature can be swamped by the influence of the AMO and other ocean cycles as suggested by the reanalysis 1 results.
Figure 8. Data sources: NCEP reanalysis 1 and Met Office Hadley Centre.
While surface temperature is clearly a large factor influencing TPW over the short term, there may be other factors influencing it. Figure 9 compares the smoothed AMO index of Atlantic Ocean temperatures to NCEP R1.
Figure 9. Data sources: NCEP reanalysis 1 and NOAA.
So, if the TPW estimates in the 1950s are accurate enough, perhaps they reveal a strong influence of the AMO cycle on TPW? It is hard to tell since many have questioned the quality of the early hygrometer data.
Over the short term, the correlation between TPW over the oceans and temperature is good, see Figure 10A. This however, is certainly not surprising. Over the longer term, using the NCEP R1 data, it is poor. As seen in Figure 10B, the correlation deteriorates. The time period and the data selected matters.
Figure 10. Data sources NCEP, RSS and the Met Office Hadley Centre.
The correlations between RSS TPW and NCEP R1 versus HADCRUT4 have similar slopes, which is surprising. Both show an increase of about 2.5 kg/m2 (9%-13%) per degree of global temperature increase, but the NCEP reanalysis 1 plot suggests that there are actually two slopes, thus two trends and factors other than average surface temperature influencing TPW. Compare this estimate to the earlier cited specific humidity range of 0.6% to 18% per degree Celsius (Allen and Ingram 2002). The uncertainty in the amount of increase in TPW, due to global temperature changes is large.
TPW in the Upper Troposphere
As Partridge, et al. (Partridge, Arking and Pook 2009) have noted climate models predict that specific humidity will increase in the upper troposphere as global warming continues. Yet, this is not what is seen in the NCEP reanalysis 1 data, see Figure 11. Partridge, et al. have investigated more measurement levels and report that all levels above 850 hPa (~1.4 km) have a negative trend through 2007 in the tropics and southern midlatitudes. They also found that every level above 600 hPa (~4 km) in the northern midlatitudes has a negative trend.
Figure 11. Global average TPW (blue line) from 500 hPa to 300 hPa or roughly 5 km to 8 km altitude compared to the HADCRUT4 temperature anomaly. Data sources: NCEP reanalysis 1 and Met Office Hadley Centre.
In many ways this negative trend is counterintuitive since the world is warming and more evaporation is expected. A warming atmosphere should cause more evaporation and a higher TPW. From Paltridge, et al.:
“Negative trends in q [TPW] as found in the NCEP data would imply that long-term water vapor feedback is negative—that it would reduce rather than amplify the response of the climate system to external forcing such as that from increasing atmospheric CO2.”
This was also the conclusion reached by Ferenc Miskolczi (Miskolczi 2014). Others, such as Roy Spencer and Richard Lindzen, have suggested that warmer temperature will cause more clouds, which will increase the albedo of the Earth and lower temperatures or reduce the rate of warming (provide negative feedback) as a result.
Conclusions and Discussion
The various estimates of total atmosphere TPW available do not agree with one another very well. Even the two NCEP estimates, both global, vary by over 18% and these estimates are 33% lower than the RSS ocean-only estimate. However, since about 1990 all the total atmosphere estimates trend upwards. Prior to 1990, the story is more complex. The longer NCEP reanalysis 1 estimate trends down from 1948 to 1975 in sync with the AMO, but different from the HADCRUT4 trend. All datasets agree that short term changes (<30 years) in surface global temperature have a positive (if small) influence on total atmosphere TPW, but it is not clear that long-term changes (>30 years) in TPW are related solely to global surface temperatures, they might be impacted more by ocean surface temperature cycles, such as the AMO.
