A Solar Power Plant vs. A Natural Gas Power Plant: Capital Cost – Apples to Apples

gas-vs-solar-startup

Guest essay by Philip Dowd

Here is a simple example that illustrates why current solar technology will be hard-pressed to replace existing carbon-fired power plants.

Let’s suppose that a power company is planning to scrap a coal-fired power plant and wants to replace it with a new plant. Furthermore, let’s assume that the old plant to be scrapped is in Arizona. The options for the new plant are natural gas and solar. The company wants a simple, ball-park analysis of the front-end cost to build each of these options.

The requirements:

1. Electricity demand on this facility is 4,800 MWh/day, about the demand for a community of 160,000 average households[i]

2. The “up time” of both plants must be equal. That is, both must be equally reliable and produce the demand for the same fraction of time over the course of one year.

Assumptions:

1. The solar plant will consist of a Photovoltaic (PV) panel and a battery. The PV panel will generate enough electricity during the day to produce the necessary output and charge the battery. The battery will generate the necessary output at night.

2. Night time demand equals day time demand.

3. The new plant will be built in Arizona, a good spot for a solar plant

The Analysis

The analysis is in the form of an annotated spread sheet, showing the two options and the steps required to derive the solution.

I. Capital Cost to Generate Electricity

dowd-electricity-table-gas-solar II. Capital Cost of Storage for Night Time Demand

The solar option requires a battery that would supply night time demand. For this purpose we will use technology known as “Pumped Storage”. This method stores energy in the form of potential energy of water, pumped from a lower elevation reservoir to a higher elevation reservoir. In our example, about half of the electric power from our solar facility produced during the day would be used to run the pumps and fill the upper reservoir. Then, at night, the stored water would be released through turbines to produce the electricity that would run the night time economy.

clip_image002

For more on this see: https://en.wikipedia.org/wiki/Pumped-storage_hydroelectricity

III. Total Capital Cost Including Storage ($millions)

For our exercise let’s consider the Bath County facility, located in the northern corner of Bath County, Virginia[vii]. It was constructed in 1977-85 and is currently the largest pumped storage facility in the world.

Here are its relevant specifications:

dowd-bath-county-va-costs2

So, at this point in the exercise we have the relative costs of the two options to generate electricity over a twenty-four hour period, assuming normal operations for both. The capital cost of the solar option is about 14 times the cost of the gas option.

dowd-electricity-table-gas-solar2

Conclusion

This back-of-the-envelope analysis suggests that a solar (PV) power plant that could deliver that same results as a gas-fired power plant would cost about 14 times the gas-fired option to build. It is worth noting that the solar option cost excludes any subsidies, investment tax credits, etc, that could narrow the range, but it is obvious from this little exercise that until solar technology improves dramatically, there is little chance that it will replace natural gas as the “go-to” option for new power plants.

Bill Gates, the co-founder of Microsoft, has said that it was “fantastic” that the UN, national governments, and environmental campaigners had raised awareness of climate change and were taking steps to counter it. However, he argued that current technologies could only reduce global CO2 emissions at a “beyond astronomical” cost. “The only way you can get to the very positive scenario is by great innovation,” he said. “Innovation really does bend the curve.”[xiv]

I totally agree. Mr Gates intends to invest $2 billion in renewable energy over the next five years — innovation to bend the curve. Solar energy is going to need lots of it if it is ever to become a viable substitute for carbon-based energy.


References:

[i] Average household in US consumes about 900 kWh/month or about 30 kWh/day

http://insideenergy.org/2014/05/22/using-energy-how-much-electricity-do-you-use-each-month/

[ii] Net Capacity = electricity demand for one day ÷ 24 hrs or x/24

[iii] http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

Scroll down to the table. Capacity factor is found in col 2.

The number for gas is “Conventional Combined Cycle”

The number for solar is ”Solar PV”

[iv] Gross Capacity required = net capacity ÷ capacity factor

[v] http://www.eia.gov/forecasts/aeo/assumptions/pdf/electricity.pdf#page=4

The cost used comes from col 5 in this chart: “Base Overnight Cost in 2014”

The entry for gas is “Conventional Gas/Oil Combined Cycle”

The entry for solar is “Solar PV”. Note that this cost excludes any subsidies.

