Early Sunspots and Volcanoes

Guest Post by Willis Eschenbach

Well, as often happens I started out in one direction and then I got sidetractored … I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a VEI greater or equal to 5 are affected by sunspots. Based on my previous analysis I figured “No way!”, but I thought I should take a look … and as is often the case, I ended up studying something entirely different.

Now, the SIDC monthly sunspot record that I used in my last analysis starts in 1700. Prior to that the only sunspot numbers available are a “reconstruction” by Hoyt and Schatten called the “Group Sunspot Number”, which is the dataset used by Michele. The Hoyt/Schatten Group sunspot data is available here. Now, as Leif Svalgaard has discussed here on WUWT, the SIDC sunspot numbers are in the process of being revised to remove an incorrect offset due to a change in the procedures in 1947. The result will be that the pre-1947 sunspot numbers will be increased by 20%. Figure 1 shows both the unrevised and revised SIDC annual average sunspot numbers, along with the annual average Group Sunspot numbers.

annual ssns sidc adjusted groupFigure 1. SIDC unrevised (black), revised (dotted blue), and Group (red) annual average sunspot numbers.

Several things are apparent. First, in the Group sunspot numbers (red) you can see what is called the “Maunder Minimum”, the period where there are no or few sunspots from about 1645 to about 1715 or so.

Next, although the Group sunspot numbers are a very good fit to the SIDC unrevised numbers since about 1880, prior to that the Group sunspot numbers are consistently lower, and sometimes much lower, than the SIDC unrevised numbers.

Next, the early sunspot data in the Group number dataset looks … well … odd …

Seeking to understand what made the early part of the Group sunspot number so odd, I decided to look at the most detailed underlying data. These are the individual daily observations of sunspots. When I did so, there were various strange and interesting aspects. Figure 2 shows the daily data, along with an indication of which days have missing data.

daily group sunspot numbersFigure 2. Group daily sunspot numbers, 1610-1995. The vertical light blue lines each represent a missing day.

There are some quite bizarre things about this dataset. First, the amount and the location of the missing data. A number of months have no data at all, and many are missing data. Prior to 1643, and also between 1720 and 1800, about two-thirds of the data is missing (65% and 66% missing respectively). During the “Maunder Medium” period between the two light blue areas above, however, only 3% of the data is missing … three percent?

And does anyone but me find it strange that there is very little data prior to 1635 or so, but what data there is shows normal sized sunspot cycles. Then we have a period that exactly coincides with the Maunder Minimum, where we have almost no days of missing data. Finally, from about 1720 on, we again have very little data … but what data there is shows normal sized solar cycles.

Say what? Why is there great data that exactly coincides with the Maunder Minimum?  Does anyone find that even vaguely unusual?

Well, I found it very unusual. So I went to take a look at the underlying records. It just kept getting stranger. The numbers of sunspot groups observed is given here on an observer-by-observer basis. Looking through the entries for peculiarosities, I got to 1632, and I found the records of J. Zahn of his observations of sunspot groups made in Nuremberg, Germany. Figure 3 shows the observations of Herr Zahn in 1632:

Sunspot Groups 1632Figure 3 Individual observer’s record used in the calculation of the Group sunspot number. A day when no observations were made is given the value of -99, and a day with observations made but no sunspots observed is given the value of zero.

I’m sorry, but given the reality of clouds and the fact that Germany is a ways north of the Equator, I’m not believing the idea that in the year 1632 in Germany the sun could possibly be observed in enough detail to count sunspots on every single day of the year. That’s simply not on. Never happened.

And sadly, the 1632 record is far, far from an isolated example. It’s just the first one I came across. Once I looked further I found that there are no less than FORTY-FIVE such observer’s reports claiming valid observations of zero sunspots every single day of the year … and I’m absolutely not buying a single one of them, even if they’re selling at a deep discount.

And when do these bogus records occur? Well, guess what? Forty-four of the forty-five such strange yearly records occur during or just prior to the “Maunder Minimum”, with one final lonesome yearly record  of all zeroes in 1810.

I would suspect that what’s happened here is that Herr Zahn used the same symbol for “no observations attempted” and “no sunspots observed”, However, that’s just a guess. More importantly, whatever the reality might be, I’d say that including those impossible records is a major reason for the claims that the Maunder Minimum is so deficient in sunspots.

The next oddity in Figure 1, once I’d wrapped my head around the claim of being able to count sunspots on every day of the year, was the fact that the early data from about 1610 to about 1720 almost all occurs in even intervals of 15 sunspots, at e.g. 15,30, 45 sunspots and so on.  Then after that, there is evenly spread data from about 1720-1750.

