Guest Post by Willis Eschenbach
I got to thinking again about the thunderstorms, and how much heat they remove from the surface by means of evaporation. We have good data on this from the Tropical Rainfall Measuring Mission (TRMM) satellites. Here is the distribution and strength of rainfall, and thus evaporation, around the middle of the planet.
Figure 1. Evaporation in W/m2 as shown by rainfall data from the TRMM. It takes about 80 watt-years of energy to evaporate a cubic metre of water, so a metre of rainfall per year is equivalent to an average surface cooling of 80 watts per square metre. The TRMM satellite only covers from 40° North to 40° South.
I have held for some time that the global surface temperature is restricted to a fairly narrow region (e.g. ± 0.3°C over the 20th century) by the action of emergent phenomena (see references at the end of the post). Chief among these emergent phenomena are tropical thunderstorms. My hypothesis says that when the tropical surface temperature goes over a certain threshold, that thunderstorms emerge to put a firm cap on the temperature by cooling the surface.
Thunderstorms cool the surface in a number of ways, but the main cooling method uses the exact same mechanism used by the refrigerators that keep our food cold. Thunderstorms use a standard evaporation/condensation cycle. In one part of the cycle the working fluid evaporates, cooling the surroundings. In another part of the cycle in another location, the working fluid condenses. For a refrigerator, the working fluid used to be some form of Freon, nowadays it’s some other fluid. For thunderstorms, the working fluid is water. When it evaporates at the surface, it cools the local area, and the heat is moved from the surface to the clouds and on upwards.
Now, for my hypothesis to be correct, the number and intensity of thunderstorms needs to increase quickly as temperatures go above a certain temperature threshold. In addition, the change in the resulting evaporation needs to be quite large in order to successfully control the system.
With that in mind, I made a scatterplot of sea surface temperature versus thunderstorm evaporative cooling. Figure 2 shows that result.
Figure 2. Scatterplot of 1° x 1° gridcell annual average ocean-only thunderstorm evaporative cooling on the vertical axis, in watts per square metre (W/m2) versus 1° x 1° gridcell annual average sea surface temperature on the horizontal axis.
As you can see, the thunderstorms are clearly functioning to cap the temperature. When the ocean surface gets hot, thunderstorms form and exert immense cooling power. There are some points worth noting about Figure 2.
First, the red area shows the tropics. This part of the earth is important because it is not only about 40% of the planet’s surface. In addition, just over half of all the energy absorbed by the surface of the earth is absorbed in the tropical regions of the planet. As a result, the regulation of this large amount of incoming energy by albedo control is crucial to the overall energy balance of the planet.
Next, these are annual averages. However, they are also daily averages. But during the day/night cycle in the tropics, the evaporation is by no means constant. At night the evaporation is small, some tens of watts per square metre. During the day, on the other hand, evaporation is quite large, hundreds of watts per square metre, because the strong tropical sunshine evaporates the water directly, plus the thunderstorms are largely a daytime phenomenon. This means that the peak hourly thunderstorm evaporative cooling is on the order of twice the average values shown above, up to about 600 W/m2.
Next, the cooling effect of the thunderstorms is not applied blindly or randomly. The thunderstorms only form as and when the local area is above the temperature threshold. This means that the cooling effect, which can be up to 500-600 w/m2, is always located where it is most needed, on the local hotspots.
Finally, here is the most important consideration. The timing and the amount of thunderstorms are NOT a function of greenhouse gas forcing, or of solar forcing, or of volcanic forcing, or of any other kind of forcing. As Figure 2 shows, they are a function of temperature. As long as the surface-atmosphere temperature difference is large enough, thunderstorms will form even at night when the radiative forcing is quite small.
This means that their effect will be to maintain the same temperature, regardless of reasonable-sized fluctuations in the amount of forcing. Clouds don’t know about forcing, they form and disappear based on local conditions.
And this is simply one more piece of observational support for my hypothesis that emergent phenomena regulate the temperature and maintain it within a fairly narrow range.
My best to everyone. Here in California, we have about 150% of the usual snowpack in the Sierra Nevada mountains. When it was drought, it was said to be the result of global warming … and of course, now that there is heavy snow, that is also said to be the result of global warming.
Buckle your seatbelts and keep your hands inside the vehicle, it’s gonna be a long, uphill struggle to get rid of this madness …
My best to all,
w.
My Usual Request: If you disagree with me or anyone, please quote the exact words you disagree with. I can defend my own words. I cannot defend someone’s interpretation of my words.
My Other Request: If you think that e.g. I’m using the wrong method on the wrong dataset, please educate me and others by demonstrating the proper use of the right method on the right dataset. Simply claiming I’m wrong doesn’t advance the discussion.