[vi] Gross Capacity Required x Capital Cost

[vii] http://en.wikipedia.org/wiki/Bath_County_Pumped_Storage_Station

[viii] The equation here is Capital Cost at time of construction x adjustment for inflation

For Bath = $1,600 mil x 2.6 = $4.1 billion (inflation adjustment is for the period 1981 – 2014)

For inflation adjustment use this site: http://www.usinflationcalculator.com/

[ix] The equation here is Capacity x Time to Empty Upper Reservoir

For Bath = 3,000 MW x 14.3 hours = 43.0 GWh

[x] Assume night time demand = day time demand so night time demand on the solar battery = ½ total daily demand

[xi] Cost of Storage = Capital Cost ÷ Stored Energy = $4.1 billion ÷ 43 GWh ≈ $100/kWh

[xii] Capex to store night time demand = $100/kWh x 0.5X kWh = $50X

[xiii] Total here is the “Total Capital Cost” in Sec I plus the “Cost of Storage” in Sec II

[xiv] http://www.ft.com/intl/cms/s/2/4f66ff5c-1a47-11e5-a130-2e7db721f996.html#axzz3kyDZjQxG


Errata and notes: The $4.1 trillion capex for the Bath County facility is a typo; yes, should be $4.1 billion, both in the body of the article and the footnotes.  This has been corrected. All of the other numbers in the body of the article are correct and the conclusion that the capex of the solar plant is 14 times the gas plant stands.

The assumption of night time demand = day time is just for convenience.  I know its not true, but this is just a ball park analysis and I’m trying to keep it simple.

The analysis deals only with capital cost, not levelized or life cycle, again just to keep it as simple as possible. – Philip Dowd

 

Get notified when a new post is published.
Subscribe today!
3.2 5 votes
Article Rating
238 Comments
Inline Feedbacks
View all comments
April 1, 2016 4:17 pm

Meanwhile, in Oz inconvenient answers are found …
“Origin is among the prospectors, applying to the Australian Renewable Energy Agency for funding to support a 106 MW solar farm of its own to be built on the Darling Downs next to its existing gas-fired plant.”
http://www.smh.com.au/environment/climate-change/shift-to-zerocarbon-power-must-start-by-2018-to-avoid-extra-warming-study-20160331-gnuy7x.html
I have been preparing for perfect weather, and feel I can’t be prepared anymore.
How much more prepared must I be be fore I can relax and enjoy the stable climate promised land?
Should Australia be completely covered in solar panels & wind farms before the GBR is saved?
Where are the answers?
How stupid are the questions?

Mike the Morlock
April 1, 2016 4:32 pm

It gets worst. Some here have spoken of fuel costs but failed to factor in water costs for the “stored energy”. water does evaporate here in the southwest.
Also factor in the tremendous pressure that will be placed on taping into the stored water in times of water shortages.
You just know that with any excess capacity built into the system it will be “sold” as being duel purpose. (And guess who will loose the duel )
michael

April 1, 2016 4:52 pm

We did (Planning Engineer and I; he is THE senior grid engineering exec at one of the US largest utilities) a somewhat more refined LCOE for wind v. CCGT v. USC coal, using only the EIA starting assumptions corrected for reality. Posted at CE last year.
Result: wind about 2x CCGT ignoring intermittency. Near 3x with 10% penetration, based on the Texas Ercot grid actuals. So despite many possible quibbles, the result here is directionally correct.

Janus100
Reply to  ristvan
April 1, 2016 5:11 pm

But there are no storage costs in these LCOE..

Reply to  Janus100
April 1, 2016 7:09 pm

J100, our Ercot grid addition did explicitly include storage/backup at 10% penetration. Ran ~120/MWh to ~ 142.

April 1, 2016 5:19 pm

This essay is crap. Stupid blogger vs stupid blogger. Like Spy vs Spy in Mad magazine. If WUWT was about juvenile humor, it might be amusing.
Tucson Electric Power does not evaluate projects this way. TEP would look at the fuel cost of producing power with their gas plant during hot days. If PV reduced the cost, then they would build more. TEP would also know that the price of natural gas is higher during peak demand.
I have read some of TEP annual report and their Landfill gas project is much more economical than Springerville PV. That was a few years ago. I have noticed recently that details in annual reports make it hard to evaluate performance of different choices.

Reply to  Retired Kit P
April 1, 2016 5:42 pm

Do the annual reports of the solar power plants include all subsidies and government “grants” or whatever you call it?

simple-touriste
Reply to  Retired Kit P
April 1, 2016 6:07 pm

“TEP would look at the fuel cost of producing power (…)”
Yes, fuel costs are ignored. It’s an issue.
But the Grauniad recently reproduced a comparison Hinkley Point vs. gas plants, with only construction costs considered (for the price of two EPR you could build a lot more power capacity with gas plants). Antinuc love to talk about the huge construction costs of a NPP.
Almost all enviros are antinuc and use this comparison of construction cost to make NPP look expensive, disregarding other costs. They should love this post’s approach.

Reply to  simple-touriste
April 2, 2016 8:19 pm

S-T
“Hinkley Point vs. gas plants”
I agree with your position. Let me add a concept. What are the ramifications of importing fuel for 60 years. Your choices are gas from Putin or coal from Obama.
The answer is nobody knows but it would be a good idea to mitigate a worse case scenario.
Many of the yahoos who post here forget ten years ago the US was building LNG terminals to import gas which was being burned to make electricity at $16/MMBTU
Hindsight is 20/20 except for those with an agenda who see what they want to see.

gaelansclark
Reply to  Retired Kit P
April 2, 2016 4:27 am

TEP would not build PV in order to reduce the midday cost of extra gas used. That is as stupid as building the entire plant in the first place. How long does it take and how much money is consumed in interest for a plant that costs 14x’s it’s comparable?
TEP, if they need extra energy, would build a NatGas peaking plant….or two or three.