The global climate models predict that global warming will increase upper troposphere specific humidity, but the weather balloon data shows a decline in specific humidity and in TPW in the upper troposphere. The humidity data declines in quality with altitude and lower temperatures, but even in the tropics where water vapor concentration is high at high altitudes, this trend persists. This also contradicts satellite data, but the ability of satellites to separate the signal of the upper troposphere water vapor from the lower is unclear. The accuracy of the specific humidity calculations in the upper troposphere is also unclear. However, both the NCEP reanalysis and the European reanalysis show a decline (Benestad 2016) and (Partridge, Arking and Pook 2009).
While there is great uncertainty in the amount of TPW in the whole atmosphere and in the upper troposphere, the importance of TPW and its trend is undeniable. In the tropics, at the lower levels of the atmosphere, the large amount of water vapor already traps nearly all the IR (infra-red radiation), so adding CO2 to this atmosphere has little effect (Pierrehumbert 2011). But, in the upper troposphere, where IR is emitted to space and additional CO2 or water vapor may make a difference, water vapor may be decreasing, at least according to NCEP reanalysis 1. Uncertainty abounds in this critical area of research and most important, what data we have is over too short a time period. Consider this quote from Pierrehumbert (Pierrehumbert 2011):
“For present Earth conditions, CO2 accounts for about a third of the clear-sky greenhouse effect in the tropics and for a somewhat greater portion in the drier, colder extratropics; the remainder is mostly due to water vapor. The contribution of CO2 to the greenhouse effect, considerable though it is, understates the central role of the gas as a controller of climate. The atmosphere, if CO2 were removed from it, would cool enough that much of the water vapor would rain out. That precipitation, in turn, would cause further cooling and ultimately spiral Earth into a globally glaciated state. It is only the presence of CO2 that keeps Earth’s atmosphere warm enough to contain much water vapor. Conversely, increasing CO2 would warm the atmosphere and ultimately result in greater water-vapor content – a now well understood situation known as water vapor feedback.”
So, we see the crucial role assumed for water vapor in the entire man-made climate change hypothesis. CO2 has only a minor role to play in warming the Earth by itself. It is only the assumed, but unmeasured, feedback from water vapor that allows a large impact on our climate to be predicted. Yet, as shown above, this assumed feedback cannot be measured with any accuracy with the data we have available. In fact, over climate time scales (>30 years) we cannot even be sure the feedback is positive. There is a strong correlation between temperature and total atmospheric water vapor concentration over short time periods, especially over the oceans from 1988 to 2017, when the AMO index was rising. But, it falls apart over longer periods of time and it is negative in the crucial upper troposphere. I can offer no solutions or great insights here, only questions and problems.
Andy May is a writer and author of “Climate Catastrophe! Science or Science-Fiction?” He retired in 2016 after 42 years in the oil and gas industry as a petrophysicist.
The R code and other information, including links to the original data, used to make the figures in the post can be downloaded here.
Works Cited
Allen, Myles, and William Ingram. 2002. “Constraints on future changes in climate and the hydrologic cycle.” Nature 419. https://www.climateprediction.net/wp-content/publications/nature_insight_120902.pdf.
Benestad, Rasmus. 2016. “A Mental Picture of the Greenhouse Effect.” Theoretical and Applied Climatology 128 (3-4): 679-688. https://link.springer.com/article/10.1007/s00704-016-1732-y.
Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. “The NCEP/NCAR 40-year reanalysis project.” Bulletin of the American Meteorological Society. https://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2.
Kanamitsu, Masao, Wesley Ebisuzaki, Jack Woollen, Shi-Keng Yang, J. Hnilo, M. Fiorino, and G. Potter. 2002. “NCEP-DOE AMIP-II Reanalysis (R-2).” BAMS. https://journals.ametsoc.org/doi/abs/10.1175/BAMS-83-11-1631.
Mears, Carl, Deborah Smith, Lucrezia Ricciardulli, Junhong Wang, Hannah Huelsing, and Frank Wentz. 2018. “Construction and Uncertainty Estimation of a Satellite-Derived Total Precipitable Water Data Record Over the World’s Oceans.” Earth and Space Science. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2018EA000363.