Some Of My Previous Posts On The Subject:
Cooling and Warming, Clouds and Thunderstorms
Data:
TRMM Data is here, see the bottom of the page for the NetCDF file.
CERES Data is here, I used the EBAF dataset.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Willis a nice article.
You may be interested in this NOAA FAQ site. This part looks at energy released by hurricanes per day. A hurricane is after all a bunch of thunderstorms working together and hurricanes only occur when the SSTs are sufficiently high (85F or more) so they fit very well with your hypothesis.
This FAQ states interalia:
“It turns out that the vast majority of the heat released in the condensation process is used to cause rising motions in the thunderstorms and only a small portion drives the storm’s horizontal winds.
Method 1) – Total energy released through cloud/rain formation:
An average hurricane produces 1.5 cm/day (0.6 inches/day) of rain inside a circle of radius 665 km (360 n.mi) (Gray 1981). (More rain falls in the inner portion of hurricane around the eyewall, less in the outer rainbands.) Converting this to a volume of rain gives 2.1 x 1016 cm3/day. A cubic cm of rain weighs 1 gm. Using the latent heat of condensation, this amount of rain produced gives
5.2 x 1019 Joules/day or
6.0 x 1014 Watts.
This is equivalent to 200 times the world-wide electrical generating capacity – an incredible amount of energy produced!”
http://www.aoml.noaa.gov/hrd/tcfaq/D7.html
Note: that is 200 times the world wide electrical generating capacity per hurricane day
I often am amazed by the hubris of humanity thinking that they are all powerful. We are dwarfed by nature. Ants and Termites produce far more CO2 than humans. Not that CO2 matters.
Interesting, to me anyway, is that, while thunderstorns can and do form on the equator, hurricanes do not, due to lack of so-called Coriolis forces. No tropical cyclones have been observed to form within five degrees latitude of the equator, but once formed they can move into this zone. I might be wrong, but last I read, none had been seen to cross the equator however, at least not in the Atlantic or Pacific. Not sure about the Indian Ocean.
But what about all that most powerful of GHGs, water vapor, being released into the atmosphere at low altitudes via evaporation following the storm?
Rate of evaporation is not only a function of fluid temperature, but it is also proportional to surface area of the interface. As long as there is no storm, this area is pretty small (it is the sea surface). However, once a storm is started, high winds produce a prodigious amount of sea spray, which increases interface area by several orders of magnitude, so the entire thing becomes a self propelling engine. Until sea surface cools down sufficiently, of course. Anyway, there is this hysteresis, which should also be taken into account.
Willis-
Another of your excellent postings. Continuing thanks.
There is one thing not touched on here, which I have never seen anywhere else either. That is the amount of energy moved upward worldwide compared with the same for radiation. Do you have such a comparison?
Ian M
Worldwide, the surface losses through sensible and latent heat loss about about 110 W/m2, and the surface losses from radiation are about 400 W/m2.
w.
Willis,
Here’s something else to ponder. Take a surface of sea, say a square foot by an inch deep. The surface area of that water is 1 ft^2. Now evaporate it and condense it at 50,000 ft. What is the surface area of the water now? It is several orders of magnitude higher. Therefore you have much more surface area to radiate heat to outer space. This is the piece that the climate alarmists don’t understand.
JamesD January 8, 2016 at 4:41 pm
Thanks, James. Mmmm … there is a problem with your theory, which is that most of the condensed water is in the middle of the cloud, so it cannot radiate anywhere.
w.
The graph reminds me of a fat hockey stick. 🙂
I worked outside for like 20 years in the Chicago area, and as a bit of a weather geek, I noticed that if the cumulus started getting puffy by say 10 or 11 in the morning, there was a good chance of thunderstorms later in the day.
“plus the thunderstorms are largely a daytime phenomenon. ”
Not necessarily.
“Over the tropical and southern oceans, showery precipitation tends to peak from midnight to 0400 LST. Maritime thunderstorms occur most frequently around midnight.”
From http://www.rengy.org/uploadfile/file/中文版/资源/文献/2000/Global%20precipitation%20and%20thunderstorm%20frequencies%20Part%20II%20diurnal%20variations%20.pdf
Title (if link doesn’t work): Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations
Thanks, Eric. From your link:
All the best,
w.
An opportune time for a reprise, an encore post.
First off a discussion of units.
A watt is a metric unit of power, energy over time, not energy per se. The metric energy unit is the joule, English energy unit is the Btu. A watt is 3.412 Btu per English hour or 3.600 kilojoule per metric hour.
In 24 hours (sun shining, what happens at night?) ToA power of 340 W/m^2 will deliver 1.43 E19 Btu to a spherical surface with a radius of 6,386 km. The CO2 RF of 2 W/m^2 will deliver 8.39 E16 Btu, 0.59% of the ToA.