Janus
Reply to  Retired Kit P
April 2, 2016 6:42 am

So you agree with us, or argue that we do not know what we are talking about?

MarkW
Reply to  Janus
April 4, 2016 1:47 pm

He seems to take the position that unless you account for everything, the study isn’t worth doing.

DredNicolson
April 1, 2016 5:34 pm

In addition to exorbitant up-front costs, solar power facilities take up massive amounts of space and need to be open to the elements (with all the maintenance headaches that entails). Wind turbines have all the same issues, plus a fuel source that’s even less reliable, even with optimal terrain and weather.
Where solar power truly shines (pun unintended) is in small-scale, off-grid applications. PV panels with battery storage could meet the power needs of small-to-medium rural dwellings for less cost and labor than building miles of new lines to connect to the grid. Many rural areas of the US (like where I live in southern Oklahoma) only have access to electricity through non-profit RECs (Rural Electric Co-ops), who purchase the power from grid suppliers then put up and maintain the lines themselves.
Instead of trying to make solar power into a large-scale grid source, where it’s a priori unfit for purpose, it ought to be promoted as a grid alternative for rural communities, small-scale farming, or any other remote or low-accessibility area. This would indirectly improve the stability and efficiency of the grid through elimination of unnecessary transmission lines. The energy savings would add up pretty fast.

Reply to  DredNicolson
April 1, 2016 6:09 pm

A long ago colleague of mine lived off grid in eastern Colorado for two years with a one lung diesel engine generator set. Ran 24/7 with monthly maintenance. A lot cheaper and more reliable than wind or solar.

Reply to  Nicholas Schroeder
April 2, 2016 1:32 pm

A neighbor had a small water cooled, NG, Diesel. Had baseboard heating and heated his house and HW with the engine and powered a generator for electricity.

April 1, 2016 5:40 pm

“The Crescent Dunes Solar Thermal Plant near Tonopah, Nevada. It’s been operational since 2013.
http://www.solarreserve.com/en/global-projects/csp/crescent-dunes”
How well does it perform?

Reply to  Retired Kit P
April 1, 2016 5:49 pm

“This page does not seem to exist”…maybe it’s my browser…

urederra
Reply to  J. Philip Peterson
April 2, 2016 2:17 am

http://www.solarreserve.com/en/global-projects/csp/crescent-dunes
he added a quote mark at the end of the link, that is why it did not work.

higley7
April 1, 2016 5:41 pm

The nut to crack is how to get the Sun to shine on the US 24/7. Bill can do it, I’m sure, if he puts his mind to it.
The idea that the Sun is a free power source entices and enamors libtards like a bag of candy to a two year old. They cannot believe that they cannot have it all. The translation of solar input to a usable form is their big problem, and they have no idea how to do that since our planet unfortunately rotates, the Sun goes down, and the winds dies. The vagaries of wind make wind power only an ancillary power source and solar power is predictably variable. The idea that any economy could be based on such unreliable power sources means they those pushing this future have no intention of their being an industrial society in their future. They want to unwind the world to an agrarian, subsistence society.

Reply to  higley7
April 3, 2016 2:47 pm

Solar power satellites. Problem is, given the enormous cost of building stations in geosynchronous orbit, the capital expense would be far too high. Get the cost of access to space down, and that might change.
/Mr Lynn

April 1, 2016 5:45 pm

How much water will evaporate? If it evaporates after being lifted the loss is serious over the Summer.
In Rockford, Illinois we get cold weather. -30C a few times per decade. Frozen water won’t pump or flow.
Even well-built dams leak and there is often loss through leakage on the bottom and sides. Critters will drink tiny amounts but urine will replace much of that. Seals will leak and pipes will fail so we need redundancy to cover repair and replacement. Only part of the capacity can be used or we will kill Delta Smelt and Snail Darters.
Where do we get the water? Rivers? Run-off? How do we move the original load?
The increased area necessary for water loss will be costly.
Before we deal with property improvements land here is over $6,000/acre. Are those downstream of the catch basin moved to prevent flooding from heavy rains or dam failure? Do we construct numerous miles-long bridges or remove roads and railroads? If we build in the Rockies how much new grid do we need? What happens during Spring melt?