And then, after 1720, there is a section where once again the data almost all occurs in even intervals … but in that case the intervals appear to be 24 sunspots.

I suspected that this reflected the fact that each group of sunspots is counted as a certain number of individual spots. And upon checking records of the group counts against the Group sunspot number, I find this is the case, and there’s no problem with that … but bizarrely, the number keeps changing. In 1610, each group was counted as 18 sunspots. Then for a number of succeeding years each group was counted as 15 sunspots … until around 1720 when it was changed again, and after that, one sunspot group is counted as 12 individual sunspots. Not 24 sunspots as appears to be the case from Figure 2, but 12 … odd all around.

But wait … there’s more. Here’s the same data in Figure 1, but this time showing the annual Group sunspot numbers (red) and the annual SIDC sunspot numbers.

daily and annual group sunspot numbers plus sidc annualFigure 4. Daily (gray) and annual (red) Group sunspot numbers, along with the annual SIDC sunspot numbers (blue). Vertical light blue lines mark every day that has no data.

Now, take a look at the first three sunspot cycles just after 1700 … as you can see, the Group sunspot numbers greatly underestimate the apparent size of the actual cycle. How did this happen?

Well, it’s a curious answer that can be understood by an early year of the data, 1614. In 1614, the annual average is given as 121 sunspots. This can be seen in the red line above in Figure 4.

But when you look at the data for 1614, care to guess how many days of data there are for the entire year?

Well … um … er … not to put too fine a point on it, but there is exactly one day of the year [1614] that has data.

One day’s worth of data , and the sunspot count for that day? Well … 121 sunspots.

Now, to me, that’s bull goose loony. Including a yearly average when there is only one day’s data for the whole year? Sorry, but that’s meaningless.

But wait, it gets stranger. According to the daily data, there’s exactly one day’s worth of data in 1610, with a value of 72 sunspots. That day is in December. But according to the monthly data files, there are TWO months with data in 1610. December [1610] has an average of 72 from the one data point, but the monthly data for February also has an average, in this case zero. So the average for the year is the average of two months, which is 36, and which can be seen as the first data point in the red line in Figure 3 above …

That’s not all. In many years, despite there being no daily data of any kind, we still have both monthly and yearly averages. Here’s a graphic that shows the difference.

yearly and average of daily group sunspot numbersFigure 5. Annual and average-of-daily Group sunspot numbers.

You can see the data for 1610 I discussed above, one day’s observation of 72 sunspots and the annual average of 36 sunspots. But the hole keeps getting deeper and deeper. Look, for example, at 1636. According to the daily data, there’s not one single observation for the whole year. But according to the monthly data, EVERY SINGLE MONTH has an average of zero sunspots. And the same is true for 1637, 1641, 1744, 1745, and 1747 as well. In each case there are no observations in the daily data, but there are 12 months of zeros in the monthly data. And this is backed up by the raw observer data files. There are no observers at all listed for [1636] and [1637], no observers and no data … but despite that the monthly and yearly averages claim zero.

A final math note. Rather than average all of the days in the year, their “yearly average” is actual an average of the monthly averages. In some cases this leads to strange results. For example, in some years there are a dozen or so observations in a single month, and only one observation during the entire rest of the year. Obviously, an average of the monthly averages will give a very different answer than averaging the individual data.

I gotta say … these numerous shenanigans with the data make me very suspicious about the whole Group Sunspot Number dataset. When I find entire years where there isn’t a single daily observation, but despite a total lack of data the monthly averages for that year are all zero and the yearly average is also zero … well, that makes me wonder about the entire idea that the “Maunder Minimum” is as extreme as is depicted by the Group Sunspot numbers.

In any case, as I said, I started out to look at Michele’s claim about eruptions in the Maunder and I got blind-slided off the path by the oddities of the Group sunspot number. I couldn’t use either the daily or the monthly Group sunspot numbers to compare with the eruptions, because a number of them didn’t have any sunspot data for either the day or the month. So I used the annual average Group sunspot number to compare to the eruptions. I didn’t splice the Group dataset like Michele did, I dislike spliced datasets, so I figured I’d see things as if the Group dataset were real. To start with, Figure 6 shows the dates of the eruptions overlaid by the daily Group sunspot number …

daily group sunspot and 37 eruptions vei 5 plusFigure 6. Large eruptions (VEI >= 5) and daily Group sunspot numbers.