At 950 Btu/lb of energy, evaporating 0.74 inches of the ocean’s surface would absorb the entire ToA, evaporating 0.0044 inches of the ocean’s surface would absorb the evil unbalancing CO2 RF.
More clouds. Big deal.
ToA spherical surface area, m^2……………5.125.E+14
W = 3.412 Btu/h……………………………………3.412.E+00
ToA, 340 W/m^2, Btu/24 h……………………1.43E+19
CO2 RF, 2 W/m^2, Btu/24 h…………………..8.39E+16
Ocean surface , m^2………………………………3.619E+14
m^2 = 10.764 ft^2………………………………….1.076E+01
Ocean surface, ft^2………………………………..3.895E+15
Water density, lb/ft^3………………………….62.4
Lb of water in 1 foot of ocean………………..2.431E+17
Evaporation, Btu/lb……………………………950.0
Amount of ocean evaporation
Feet needed to absorb ToA…………………..0.062
Inches needed to absorb ToA………………..0.74
Feet needed to absorb CO2 RF………………0.0004
Inches needed to absorb CO2 RF…………..0.0044
Don’t like my work? Think it’s wrong or irrelevant? At least I took a shot at doing it. Where’s your work?
Fun-duh-mentals.
Nicholas Schroeder January 8, 2016 at 6:54 pm
I don’t have a clue about the purpose of your work, or what it is supposed to do show. More than anything, however, I don’t have a clue who your comment is aimed at …
w.
Willis,
I’m glad someone finally started talking about the verticle transport of latent heat.
The point that everybody is missing is that the AGW models don’t factor this in. They only look at convection of sensible heat. This is a fatal error.
Also, ponder this: According to AGW enthusiasts, if there is more CO2 in the lower troposphere then more infrared radiation is reflected back to the surface. That means more evaporation. More important, it means less infrared being absorbed by water vapor above and therefore a cooler upper troposphere. That means more clouds. More clouds means higher albedo and less sunlight reaching the surface. That means cooling. Therefore CO2 causes global cooling.
If that isn’t enough, the increased CO2 below actually creates a reverse greenhouse effect by reflecting the infrared radiation coming down from above back out towards space. Oops. Nobody thought about the fact that the “greenhouse effect” is a two edged sword.
CARBON DIOXIDE CAUSES GLOBAL COOLING!
I sent Anthony a paper on this a few days ago. Ask him about it. Somebody needs to take the ball and run with it.
CM January 8, 2016 at 7:02 pm
Thanks for the thoughtful reply Willis.
You misunderstand my claim about the models. The models try to account for convection of sensible heat, but they don’t factor in the verticle movement of latent heat – from evaporation at the surface to condensation at higher altitudes. I’ve found no place in the models that accounts for gas-liquid phase transition or convection of latent heat. Unless they started doing it recently I don’t believe it’s there.
This ties in with your second critique about reflection. The conventional wisdom says that infrared-absorbtive gas in the atmosphere absorbs and re-emits infrared. Half goes up and out and half goes back to the surface. True or not, that’s the fundamental basis of the so-called greenhouse effect. I used “reflect” as a shortcut for the sake of brevity because reflection versus absorbtion-reemission is irrelevent to my argument.
Think of the gas as the “roof” of the greenhouse, If you move latent heat (and sensible heat, for that matter) from the surface to higher elevations then you have partially or completely taken the heat above the roof. The conventional wisdom still applies – the gas layer forms a barrier in the downward direction in the same manner as it does in the upward direction. Presumably half goes one way and half goes the other way. It makes no difference which way is up or which way is down. Insulation generally operates in both directions. That’s a fact.
There is a more subtle mechanism at work here that is independent of convection. There is only a certain quantity of infrared being emitted at the surface. If a molecule of CO2 absorbs a fraction of that radiation then a molecule of water vapor is not absorbing it. Ignoring all other mechanisms, more CO2 at lower levels will mean less infrared reaching the water vapor at higher levels. Think of it as lowering the roof or adding more insulation. That means more condensation and more cloud formation above.
Think about the purported cooling effect of increased cosmic radiation causing cloud formation in the upper atmosphere. We’re told it has an overall cooling effect.
Consider this in simple terms. There is a tremendous amount of latent heat being moved from below the insulation (“greenhouse gases”) to above the insulation. That heat is now deterred from returning to the surface. Additionally, the cooling above the insulation causes more cloud formation.
Let’s try it another way. CO2 is a nifty cloud maker. It traps heat over the oceans around the equator and pumps clouds out to the upper latitudes. It might (maybe) cause some surface warming at the equator but it might cause cooling everywhere else.
The claim that more CO2 will actually cool the planet is deliberately off the rails. The point is this: It’s a lot more credible than the idea that a tiny bit more CO2 amongst a lot of water vapor can cause warming. It considers important physical mechanisms that have not been considered and it is more consistent with the known facts. Whether these mechanisms merely reduce warming or cause outright cooling is beside the point.