601nan
April 1, 2016 5:52 pm

Sun Edison, SUNE, closed 01/04/16 $0.43 (-20.54%) per share; previous close $0.54 per share. http://www.fool.com/quote/nyse/sunedison/sune
“It’s now all but confirmed that SunEdison (NYSE:SUNE), which dubbed itself the biggest renewable energy developer in the world, is going to go bankrupt. This week, its subsidiary TerraForm Global even said there was ‘substantial risk that SunEdison will soon seek bankruptcy protection.’
If that bankruptcy happens, there will be a cascade of repercussions for the industry.”
http://www.fool.com/investing/general/2016/04/01/what-a-sunedison-bankruptcy-could-mean-for-renewab.aspx

jake
April 1, 2016 6:00 pm

The Ivanpah solar cost 2200 M$ price and produces 120 MW, a 18 $/W investment. By way of comparison, another nonpolluting source of electricity, nuclear power plant, the Millstone reactor No. 2 in Connecticut, operating at 880 MW since 1975, cost 0.5 $/W then; Ivanpah is thus 36 times more expensive (inflation excluded).
With about 1000 employees receiving salary and benefits, the annual outlay for that alone is roughly 100 M$. Selling the annual 3.8 EJ at the projected 0.028 $/MJ yields 106 M$. Ouch – only 6 M$ left for other expenses, notably for natural gas whose burning produces 8 % or more of the total output. For comparison again, the Millstone nuclear plant complex employs also about 1000, and its two reactors have been producing 1870 MW actual electrical output. Assuming the same salaries, benefits, and the electricity selling price, the operating expense is 15 times higher at Ivanpah.
Note that the above two outlays are 35 and 15 times higher (not percent higher), and that this huge discrepancy exists in an industry where a difference of a few percent means the difference between success and bankruptcy. The magnitude of the discrepancy hints also at the reason why the “free” solar electricity is so expensive. Who is responsible for stealing from taxpayers to pay for these solar monstrosities?

April 1, 2016 6:52 pm

I’ve been treated to this “alternate energy” crap for 40 years. I’m sick of it. Let’s do my suggestion of dividing the USA at the Mississippi, into TWO countries. One of industry and initiative (I&I), and on of Solar and Socialism. S&S.
We can move all the industrial plants to one side. (Say East of the Ole Miss)and that way the “pollution” will blow to sea. The other side, even as an advantage…clear skies over AZ, CA, NE, CO, etc. And a LOT of winds in the Rockies. Now, don’t forget, the S&S side doesn’t need an Army, Navy, Air Force. They can just NEGOTIATE with everyone, and things will be “honky dory”. There will be no terrorism, as they will find out how they have offended the terrorists, and make amends. The I&I side, however, will continue their (in this case, “our”) polluting industry, “military industrial complex” ways. I&I will eschew the concept of renewables, and instead “squander” their precious resources…and all starve to death! No, wait…what’s happening…Because of the 10 to 100X’s cost factor of the S&S side’s energy, they…are starving. They are at the Mississippi. They are crossing it in rafts, hoping to escape from the devastation on their side. And now will come the REAL test of the I&I side. Will I&I be like (already S&S) Germany, and invite the poor S&S “refugees” into the I&I side, providing them with food, women, shelter and energy? Or will the I&I side be like Russia? And just “bomb the heck” out the S&S side?
Who knows? But it could be the ultimate destiny or down fall of these (formerly) United States.

Ronn Parsley
Reply to  Max Hugoson
April 1, 2016 11:51 pm

I have another idea. Split the country along an east-west axis. Put the I&I’s in the South (ex:Texas) and the S&S’s in the North. Then once we cover enough of the earth with solar collectors, it will change the albido of the earth, causing more solar energy to be reflected back into space. Eventually, this will cause the earth to cool, resulting in another ice age. The glaciers will advance South until they cover the northern half of the US, thus wiping out the S&S’s. Voila! Problem solved!

Carl Chapman
April 1, 2016 6:56 pm

Pumped water storage returns about 60% of the energy that’s put into pumping the water to the higher level. That means you need 10 / 6 kWHrs to get back 1 kWHr. So 2400 MWHr at night requires 2400 * 10/6 = 4000 MWHr of input during the day. That means you need to allow for another 1600 MWHr of daytime production. That would increase the cost of solar plus pumped water storage by about one third.

Reply to  Carl Chapman
April 2, 2016 12:47 am

The 5 GWh pumped storage in Coo (Belgium), good for ~5 hours/day of peak shaving. It has a real yield of about 75% over the past 40 years. Thus somewhat better, be it that still extra solar input is needed for that loss, over the high daytime demand.
The only advantage of solar is that its output is highest during maximum demand, if there is sun…

jake
Reply to  Ferdinand Engelbeen
April 2, 2016 5:51 pm

Max. demand is later in the afternoon, when both the air temp. is highest and people coming from work turn their A/Cs on. The sun, on the other hand, is 1/3 to 1/2 less intensive for fixed panels/mirrors.