Looking at just the vertical red lines showing the eruption dates, you can see the “clumpiness” of nature that I’ve remarked on before. However, there doesn’t seem to be any obvious correlation between sunspots and eruptions. So I turned to the histograms showing the distribution of the annual Group sunspot numbers on the dates of the eruptions, and I compared that eruption distribution to the distribution of all of the Group sunspot numbers over the entire period. Figure 7 shows that relationship:

histograms annual group ssn 37 eruptions vei 5 plusFigure 7. Comparison of the distributions of the sunspot level during the eruptions (gold) and the distribution of all of the Group sunspot levels. Numbers at the top of the gold bins show the count of eruptions in each bin.

Now, Michele’s claim was that most of the eruptions occurred during periods of low Group sunspot numbers … and he’s right. Of the 37 eruptions, about seventy percent of them occur when Group sunspot number is below forty.

But the part he didn’t take into account was that most of the Group sunspot record is made up of periods of low Group sunspot numbers. And of course, with a small dataset of only 37 eruptions, the 98% confidence intervals are very wide. As a result, none of the results are even slightly significant.

So no, I’m afraid that the Group sunspot number, as terrible as it is, still doesn’t show any relationship between sunspots and big eruptions …

Conclusions? Well … my main conclusion is that whenever you see the word “sunspots” in a scientific study, hold tight to your wallet and check the datasets very, very closely. There may indeed have been a Maunder Minimum … but the Group sunspot number dataset is so bad that we can’t conclude anything from it regarding the Maunder or anything else.

My best wishes to everyone,

w.

AS ALWAYS: If you disagree with someone, please quote the exact words you disagree with, so that we can all understand what you are objecting to.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

204 Comments
Inline Feedbacks
View all comments
Mojo
February 11, 2015 10:18 am

Quoted From Piers Corbyn
“The spin rate of the earth is generally being braked slightly by its interaction with the solar wind and as we get to a solar minimum this braking is less. That probably gives a sort of slow ‘jolting effect on oceans and tectonic plates which might exacerbate earthquakes and tremors. We have to think of CHANGES in forces or changes in acceleration rather than simply forces or accelerations.
“Think of a train with its brakes on by a certain fixed amount – constant deceleration. You are sitting in your seat and the braking is thrusting you forward a bit but you have adjustyed for that and feel no discomfort. When the train comes to a stop this braking ends and you feel a jolt and you slump backwards into your seat as the force you provided to not fall forward pushes you back. Similarly when a train (or a plane) changes its acceleration forward you experience
jolts.
Generally speaking in a train or plane plenty of jolts occur when they are hardly moving rather than moving at top speed.
In a similar fashion the oceans pressing against the continents or more precisely against some tectonic plates – experience jolts relative to the earth’s main crust and core as the interaction with the solar wind changes as we get close to (or move away from) solar minimum.”
http://sc25.com/index.php?id=10&linkbox=true&position=3

Bill
February 11, 2015 10:26 am

Willis,
Were you able to find their handwritten notes of the data?

Bob Weber
February 11, 2015 10:27 am

Qouting Eschenbach exactly (last comment first):
“There may indeed have been a Maunder Minimum … but the Group sunspot number dataset is so bad that we can’t conclude anything from it regarding the Maunder or anything else.
My best wishes to everyone,
w.
AS ALWAYS: If you disagree with someone, please quote the exact words you disagree with, so that we can all understand what you are objecting to.”
+++++++++++++++++++++
Qouting Willis Eschenbach exactly (from his first paragraph here):

“I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a VEI greater or equal to 5 are affected by sunspots. Based on my previous analysis I figured “No way!”, ….”

Now, quoting Casati exactly from the quote Willis links to from here http://wattsupwiththat.com/2015/02/09/volcanoes-and-sunspots/#comment-1855604