If you let go of the presumption that CO2 must cause warming then this doesn’t seem so crazy. I say the two-phase nature of water is a much more powerful mechanism that a little CO2 (I think you do too). If a little cosmic radiation can cause cooling then why can’t a little CO2? We can’t let ourselves get caught up in their groupthink.
The AGW conjecture is dying anyway but wouldn’t it be nice to have a better counterargument? Let’s at least make them account for these mechanisms. Since you’re already going down this road you might want to take a closer look.
Well there is this article at Judith Curry’s blog:
http://onlinelibrary.wiley.com/doi/10.1002/2015GL066749/full
“How increasing CO2 leads to an increased negative greenhouse effect in Antarctica”
Of course Antarctica is not the globe, but you may find it interesting.
“The point that everybody is missing is that the AGW models don’t factor this in. They only look at convection of sensible heat. This is a fatal error.”
Of course they do!
It’s a MASSIVE transport of heat from the surface aloft.
Fundamental to the working of the climate system.
See my response to Gloateus.
And Google it there are pages of references to it being so.
Last time I looked, the literature wasn’t talking about vertical transport of latent heat. Fiddling with parameters is just guessing.
Regardless, convection and latent heat transport are two different things. You can’t assume that you can Supersize the convection parameter to account for latent heat. One really good reason off the top of my head is that there is massive poleward transport of latent heat. That has nothing to do with convection. Sorry.
Also, the change in latent heat transport with increased CO2 cannot be assumed to be the same as the change in convection. There may be a different level of feedback.
Therefore, I’m quite certain that they aren’t modeling latent heat. Shortcuts don’t count. You might want to look for some primary references on this if you still disagree.
Either way, the models are pathetic. I looked at them a couple years back and was shocked by the crudeness and downright vulgarity of it all. They are little toys for little boys. Those models will never, ever, ever be right because they don’t accurately model the thing they are trying to model. They need to be reconceptualized. I used to be a programmer and I’ve done a lot of systems analysis so I know that of which I speak. Those guys should be hoisted on their parameters.
IPCC AR5 gave clouds a -20 W/m^2 RF.
Willis
Are you going to update your cloud thermostat paper, to include all of these developments?
http://www.friendsofscience.org/assets/documents/E&E_Thunderstorm_Hypothesis_Eschenbach.pdf
R
OK, the twit is erased, we can rid of that now !!
From Held: http://www.gfdl.noaa.gov/blog/isaac-held/2015/09/09/62-poleward-atmospheric-energy-transport/#more-9254
A warming atmosphere typically results in larger horizontal moisture transports. In addition to the implications for the hydrological cycle and oceanic salinity discussed in previous posts, this increased moisture transport also has implications for energy transport. If energy is used to evaporate water at point A and the vapor is transported to point B where it condenses, releasing the heat of condensation, energy has been transported from A to B. This latent heat transport is a large component of the total atmospheric energy transport. Outside of the tropics, eddies are mixing water vapor downgradient, resulting in a poleward transport. Close to the equator, the Hadley circulation dominates, with its equatorward flow near the surface that carries water vapor from the subtropics to the tropical rain belts (the compensating poleward flow near the tropopause carries very little water vapor in comparison).
Held speaks about the ratio between horisontal an vertical energy trensport. The vertial is very little compared to the horisontal. As I understand some of the comments thunderstorms modify this by increasing heat upwards. And that this can go to latitudes that give more radiation to space. I think it is very ineresting to see the “thermostat” as a result of both vertical and horisontal motion of air and moisture.
Correction: And that this can go to altitudes that give more radiation to space.
Willis
I have a couple of questions for you arising out of various statements quoted below:
We live on a water world, and understanding the water cycle is the key to understanding the planet’s climate, but I do not understand the above assumption. As I have previously mentioned to you, energy absorbed in one part of the system re-emerges in a different part of the system because of oceanic and atmospheric currents, and of course, not all energy is absorbed at the surface, and some of the energy absorbed say in the 20cm to 5 m depth of the ocean is mixed vertically downwards.
Fisrt, If you look at Fig1 (and if I understand matters correctly), are you really saying that there is no evaporation in the dark blue areas, say off the East Coast of Africa, or off the West Coast of Australia? The Figure portrays that much of the Indian Ocean (vast areas of which are particularly warm) has no evaporation!
You also state:
I do not know how that approximation/rule of thumb has been calculated, but (if my maths is correct), given that the specific heat of water (which is 4.186 Joule/gram °C), that means that it requires some 293.02 Joules of energy to heat 1 gram of water by 70 °C (ie., from about 30 °C to 100 °C).