JamesD
Reply to  Ferdinand Engelbeen
April 3, 2016 9:26 pm

75%? Don’t believe it. 80% efficiency for the pump, and 95% efficiency for the motor would be good. Add in friction losses for the pipe. Use 80% efficiency for the turbine and 95% for the generator, and again friction for the piping. I think the previously cited 60% is pushing it. You also have the electrical efficiency for the wiring, switchgear, and transformers involve. Don’t know the efficiency, but it’s not 100%.

MarkW
Reply to  Ferdinand Engelbeen
April 4, 2016 1:55 pm

That’s only true for 1/4th of the year.

April 1, 2016 7:07 pm

Doesn t matter which costs more, the so called green extremists
Are pushing for wind and solar, they are claiming fracking is poisoning our water. Along with the agw bull. Proof? They don t need no stinking proof

Grey Lensman
April 1, 2016 7:38 pm

Surely, the pumped storage cannot work. You need the total daytime output to pump and fill the reservoir. Thus the net output at best, is zero.

Steve
Reply to  Grey Lensman
April 1, 2016 8:35 pm

It’s less than zero but you use pumped storage to handle peak loads. The problem in this scenario is that they are using power during the daytime when demand is much higher to fill the reservoir so they can generate power at night. That’s backwards…

Sobey1683
April 1, 2016 8:03 pm

Nat gas is by far the most capital efficient and scalable solution. As for operating costs gas is cheap because it s ubiquitous and easily transported. But this is not relevant to the green lobby..
What is relevant to this group is that the solar facility is constructed. The desired process is as follows:
1: company builds solar plant benefitting from government subsidies and promising strong returns to investors
2: plant fails to achieve operational benchmarks and company goes bankrupt. Taxpayers now finance a permanent debt load;
3: second company acquires plant on deeply discounted cost basis making better returns on the new lower cost base:
4: repeat
If it so happens that a few billion dollars of the capital costs of the bankrupt facility fall on the shoulders of taxpayers in perpetuity via the government subsidy framework, and the company that builds the facility goes bankrupt because of poor economic returns, is an interesting feature of the program because it generates an increasing number of potential users of the welfare system as more and more private capital is destroys.
Eventually, a large fleet of solar facilities is in operation, with attractive variable cost structures. These plants squeeze out the development of other facilities such as natural gas, (which would have rewarded society because they would have generated full cycle profitability to those investors that originally financed them)

Ronn Parsley
Reply to  Sobey1683
April 1, 2016 11:37 pm

To borrow from a late, great US Senator (was it Everett Dirkson?), a Solyndra here, a Solyndra there, and pretty soon you are talking about some real money! lol

TRM
April 1, 2016 8:06 pm

Not trying to nitpick (well maybe) and I’ve been of the opinion that nothing would get a chance against natural gas for several years now but …
“Night time demand equals day time demand”???? Since when? Peak hours are always 3-8 PM or there abouts (some say 4-7PM). Yes the NG still kicks butt.
Why just solar? Solar plus wind plus geothermal would pit all common renewables against NG (and still loses IMHO). They do overlap but are complimentary sometimes (i.e. windy at night).
Why pumped storage? The redux flow batteries are terrain independent and more cost effective (yes NG still kicks butt over it).
Lastly “Average household in US consumes about 900 kWh/month or about 30 kWh/day”. Holy waste a cow Batman. My house (nothing special ~3k Sq Ft, gas water & space heat) uses 10-11 KWh/day. Are people heating their water and air with electricity? That is yet another instance of NG kicking butt.

michael hammer
Reply to  TRM
April 1, 2016 10:52 pm

TRM : night time demand is almost the same as daytime demand in Victoria Australia – I have seen the plots of demand versus time.

Don K
Reply to  TRM
April 2, 2016 1:54 am

Grid-scale geothermal is much less problematic than wind and solar. It isn’t intermittent, and the costs at the best sites are cheaper than coal. The US currently has something over 3GW (equivalent of 3 or 4 nuclear plants) of geothermal on line and could probably expand that by a factor of 10 or 20 although I suspect it’d be a bit costly as we were forced to exploit lower grade resources. Exactly why our “energy planners” are so enthused about wind and solar options that look to be unworkable on a grand scale and mostly ignore geothermal escapes me. It could cause a man to suspect that they are kind of clueless.
Problems? The resources are concentrated in the Western US. Disposal of waste water contaminated with a lot of minerals — some of which you probably don’t want in your drinking water is probably an issue.
A handful of countries — Iceland, El Salvador — actually get a substantial portion of their electricity from geothermal.

richard
Reply to  Don K
April 2, 2016 9:28 am

Exactly why our “energy planners” are so enthused about wind and solar options ?
FOLLOW THE MONEY!!!!

Reply to  TRM
April 2, 2016 8:54 pm

TRM
When you say NG kick butt do mean when your house explodes killing your family?
I prefer an all electric house with a heat pump. Safer and cleaner.