Miskolczi, Ferenc. 2014. “The Greenhouse Effect and the Infrared Radiative Structure of the Earth’s Atmosphere.” Development in Earth Science. http://www.seipub.org/des/paperInfo.aspx?ID=21810.
Miskolczi, Ferenc. 2010. “The Stable Stationary Value of the Earth’s Global Average Atmospheric Planck-Weighted Greenhouse-Gas Optical Thickness.” Energy and Environment. http://journals.sagepub.com/doi/abs/10.1260/0958-305X.21.4.243.
Partridge, G., A. Arking, and M. Pook. 2009. “Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data.” Theory of Applied Climatology. https://link.springer.com/article/10.1007/s00704-009-0117-x.
Pierrehumbert, Raymond. 2011. “Infrared radiation and planetary temperature.” Physics Today, January: 33-38. http://faculty.washington.edu/dcatling/555_PlanetaryAtmos/Pierrehumbert2011_RadiationPhysToday.pdf.
Ramanathan, V., and J. Coakley. 1978. “Climate Modeling Through Radiative-Convective Models.” Reviews of Geophysics and Space Physics 16 (4). https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RG016i004p00465.
Soden, Brian, Darren Jackson, V. Ramaswamy, M. Schwarzkopf, and Xianglei Huang. 2005. “The Radiative Signature of Upper Tropospheric Moistening.” Science. https://www.researchgate.net/profile/Xianglei_Huang2/publication/7554296_The_Radiative_Signature_of_Upper_Tropospheric_Moistening/links/00b4953c458b4cc3c7000000.pdf.
Vonder Harr, Thomas, Janice Bytheway, and John Forsythe. 2012. “Weather and climate analyses using improved global water.” Geophysical Research Letters 39. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL052094.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
* more TPW may means more GHG effect from water…provided this isn’t already close to saturation. And it is. As dry as Sahara is, I am pretty sure adding water in its atmosphere would not result in it getting more warm.
* however, TPW obviously correlates with clouds and rain. They are not the same thing, of course, but “all that goes up, must go down” applies to water, and even if there are some delays, rain is a pretty good proxy. Meaning,
1) it shouldn’t be that difficult to know if there is, or not, more TPW. You just need rain statistics.
2) more TPW means more clouds, sooner in the day, more albedo/less solar energy at day time. It would also means less loss at night, if I am not wrong (not sure about this one).
Bottom line: climate studies should focus on clouds, which ARE the crux of the whole system, both under command and commanding, instead of focussing on GHG and CO2
water vapor is a very strong greenhouse gas, at least twice as strong as CO2.
” As dry as Sahara is, I am pretty sure adding water in its atmosphere would not result in it getting more warm.”
It would increase the energy content of the air but probably not the temperature.
‘What goes up must come down’, that is not quite what is meant with the water feedback (water vapour up > more warming) the point there is that not all water vapour precipitates out or forms clouds. I.e. on average it just stays in the atmosphere thereby increasing the greenhouse effect. Rain statistics are not going to Help in establishing if the water vapour content is increasing or not.
I’m not convinced that all this is actually hapening but that is the argument needed for the water feedback.
Bottom line is, they cannot predict local water concentrations in the atmosphere any better than they can predict clouds, or absence thereof. Obviously the two are intimately related, but total global atmospheric water content is no more helpful than a global average temperature. It is local water that counts. When the IPCC refer to non-condensible greenhouse gases, what they really mean is “please don’t ask me about water, or I shall start to whimper.”
Even Science-of-Doom had a reasonable post about “The Strange Case of Stratospheric Water Vapor” back in 2010. https://scienceofdoom.com/2010/04/28/the-strange-case-of-stratospheric-water-vapor-non-linearities-and-groceries/
Water transport across the tropopause, stratospheric methane oxidation to produce water in the most radiatively-sensitive part of the troposphere, and more….so many unknowns before one even starts on clouds.