Now then due to the omnidirectional nature of DWLWIR approximately some 60 to 70% of all DWLWIR is fully absorbed in just 3 microns of the ocean. This is a volume of just 0.000003 cubic metres and is a mass of some 3 grams. According to K & T, the global average DWLWIR is some 324 W/m^2, and ignoring the fact that in the tropical region DWLWIR will be considerably higher than the global average, there is approximately some 226 W/m^2 (ie., 324 x 70%) or 226 Joule Seconds being fully absorbed in just 3 microns. Thus, it would take just 1 second to entirely evaporate the 3 micron layer (in which about 60 to 70% of all DWLWIR is fully absorbed), and this means that if DWLWIR possesses sensible energy and is capable of performing sensible work in the environ in which it finds itself, the oceans would boil off from the top down, and would no longer remain given that they have received this energy for the best part of some 4.5 billion years, unless the energy that is absorbed in the top 3 microns can be sequestered to depth and hence diluted and dissipated by volume at sufficient speed to prevent this energy from boiling off the top microns of the oceans. This leads on to my next question.
Second, the question is what physical processes operate to mix this energy and sequester it to depth at sufficient rate to prevent this boil off?
In the past, you have mentioned processes such as ocean overturning, the action of the wind, waves and swell. My response to that is that these are all slow mechanical processes, and do not operate 24/7 365 days of the year.
For example, ocean overturning is a diurnal event, and therefore can at best only operate for half the day. Further, there may be no equivalence in some large inland seas, lakes such as the Great lakes, the Dead Sea, the Sea of Azov etc.
The action of wind, waves and swell cannot operate effectively when weather conditions are in the order of BF2 when there is simply insufficient wind to break surface tension, and to cause waves etc to carry out any mixing.
When we last discussed this (before Christmas), I mentioned that I was overlooking the Mediterranean and it was as still as a millpond with not a ripple in sight. The local weather station suggested that the prevailing wind speed was 1 mph, so one can see why there was no mixing by this slow physical process. I asked you why the Med was not boiling off from the top down. Again, today, similar conditions are being encountered although it is said to be a little windier at 5 mph. This is midway in BF2, ie., a light breeze and according to the BF scale, there should be “small wavelets, crests of glassy appearance, not breaking”. Where I am the trees are not rustling at all, and one cannot feel any breeze on the skin even if licked, and I would estimate that the local conditions are more like BF1 (I have 40 years plus of sailing experience), so I would again enquire why is the Med not boiling off from the top down as we correspond?
All I want to know is what physical process can on a 356 24/7 basis sequester the DWLWIR being absorbed in the top few microns of the oceans down to depth (and hence dilute and dissipate that energy by volume) with sufficient rate so as to prevent that energy from simply boiling off the top microns?
I do hope this time to receive an answer to the questions posed.
@richard verney:
“If you look at Fig1 (and if I understand matters correctly), are you really saying that there is no evaporation in the dark blue areas, say off the East Coast of Africa, or off the West Coast of Australia? The Figure portrays that much of the Indian Ocean (vast areas of which are particularly warm) has no evaporation!”
Not so. Those are area where the evaporation results in zero effective cooling, as expressed in W/m^2. It does NOT say there is no evaporation. Having been to Bahrain, Kuwait, etc., I can tell you this jibes with what I’ve personally experienced; nighttime fog at 30+C air temp is a freaky thing.
“Thus, it would take just 1 second to entirely evaporate the 3 micron layer (in which about 60 to 70% of all DWLWIR is fully absorbed), and this means that if DWLWIR possesses sensible energy and is capable of performing sensible work in the environ in which it finds itself, the oceans would boil off from the top down, and would no longer remain…”
If I’m understanding you correctly, you estimate that the 3 micron layer amasses about 3 grams worldwide. Given that, you then assume that the evaporation of 3g/sec from the oceans would be enough to evaporate them entirely, given geologic timescales.
This seems a reasonable conclusion until we remember that there are a number of 24/7/365 processes which add water BACK to the oceans at the same time this evaporation is taking place. If it were not so, the Mediterranean (at least) certainly would not exist, given that it seems to lose a lot more water to evaporation that it gets back via rainfall alone — as you have eloquently pointed out via personal experience & observation.
Thus, just as it makes sense to you (as it does me) that there would be much more energy available for evaporation at the tropics than at the poles, so too it makes sense to me that is there quite a bit more rainfall/precipitation in general in the tropics than at the poles. I’d be willing to bet the two phenomena nearly cancel, with other water cycle processes making up what would otherwise be a measurable oceanic deficit.
Thanks your clarification of fig !. That makes more sense.
As regards my 3 gram figure, this is 1m x 1 m x 3 microns, ie., it is the 3 micron wafer of a 1 metre by 1 metre square area of the ocean which square receives the 324 W/m^2 in the K&T energy budget cartoon. I use 3 micron wafer since about 60 to 70% of DWLWIR is fully absorbed in that wafer.