MarkW
Reply to  Retired Kit P
April 4, 2016 1:59 pm

And exactly how often does that happen?
Why not worry about meteorites killing your family? About as likely.

MarkW
Reply to  Retired Kit P
April 4, 2016 1:59 pm

PS: Long before enough gas had leaked to kill your family, you would be able to smell it and get the family out.

Steve
April 1, 2016 8:31 pm

Demand for power is generally much lower at night so you probably don’t need a plant that puts out 200 every hour…you might come out better building the gas plant for base load and building solar for daytime peaks…trying to use solar as a sole source is gonna fail most scenarios just on economics…solar has a place but not as base load supply

John Harmsworth
Reply to  Steve
April 1, 2016 9:00 pm

Bah! Might as well light the solar junk with a gas flame.

dp
April 1, 2016 9:35 pm

Assume we’re all clear on the fact that pumped storage, not available every energy is needed, is a net consumer of energy, and is good for a limited number of hours of useful energy. The hope is – THE HOPE IS, that solar will be able to recharge the storage else it will fall on backup power to do that and keep the grid alive. To be honest I doubt the fossil fuel plant was designed to support both a live load and to recharge backup storage. I do know that I cannot think of a less efficient way to illuminate the world and to keep hospitals, factories, and Facebook on line through a prolonged cloudy spell. Humans are capable of great things but also incredible and perplexing folly. This is an example of the latter.

michael hammer
April 1, 2016 10:50 pm

Two things strike me about this whole debate. Firstly that new technology is the only solution to the sort of problem (be it real or illusionary) like CAGW. Secondly that while proponents of the scare always extrapolate on the basis of no new technology decades into the future they are invariably wrong. If for no other reason than the very presence of the problem (if it is a problem) stimulates people to look for radical new solutions.
While I know it is currently fashionable to consider cold fusion as fraudulent schlock science I think it might well be worth reviewing recent events in the field before being too dismissive. How many credible researchers reporting positive outcomes does it take before people start to take notice (there are now quite few)? I note that Rossi has supposedly had a 1 MW plant running continuously in a monitored customer site for 1 year (ending in February 2016) and an independent analysis of the performance is due to be released this month (April). I also note he now claims to have prototype reactors that deliver electricity without resort to a thermal cycle. He has been incredibly persistent over a long period with no visible payoff for a supposed fraudster and there are new researchers claiming replication almost every day.
Question; how will the entire issue of CAGW (whether right or wrong) be viewed in 10 years if the cold fusion researchers turn out to have been right all along and by then cold fusion is an established new energy source that in hindsight was staring us in the face for 30 years?

richard
Reply to  michael hammer
April 2, 2016 9:56 am

I compare cold fusion to early work done with transistors. I remember when Bell Labs announced
the germanium transistor.It took a while for the research learned enough to produce the silicon
transistor. I still have a 2N107, device, (no 2 alike!). There may be something to doping the
palladium crystal matrix, or adding an independent neutron source, to the mix. I am all for a
Manhattan project on cold fusion, Good outcome or bad, it is worth knowing.. I read about Rossi,
and am skeptical; in his favor, he didn’t claim 25X excess heat, only 3X. . and he is using nickel and
lithium hydride. ( One hydrogen bomb used lithium hydride as the deuterium source). Hell, it
might work!!

Ronn Parsley
April 1, 2016 11:04 pm

Has anyone looked at the cost of the water for the pumped storage system? Evaporation in Arizona will be significant. Is the cost and availability of the replacement water a significant cost, or can we ignore it?

pat
April 1, 2016 11:18 pm

the plan is to dump what is unaffordable in the developed world on to the developing world. nice.
***when Hank Poulson talks of countries leapfrogging fossil fuels and “moral” imperatives, developing countries should beware:
31 Mar: Reuters Blog: Time to harness power of green trade
By Henry Paulson
(The author is a Reuters Breakingviews columnist. The opinions expressed are his own)
A green financing agenda was initiated at the G20 talks in Shanghai last month. The G20 Trade and Investment Working Group meeting in early April in Nanjing would be a good occasion to push toward a breakthrough in buying and selling green products more easily around the world.
Environmental goods are among the most obvious to open up to freer global commerce. They have tangible economic and social benefits for all countries, ***particularly those that may leapfrog traditional fossil fuels as part of their Paris climate commitments…
It defies economic – and environmental – logic for governments to deprive their own citizens from accessing the best, most effective clean tech products and services at the lowest cost.
Eliminating tariffs would remove one of the main stumbling blocks to adopting such technologies…
The good news, though, is that there is already a vast array of environmental technologies that can perform many of the tasks required and which are suitable for emerging markets…
Making green technologies affordable is a global responsibility, ***a moral imperative and makes solid economic sense…
http://blogs.reuters.com/breakingviews/2016/03/31/time-to-harness-power-of-green-trade/