…And so many opportunities for climate modelers to make unjustified assumptions about the molecule (H2O) that really governs the Earth’s climate. It is axiomatic in Chemistry that you can collectively formulate credible postulates about chemical reactions and their mechanisms in a whole host of different solvents, except one. When it comes to water you need a whole new book, not just an additional chapter.
Michael, Well said and very true.
With so much of the Data adjusted out of shape to fit the political requirements, studies like this face a lot of complications in forming a reliable result. In any case, they do show that the Science is not settled by a long shot.
Perhaps a ckarification would be appropriate:
– the temp Hockey Stick is not a credible comparison
– the “world” is not warming. parts of the world may be warming, but not very much and not in lockstep.
-since the upper atmosphere hotspot is not existing as predicted, what does any of this do except to further falsify the AGW hypothesis?
Imagine that the atmosphere consisted of only CO2 and Water vapour. If more CO2 was added then the surface would warm and more water would evaporate and cool the surface to the point where evaporation is reduced. The water vapour would rise to the point where it forms clouds or precipitates and at a higher level as warming occurs. I predict more clouds and more precipitation so more upward transport of latent heat and more reflection of solar energy, both being negative forcings. Precipitation would increase so creating more evaporatable water at the land surface so more precipitation, more cloud and more negative feedback. CO2 would clearly have a job on its hands to raise surface temperature very much as the cooling of extra rain would be severely limiting.
Who can do the maths?
And of course more rain and CO2 means more plant growth, transpiration and conversion of insolation into vegetable matter.
“Who can do the maths?”
Nobody. Convection is a mesoscale (or smaller) process which is vastly beyond the capacity of existing computers to model. To go from 100 km cells to 1 km cells (still on the large side) requires 100^4 = 100,000,000 times larger computation capacity. The exponent 4 is because in addition to the 3 spatial dimension you also need to shorten the time-steps in the same proportion.
Not gonna happen soon.
Thanks Andy!
More evidence that the strong positive water vapor feedback necessary for CAGW is not being observed in the real world! Alarmist’s have no answer for that one…
Hi, should not that be kilograms per cubic meter? Square meter is a unit of an area. How on Earth can you have kilograms of water wapour on a flat surface!? It is embarrassing, how many people, including those claiming to be scientists, are grappling with the difference between length, area and volume.
No, it is a square meter on the ground, but it’s also a square meter all the way up from there, so it is measuring what’s in a volume, but it is not a volume.
Oh I see, in that case, I retract that. Thanks for the explanation.
Specific humidity is actually the mass of water vapor per unit total mass of air. It’s dimensionless.
This dissertation on TPW is exhibit A on why the AGW theory has never been scientifically validated.
Without the water vapor feedback loop there can not be AGW as is claimed by the IPCC et al.
Because all involved are fully aware of this major shortcoming the pretence of scientific certainty has been nothing short of fraud.
Square root of TPW is a function of temperature multiplied by relative humidity. In nature relative humidity is not static but it is dynamic with changing winds. So, also TPW is not static but it is dynamic, this is more particularly when we talk of global TPW.
Dr. S. Jeevananda Reddy
Thank you. That is very helpful.
Andy
The removal of heat from the oceans is a self
compounding issue that is resolved with time. Heat can enter the oceans faster than it can be dissapated. Why, because it is the heat of the surface of the ocean that controls the atmospheric temperature and therefore the solubility value.
In the current so called modern warming phase the anomalies are recording ocean heat removal by atmospheric transport. Atmospheric circulation around the tropical latitude’s changes, but always within bounds. Therefore the heat removal is limited to those variables.
The atmosphere flowing from African deserts onto the east Atlantic will remove more ocean heat because it is proportional warmer and dryer, but soon reaches equilibrium. Thermal upwelling and sidewelling at tropical latitude’s due to evaporation is enormous, replaced at sea level by a continuous fresh charge of atmosphere. If that fresh charge is near equilibrium ocean cooling is significantly reduced, heat remains. As many observers find incoming and outgoing heat never aligns. Part of the delay is circulation related, part is atmospheric heat removal effectiveness.