As a matter of vertical penetration 50% of LWIR is absorbed in 3 microns, but since DWLWIR is omni-directional with a large component having a grazing angle of say 25%or less, it follows that somewhere between 60 to 70% of DWLWIR is fully absorbed in a vertical slice 3 microns thick.
Richard:
The energy needed to evaporate a g of water from a 30 Deg C ocean is 2501 J minus (30 degrees x 2.44 J). This subtraction accounts for the extra energy it takes to directly evaporate the water without heating it up to 100 C first (which is what happens).
So it is 2,428 J/g or 2.4 GJ per cubic metre which is 77 Watt-years.
324 Watts average DWLWIR is enough to evaporate 324/2428 g per second = 0.1334 cc or 11.53 litres per day. That is a depth of 11.53 mm per day, presumably in the tropics.
The calculation is not much help because the annual average evaporation from the entire ocean is nothing like that much. But that is the calculation you wanted.
Richard Verney “…DWLWIR…”
IMHO (BSME, PE, 35+ years in power gen) whether conduction, convection or radiation heat flows from hot to cold, not from a colder LT to a warmer surface. S-B would be negative in this delta T direction. This popular upwelling/downwelling GHG radiation loop is a basic perpetual motion violation of thermodynamic principles.
Plus because of Einstein’s Nobel winning photo electric effect any re-emitted energy has to be less than the incident energy, difference being the work function and in the microwave range.
Which is all academic because:
1) Mankind’s net 4 GT/y CO2 contribution to the globe’s 45,000 GT of stores and 100’s of Gt/y natural fluxes is trivial.
2) CO2’s 2 W/m^2 RF is trivial.
3) The GCMs are trash.
“IMHO (BSME, PE, 35+ years in power gen) whether conduction, convection or radiation heat flows from hot to cold, not from a colder LT to a warmer surface. S-B would be negative in this delta T direction. This popular upwelling/downwelling GHG radiation loop is a basic perpetual motion violation of thermodynamic principles.”
Nicholas, as a fellow ME I couldn’t agree more. The first time I saw that picture showing radiative heat transfer from the cooler atmosphere to the warmer planet I knew it was designed to obfuscate. Anybody that actually has to make things work in the real world, as opposed to between their ears, would NEVER attempt to calculate this for the reasons you state.
The other is it is clear they have never seen nor used a psychrometric chart, nor understand why they should.
Oh dear.
The usual misinterpretation of the GHE that is found often on these pages.
It is the NET flow of energy that is of concern.
Of course a colder object cannot “heat” a warmer one but it DOES slow it’s cooling.
Why?
All objects emit/absorb EM energy (above 0K).
An object that receives (absorbs) a photon cannot know (or care) where it came from, and somehow magically reject it whether from a hotter or colder object.
It just absorbs it.
Think of the hotter object (Earth) as a tank of water that is leaking, say 10gals of water per hour.
Then link a smaller (colder) tank of water that drips in 1gal an hour whilst the gig one still leaks the 10 gals.
Result – The big tank is still leaking (cooling) but at a slower rate of 9 gal/hr. IE the NET leakage of water (energy) is still AWAY from the big tank (Earth) but it’s SLOWER whilst the small tank (cold atmosphere) continues to feed in that small water supply.
The 2nd L of Thermodynamics is not broken – it applies only to NET flow.
Toneb says:
It is the NET flow of energy that is of concern.
Wrong, the major concern is the fact that global warming stopped many years ago. But instead of trying to underrstand why your crowd has been flat wrong about everything, you still try to ‘explain’ what isn’t happening.
I was addressing the science of GHE (yes I know it’s badly named).
Go to Roy Spencer’s site for an explanation and experiment to demonstrate.
PS: No one is saying there are not natural climate cycles that can mask it’s effect for some years.
Which is what you diverted onto.
Willis,
Reading richard verney’s comments got me to thinking along a bit of a tangent to this topic, but I’d love to hear your thoughts on it anyway:
I wonder what the net effect of continental run-off is on ocean temperatures? It seems like water running off the land would tend to be more easily warmed prior to entering the sea, thus providing a net source of warming to the oceans. This would vary, of course, as regional/planetary climate cycles alternate between warm and cold, seasonally & by epoch. But I wonder if part of the reason the ocean warms at all in large scale is due to a warming of continental run-off compared on average? The “run-off anomaly,” if you will?
Just thinking of the possible plus sign(s) which might run counter to the minus sign you got going with the ITCZ. Thanks for your work!