Ronn Parsley
April 1, 2016 11:30 pm

While I am a mechanical.engineer, I am just a neophyte in this particular field. So forgive me if my comment does not make sense. It seems to me that solar power generation makes the most economic sense when used for daytime peak power generation. That is, to provide power for daytime loads such as air conditioning, office uses, industrial uses, etc. Conversely, solar is the least cost effective for meeting nighttime power requirements.
So wouldn’t it make more sense for the power company considering the solar power plant to partner with another power company with a coal or natural gas fired plant. These plants are usually sized for peak daytime loads, and thus would have excess power available at night that could be sold to another power company.
I guess what I am really asking is if the basic premise of the comparison in the article is correct. Wouldn’t it make more sense to compare the pure gas turbine option to an option that would utilize solar daytime and purchased power at night?
Here is another way of looking at it. Right now, our country has gigawatts (terawatts?) of excess nightime power generation capacity. Couldn’t some of that be utilized in lieu of building energy storage systems for solar power plants, at least for a few decades? And wouldn’t it be cheaper to upgrade our power grids so that we can better move nighttime power around, than it would be to build gigawatt-hours of energy storage systems?
Your thoughts would be appreciated.

Don K
Reply to  Ronn Parsley
April 2, 2016 2:09 am

Ronn. I think you’re basically right. Matching sources to loads would seem to make sense. And I suspect that if it were done, it would turn out that intermittent renewables could power a fair amount of stuff at reasonable cost. Trouble seems to be that it’s hard to do and people aren’t used to thinking that way. And energy policy decisions are made either on the basis of perceived economic realities or of wishful thinking with no middle ground.
BTW, Niagara-Mohawk runs apparently runs its generators at Niagara Falls 24-7 and uses the nighttime power to operate a couple of pumped storage facilities used to cover peak daytime demand. That works economically, but I’m far from convinced that it makes all that much sense compared to part time generators working off the 100 meter drop from Lake Erie to Lake Ontario.

Gamecock
Reply to  Ronn Parsley
April 2, 2016 5:02 am

A couple of thoughts, Ronn.
Power companies are very much interested in balancing demand. They have to provide capacity to meet peak demand, and capacity means fixed cost. They wish more people worked at night.
Grid scale solar power is nonsense. It is political, not business. Power companies do what they are compelled to do by government. I.e., they aren’t going to partner with a solar company unless they are made to.

RPT
Reply to  Ronn Parsley
April 2, 2016 6:15 am

This is exactly what is done in countries like Germany and Denmark. Ballancing the grids is one of the major challenges with regards to wind and solar, as is getting rid of excess capacity; Denmark is paid pennies for their export of excess power to Norway and Sweden, Germany actually pays the Swiss to take excess power.
Still Germany and Denmark have the most expensive power in Europe!

moray watson
Reply to  Ronn Parsley
April 3, 2016 9:38 am

You can use the gas plant to provide uninterrupted power without having to “back it up” with a solar array. However you cannot rely on the solar array to provide uninterrupted power, so it MUST be backed up the gas plant. Therefore, the solar array is redundant.

April 1, 2016 11:53 pm

What about improving energy efficiency and reducing energy waste? Not all available improvements have been done yet. For example, LED indicator lights in most modems, cable boxes, and a lot of other electronic devices have chemistry technology from around 1980. More modern LEDs costing only a couple cents more can do the same job with about 10% as much power, including power dissipated in associated dropping resistors and driving/switching electronics.
Many homes have room for thermal insulation improvements.
I think that using available technology to reduce electric energy consumption will reduce costs for nearly everybody. The LED indicator light improvement alone can likely spare USA electricity customers the cost of a power plant, by eliminating a power plant from the nationwide power plant construction schedule.
– Don

Reply to  Donald.L. Klipstein
April 2, 2016 12:24 am

This is the same misleading defence provided by UK Ministers and Green activists to sell renewables. Energy efficiency measures save money for all power systems and not just renewables. It follows that the best route is to have energy efficiencies and the cheapest power available, allowing even for Stern’s and others’ present day estimates of the costs of future accommodation of any disruption, damage or other consequences attributable to CO2 emissions. Renewables will still never be competitive or affordable!

jake
Reply to  macawber
April 2, 2016 6:07 pm

Improving efficiency for lights to save energy has been proven a myth. With more efficient light, people leave them on more of them and longer, as I found in my own household after reading about this observation and paying attention. Also, I recollect an experiment in a country were they made make everybody turn all lights in the home for five minutes at a coordinated time. I doubt that they got 100 % participation, but they claimed close to it. The power stations did not register any lessening or increase in the demand for that five-minute interval. In other words, the household light demand is negligible (non-measurable) on the scale of the total.