From my own observations the heat removal process by way of water vapour takes mass into the atmosphere ultimately to the poles. Some condenses on route. This mass has flow on effects in that it can create blocking mechanisms that influence the hemispherical direction of the flow. These vary seasonally, but also serve to provide another measurement of heat release volume. As no one is analysing the reason for locational anomalies, the anomalies tell us very little.
Close successive El Ninos compound heat loss issues, and give the appearance of run away warming therefore it must be something that has changed in the atmosphere and out come the calculators. Humans are impatient, earth has it’s own timetable.
Try and dry your hair with ambient air, you need increased volumes flowing across the surface to accelerate the process, and if it’s a humid day?
Regards
Andy
Water has three states, solid, liquid and vapour.
Solid has high albedo and reflects most heat, but still warms. Liquid has low albedo and and responds well to warming. Water vapour in the atmosphere it acts as a relector and blanket, but does water vapour increase in temperature in the atmosphere by either incoming our outgoing ?.
I can’t recall that being discussed. If it does humidity will change.
The water has to come from someplace. By what amount would this offset any ocean level rise?
The question still remains: why is the desert hotter where there is very little water vapor and at the same latitude where there is much higher water vapor it is cooler? In fact, there seems to be a thermostat controlling how warm the surface can get. Convection rules the day, not radiation.
The idea that water vapor can be the cause of a runaway “greenhouse” effect is laughable. There is zero evidence to support such a hypothesis. It’s a pipe dream.
no question here. Water evaporation is a huge cooler, absorbing 2265 kJ per kg (that is, 1mm spread on 1m²). Do do this in ~3 hours (10 ks) require over 200W. The world yearly average is 87W according to NASA, but obviously this will range from zero in dry condition to 500W or more were sun and wind soak 1mm/hour.
Yes, water rules
Yeah, if water can absorb more energy and hold more energy before its temperature increases and then radiate more energy at a given rate, then water is COOLING and CONTROLLING temperature, NOT raising temperature.
Sunny days are warmer than cloudy ones, generally, right? Well, think about cloudy vs clear winter nights in the temperate zone (if you’ve experienced them). Clouds reflect the sun, but hold the heat in at night.
Deserts are the same principle; they get hot in the day and cool down very quickly at night because there is little humidity to either block the sun or hold the heat in. The paucity of (actively photosynthesizing) plants in the winter and in deserts means less of the sun’s energy is absorbed and released later.
P.S. Carl Mears has morphed into just another AGW lackey. His latest “adjustments” to RSS is a disgrace to Metrology.
It occurs to me that cosmic rays may have something to do with upper tropospheric TPW. This would depend on whether water vapor or ice crystals are better radiators. If the water vapor is a better radiator, then desaturating the atmosphere by cosmic rays would produce ice crystals and lower the effective emissions height, producing cooling at the surface. This cooling would take place at solar minimum, when cosmic rays are most intense. Just a thought.
Aqua/MODIS global satellite data shows TPW has declined from 2.26cm in 2002 to 2.17cm in 2010 then to 2.15cm in 2017.
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MYDAL2_M_SKY_WV
No idea about its absolute accuracy but I suspect it has the trend nailed.
Measurements contradicts climate models but then what do you expect when they are based on fantasy about radiation transmission through atmosphere:
https://www.youtube.com/watch?v=hjKJyn_uoIE
For the earth surface temperature to rise the atmosphere needs to increase in mass and/or its specific heat increase in value. With no increase in TPW there is no increase in surface temperature. The stable condition of the sea ice supports that conclusion.
This may be of interest. Looks like Hadley Cell wind. Can use finger to rotate, resize.
.
.
https://earth.nullschool.net/#current/wind/isobaric/10hPa/orthographic=-136.93,66.33,280/loc=-50.770,89.411
.
.
Sandy,
Minister of Future
Oops. 10 hPa about 30 km, mabe QBO? Hadley abt 9 km, 300 hPa.
.
.