I found an atmospheric heat/power flux balance diagram among Bing images that is labeled “Fig 10 Trenberth et. al. 2011.” Some of you might recognize the paper. What is interesting is that there are eight values and an average displayed for each of the major state points. From what I can tell there are eight different studies/data bases/calcs and in some cases with quite different values. What happened to consensus? A couple of the variation ranges/uncertainties are an order of magnitude greater than anthropogenic CO2’s 2 W/m^2 RF. And there is the 333 W/m^2 perpetual (GHG?) power flux loop between earth’s surface and sky, i.e. lower troposphere.
A summary table:
………………………..ave W/m^2…..+/- %…+/- W/m^2
ToA net…………………342.1……….1.5……..…..5.13
OLR…………………….243.9………..9.0……..…21.95
Albedo, %…………………29.8……..…..3.5……..…..1.04
Surface Radiation……..398.0……….2.5…….……9.95
Back Radiation……..….338.3……….8.5…………28.76
Evapo transpiration…….85.1…….….9.0……….…7.66
Reflected Surface………27.4…………5.7…………1.56
Reflected Solar………..101.4…….….11.5….…….11.66
Latent Heat…….……….88.1………….8.0…..….…7.05
Per IPCC AR5 the cumulative CO2 RF between 1750 and 2011 is 2 W/m^2. OLR uncertainty is +/- 22 !!!!!!! Reflected solar +/- 12!!! Even RCP 8.5 gets lost in uncertainties this large. How can anybody claim significant confidence in the present or future global temperatures with such huge uncertainties?
Thanks, Willis, for a very good article.
Yes, I can see thunderstorms moving heat up to be radiated out, and how this conforms a feed-back control of local weather in the tropical and sub-tropical regions.
Your “scatterplot of sea surface temperature versus thunderstorm evaporative cooling” (Figure 2) is very convincing evidence.
Happy New Year!
Willis, if the thunderstorms are shifting heat upwards:
“For thunderstorms, the working fluid is water. When it evaporates at the surface, it cools the local area, and the heat is moved from the surface to the clouds and on upwards.”
Shouldn’t this show up in the satellite data as warming in the upper troposphere like the global warming fingerprint that hasn’t been found?
This I believe is the big flaw in the climate models which use a constant lapse rate to view water vapor and ignore heat transfer by thunderstorms. The model grid cells are much too large for thunderstorms anyway. If thunderstorms were not dissipating heat, they would not exist. They transfer massive amounts of heat to the upper atmosphere where it is more easily lost to space. It is like boiling a pot of water. As long as bubbles can form and rise, the water stays at the boiling point. Only in a pressure cooker can the water get hotter than this.
I think this is also why the ice ages were very dry–not much ocean warm enough to create convective storms.
Yes. The models consider convection in some crude fashion but I don’t believe they consider the verticle movement of latent heat in water vapor. I raised this in my post but Willis didn’t give a clear response. I’m hoping he will clarify.
Latent heat movement is many times higher than sensible heat movement in water vapor. By the way, it’s not just true of thunderstorms. It applies to the entire hydrological cycle.
In my post I made the additional point that if CO2 has an insulating effect then it should start to deter the return of infrared back to the surface as convection carries the water vapor above the CO2 (and other greenhouse gases). Insulation works in both directions, after all. A blanket will keep your beer cold just as well as it keeps your body warm. More insulation, less heat coming in, colder beer.
“Yes. The models consider convection in some crude fashion but I don’t believe they consider the verticle movement of latent heat in water vapor. I raised this in my post but Willis didn’t give a clear response. I’m hoping he will clarify.”
They consider LH release via convective uplift (and also by frontal/baroclinic/orographic uplift).
LH is far greater that sensible heat transport by clouds – even small Cumulus cloud has WV condensing and warming the Trop at lower levels.
And BTW: Unless and until we can get a massive supercomputer to model each individual cloud – then all we can do IS to parametarize the process. Even in NWP (weather models) it cannot be done explicitly.
“Some of the datasets in Table 3 are estimated; for instance latent-heat fluxes and the other components of the surface energy balance are estimated, based on the extent of empirical formulas
and energy-conservation principles.”
From: http://www.ecmwf.int/sites/default/files/Land_surf.pdf
In the HVAC industry a common term for cooling is the ton. It’s the amount of energy stored in a short ton, 2,000 lb of ice, 12,000 Btu or 3,517 Wh. That’s the energy needed to freeze a ton of water into ice or the energy released from melting that ton of ice and cooling the air circulating in the building.
Antarctica covers 14 E6 km^2 (14 E12 m^2) more or less. Snow and ice a meter deep would be 14 E12 m^3. A m^3 holds a tonne of water (slightly more ice), 2,204 lb, and would represent 13,224 Btu.
Precipitate a meter deep by square meter (i.e. cubic meter) of snow/ice over 24 hours, 13,224/24 h = 551.3 Btu/h or 161.6 W/m^2. That cubic meter of snow/ice precipitated over Antarctica would remove 5.43 E16 W from the atmosphere. Wow! Good thing it doesn’t snow much in Antarctica.