Don K
Reply to  Donald.L. Klipstein
April 2, 2016 2:23 am

> Many homes have room for thermal insulation improvements.
They do, but I think that the easy fruit has largely been plucked from that tree. e.g. I can put more insulation in my attic fairly easily, but there’s not much I can do about the walls. They have insulation — but they should have been built thicker with more insulation. And not everyone has an attic they can stuff with fiberglass.
As a national policy, completely rebuilding the US building stock to maximize energy efficiency might well be a good idea. (Oil won’t stay cheap for long. And gas won’t stay as cheap as it is. And green electricity is probably not going to be cheap at all no matter what the President’s Energy “Plan” says).
But rebuilding most everything is an incredibly costly concept. And that I doubt we know how to build energy efficient structures that are livable. What’ll work in North Dakota will likely be a mold infested disaster in Florida and the best house for Seattle might well be uninhabitable much of the year in Austin.

MarkW
Reply to  Don K
April 4, 2016 2:11 pm

It costs the same amount to increase your attic insulation from 30 to 50, as it does to increase it from 50 to 70. Yet the amount of energy reduction is only about half as much.
Remember when adding insulation in the attic to not push the insulation up against the roof, you need to leave space for ventilation.

MarkW
Reply to  Donald.L. Klipstein
April 4, 2016 2:08 pm

LED indicator lights use less than 1% of the power consumed by your average electronic device.
The electronic devices probably use less than 10% of the total power consumed in your average house.
PS: Even LED’s from the 80’s, had efficiencies in the 80% range. Exactly how you get LED’s that are 10 times more efficient than that, I have no idea.
You must be talking about old style incandescent indicators, which companies stopped using decades ago.
Heck, even the neon indicators were more efficient than that.
Comparing old LEDs with newer ones, the change in efficiency is more like 80% to 90% efficient.
Replacing incandescent bulbs with LED bulbs might reduce total energy usage in the US by about 1%.

April 2, 2016 12:01 am

I have been trying to educate the local Green activists and politician supporters of renewable energy to understand this normal, very basic, but essential “like for life” total life cycle CAPEX/OPEX cost comparison investment analysis for many years. The same applies to a comparison of Wind Turbines with Gas Turbine Standby’s versus Gas Turbines alone as base load units. You also have to add in the necessary massive additional cost of enhanced and additional Power Transmission lines needed to connect the remote WT’s and SP’s to areas of actual Power Demand.
The result of this proper professional engineering investment analysis is a no brainer: the WT/GT/Power Line system is, and always will be, massively more expensive regardless of how much money is spent on R&D in an attempt to improve on the inbuilt engineering inefficiencies within this Total System.
In addition, in the UK, we now have the ridiculous and obscene situation where WT power is given priority use and subsidies and guaranteed minimum prices are paid to the WT supplier/operator to make their product commercially viable, and then subsidies are then needed by the GT standby supplier operator to cover the increased costs of supplying and operating GT’s to meet every varying shortfall power demands and operating way off optimum efficiency loading.
You just couldn’t dream up a more idiotic and crazy situation. Yet the politicians here still wonder why our steel industry and many other industries are losing the battle with foreign competitors, exports are failing and why our power costs, affecting all our other costs, keep rising.
I despair – we desperately need scientists and professional engineers in Government!

April 2, 2016 1:06 am

One big weakness with this post is that it assumes that the solar power station has to deliver electricity continuously.
In reality no power station deliver electricity all the time, even gas, coal and nuclear are down for maintenance from time to time. The important thing is that the power grid as a whole deliver continuously, not that each plant does that.
Solar power has a unique benefit in hot areas because it delivers most power when the demand is highest, namely in daytime on hot summer days when all AC goes for full.
That reduces the need for other utilities to cover the peak demand
/Jan

Steve T
Reply to  Jan Kjetil Andersen
April 2, 2016 4:56 am

One big weakness with this post is that it assumes that the solar power station has to deliver electricity continuously.
**********************************************************************************************************************
Not necessarily, but delivering power RELIABLY is a requirement. With reliable power generation, maintenance can be planned across the grid with a small contingency. Most maintenance is planned well in advance. This is how the grid operated before the “renewables fad existed”.
Why would anyone consider paying the exorbitant capital costs involved in wind and solar installations for use only at peak times when there is a random chance that it may be unavailable and would need backup.. It would be much cheaper and more dependable to build an extra gas powered generator to handle this requirement.
“Solar power has a unique benefit in hot areas because it delivers most power when
the demand is highest, namely in daytime on hot summer days when all AC goes for full.”
This is the first time I have come across the argument of a “unique benefit” for solar that it delivers most power when it is working!! Surely all the power generation methods produce “most power” when they are working. That is, at peak times (when demand is high) – they can also carry on producing that power for as long as the grid operator wants – unlike solar and wind.

MarkW
Reply to  Jan Kjetil Andersen
April 4, 2016 2:13 pm

The claim is that we can go 100% solar and wind. So they had better be able to produce power 100% of the time.