Sandy,
Minister of Future
Lets face it, we just don’t know what mechanism is behind this, but we do know TPW is not increasing lock step in line with temperature globally. Over the oceans perhaps, but not over land, and not then not consistently with altitude.
So the fundamental mechanism at the heart of every climate model, WV feedback, is shown to be bunkum. And with it all their predictions are equally junked.
“Does Global Warming increase total atmospheric water vapor (TPW)?
By Andy May : ” I can offer no solutions or great insights here, only questions and problems.”
Andy May is a writer and author of “Climate Catastrophe! Science or Science-Fiction?”
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Anyone want to BUY YET ANOTHER BOOK ???????????????????????????????????????
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
This ARTICLE………………..like MY ANSWER……………………….is UNHELPFUL !
Anybody have an idea about the 200 kph antartic circulation in the QBO nullschool link?
.
.
Sandy,
Minister of Future
On the nullschool link, can change to 500 hPa for 5.6 km wind, or 700 hPa for 3 km wind. Got ‘no data’ when tried 300 hPa.
.
.
Sandy,
Minister of Future
I thought I had read sometime ago on this site that NASA had found no appreciable increase in atmospheric water vapour
I’ve seen announcements like that as well as announcements that it has increased and decreased. They don’t know any more than we do. What is discouraging is that the uncertainty in the water vapor trend is so rarely mentioned. This is a key element of CAGW, and we don’t have a friggin’ clue.
If it’s GHG warming, we should see the tropical hotspot. No sign of hotspot. So far it’s still theories and claims but no hard evidence
Dr ….
How about a more recent study – like 9 years more recent.
http://www.science20.com/news_articles/tropospheric_hot_spot_predicted_in_global_warming_models_detected-155585
Still no tropical hotspot (Spencer, 2015)
http://www.drroyspencer.com/2015/05/new-satellite-upper-troposphere-product-still-no-tropical-hotspot/
Desperation — who needs thermometers? Sherwood finds missing hot spot with homogenized “wind” data
IPCC plays hot-spot hidey games in AR5 — denies 28 million weather balloons work properly
http://joannenova.com.au/tag/missing-hot-spot/
Andy,
The biggest surprise to me in your figures 2 and 4 is that the total highest TPW in the tropics seems to be over land???(amazon and west africa)
Any thoughts on why that would be the case?
I can’t think of any reason other then that plants are more effective ‘evaporators’ then the ocean surface.
That could turn things around a little…
Great article, thanks for posting!
Best,
Willem
Willem69, I do not have an explanation for that, but it is a very interesting observation.
You got it – it’s the plants. They are constantly drawing water out of the ground and moving it into the atmosphere. Rainforest is a huge water vapor and O2 source.
As I have said from the beginning of the AGW farce, the incompetent Hansen has been using the WRONG units of measure for the amount of HEAT in the air. It is not C or F, it is Total Heat per weight per degree. (BTU/#/F) Air temperature is not a measure of Heat, it is only a partial measurement indicating Sensible Heat, it excludes Latent Heat. This entire fraud is built on gullible rubes being hornswaggled with a bait and switch.
The presence of humidity dampens temperature swings because it’s latent energy must also flow either in or out as well. The fact that global humidity tracks the AMO only continues to underline the driver of climate being the sun, the main supplier of energy to power the climate system.
Either Hansen is grossly incompetent as a scientist OR he is a con artist. In My Opinion, he is a con man who has sought to enhance his public image and wealth through this deception. The fact that others jumped on the bandwagon to enrich themselves like Al Gore and Tom Steyer via subsidized and mandated products just gave Hansen cover.
When looking at trends in the data using linear regression, I propose that we include the uncertainties in the intercept and slope. It is unclear whether the small upward trend in some of these graphs are significant in the statistical sense. Reporting the std uncertainty of the slope would either verify that the slope is significant or show that it is not (at the specified 1-sigma, 2-sigma, or 3-sigma level).
The hadley center is a cancer on science ffs