In 24 hours ToA of 340 W/m^2 delivers 17.4E16 W.
So it would take almost undetectable amounts of snow/ice at the ice caps and sheets to suck up mankind’s pitiful 2 W/m^2 of CO2 RF.
Subject to peer R&C.
It’s time to acknowledge that the atmosphere is a three-phase system.
Willis, along with some of the commentators, has opened the door on something that goes way beyond thunderstorms. Where this must ultimately lead is the realization that all current models are 100% useless – because they don’t properly consider the transport of latent heat as water transitions through gas, liquiid and solid phases.
A thunderstorm is the biggest example of latent heat transport but every cloud is doing the same thing to some degree. You have to look at the entire hydrological cycle. Every bit of evaporation at the surface moves up in the atmosphere and eventually returns to the surface. It must – otherwise the atmosphere would load up with water.
Latent heat is captured at the point of melting/evaporation/sublimation and released at the point of freezing/condensation/desublimation. Most of it is captured at the surface and released somewhere in a cloud, but that’s not the only way.
There is also a massive amount of capture happening up in the atmosphere. Virga (raindrops that evaporate before they hit the ground) are just one example. All clouds are really continuous heat pumps that are capturing latent heat below and releasing it above. You can see this if you watch fast-motion video of cumulus clouds. The roiling of the cloud is caused by droplets falling from the top and re-evaporating somewhere down below.
Furthermore, a lot of evaporation & condensation is happening invisibly at the microscopic level. Just because you don’t see a cloud doesn’t mean it isn’t happening. When you look up and see sky that isn’t cloud but isn’t as blue as it should be, or when you see haze, you’re getting a peek at this phenomenon.
So, the entire atmosphere is a continuous, dynamic phase-transition process. That’s important because latent heat released up in the atmosphere will presumably escape to space more readily – and because latent heat is a significant portion of the heat in the atmosphere.
Good luck modeling that. Heck, good luck even measuring that.
Now here’s the real mind blower: Once you acknowledge a three-phase system you have to start distinguishing between temperature and enthalpy. Delta T does not equal delta H so you can’t just stick a thermometer out the window any more. Poof (that’s the sound of the entire climate paradigm going up in smoke).
I’m glad I’m not a climatologist. You’ve got your work cut out for you. I’m out of here.
“Delta T does not equal delta H”
For liquid water it’s close enough, beyond that, good luck! e.g. 50/50 glycol & vapor, et.al.
Thanks Willis Good job
“At night the evaporation is small, some tens of watts per square metre. During the day, on the other hand, evaporation is quite large, hundreds of watts per square metre, because the strong tropical sunshine evaporates the water directly, plus the thunderstorms are largely a daytime phenomenon.”
To really nail down evaporation, one needs to keep record of wind speeds.
old construction worker, replying to Willis E
Well, sort of. Even if yoiu assume the water temperature and air temperature are in equilibrium with each other – which ABSOLUTELY is NOT the case in real life, the evaporation heat losses from open, wind-swept water are only one of four “other losses” goin on simultaneously:
LW radiation down to the water (a heat energy gain)
LW radiation up from the water (to – or through! – the near surface atmosphere & relative humidity, into the high altitude air mass and then into space’s darkness)
SR radiation down into the water (from the sun, proportional to day-of-year, time-of-day (solar elevation angle), wind speed, wave height, and air cloudiness, and air clarity)
Evaporation (a heat energy loss, and a very minor mass loss as well.)
Convection (a heat energy gain or loss, depending on surface air temperature)
Conduction (replacement of heat energy into the depths, if no ice is present.)
If you know, or assign, surface water temperature and near-surface (2 meter) air temperature, then the last three become
Energy in (+LW in + SW in) = Energy LW Out + Energy Evap + Energy Convection + Energy Conduction
Three of the four Energy “losses” are proportional directly to DeltaT, or ( T Water – T Air)
Two (long wave radiation in and out) are proportional to Twater^4, Tair^4, and the relative humidity near the ground and Tair (altitude) and a few other factors (such as air clarity and cloud cover reflections.)
So you have to solve the four equations simultaneously to get an approximation for the approximation of a single hour’s equilibrium losses and gains.
In the absence of ice covering the surface, you have to keep track of (or estimate) each hour’s surface air temperature, each hour’s surface air wet bulb temperature, (and from that) each hour’s relative humidity, each hour’s actual air pressure, each hour’s wind speed, each hour’s surface water temperature, and some approximation of each hour’s deeper water temperature. That let’s you begin calculating approximate heat transfer coefficient for the other heat losses ….
It’s a “fun” problem. Not. Given data for one place at one hour, I’d like to run these “other heat losses” for even one day at some particular latitude and day-of-year.
the total “other losses” of each square