“Quote “…A comparison of the histogram of the monthly sunspot levels during the 19 largest eruptions since 1750…”
Where is the maunder ?
http://wattsupwiththat.files.wordpress.com/2009/11/maunder-sunspot-activity.png?w=700
http://michelecasati.altervista.org/significant-statistically-relationship-between-the-great-volcanic-eruptions-and-the-count-of-sunspots-from-1610-to-the-p.html
In our research, we compare the 148 volcanic eruptions with index VEI4, the major 37 historical volcanic eruptions equal to or greater than index VEI5, recorded from 1610 to 2012 , with its sunspots number.
Staring, as the threshold value, a monthly sunspot number of 46 (recorded during the great eruption of Krakatoa VEI6 historical index, August 1883), we note some possible relationships and conduct a statistical test.
• Of the historical 31 large volcanic eruptions with index VEI5+, recorded between 1610 and 1955, 29 of these were recorded when the SSN<46. The remaining 2 eruptions were not recorded when the SSN<46, but rather during solar maxima of the solar cycle of the year 1739 and in the solar cycle No. 14 (Shikotsu eruption of 1739 and Ksudach 1907) (chart 1).
• Of the historical 8 large volcanic eruptions with index VEI6+, recorded from 1610 to the present, 7 of these were recorded with SSN<46 and more specifically, within the three large solar minima known : Maunder (1645-1710), Dalton (1790-1830) and during the solar minimums occurred between 1880 and 1920. As the only exception, we note the eruption of Pinatubo of June 1991, recorded in the solar maximum of cycle 22 (chart 2).
• Of the historical 6 major volcanic eruptions with index VEI5+, recorded after 1955, 5 of these were not recorded during periods of low solar activity, but rather during solar maxima, of the cycles 19,21 and 22."

++++++++++++++++++++
WILLIS: where is your claimed claim of Michele’s that you specifically cited? He didn’t say what you claimed he said, YOU SAID IT:
You said this: “if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a VEI greater or equal to 5 are affected by sunspots.
HE DID NOT SAY THAT. Shame on you for putting words in his mouth.
You chide Michele for using obsolete SSNs, you then go ahead and use them anyway yourself – hypocrite! Willis, you have a double standard.
My question to you Willis is, why did you knowingly use obsolete SSNs when you know that the reconstructed numbers are going to be released soon?
Why didn’t you use Leif’s revised GSN? From your own article:
http://wattsupwiththat.com/2015/01/05/the-best-test-of-downscaling/#comment-1829682 , where Leif Svalgaard said in response to my question of how the SSN reconstruction was going:
“Basically unchanged. We shall have a meeting in [of all places] Sunspot NM [ http://en.wikipedia.org/wiki/Sunspot,_New_Mexico ] during the last week of January to iron-out minor details. The new numbers will be presented at a press conference in Brussels, Belgium later in the spring/early summer and submitted to IAU [ http://www.iau.org/ ] in early August for possible adoption as an international standard..”
and
“The GSN will become obsolete and not published as a separate series, but will be incorporated with the regular SSN. There will thus be only ONE SSN series [and it will be called the Wolf number]. We will maintain a separate Group Number [GN] as a means to keep track of the number of groups which is a proxy for somewhat different physics as the ratio SSN/GN is not constant as was earlier surmised. We will discourage using the GN as a proxy for solar activity [as it is not].”
++++++++++++++++++++
Willis, did you catch this part?:

“We will discourage using the GN as a proxy for solar activity [as it is not]”

(my bold)
So Willis, why did you use the GN (for the Maunder Minimum) when Leif said it is not a proxy for solar activity? Leif could give you some relief here if he’d post those new revised GSNs sooner than later.
Willis, you never cease to amaze me. How is it possible for you to have so completely missed the boat as to what the Sun did to the Earth prior to high VEI volcanoes (or high mag earthquakes)? Sunspot numbers are not the only thing of importance wrt the Solar-Terrestrial connection.

Bob Weber
Reply to  Willis Eschenbach
February 11, 2015 4:56 pm

That’s a lame attempt at projection Willis. You missed your mark.
You should know better than to chide someone about suspect data and then use it yourself, even if the other did. What conclusions can anyone come to with such suspect data? Any worth talking about? But you talked about it plenty, in spite of knowing it wasn’t good data. What did you accomplish? Did you wipe out the Maunder Minimum?
The Maunder Minimum was not the primary point of discussion anyway. Volcanoes were.
Anger – you bet. I considered this article to be a hit piece by you on Michele Casati, someone simply and innocently trying to interject some new findings in the comment section, who didn’t even get the benefit of being able to explain himself fully about what he was talking about before you jumped on him. You reframed the discussion in a way that “makes him wrong” – w/o his testimony. How would you like it if the shoe was on the other foot?
Vituperation directed at you is totally appropriate when you declare every time you write an article to “quote exact words” – and then you don’t! Yea, I’m seeing red because you exhibited a blatant double standard, period, and no one else called you out on it.
Your attempts to slide out of being held accountable here are not a surprise. You clearly did not quote him exactly, nor did you state that you were paraphrasing him until I said something, so I think your little belated attempt here at minimizing what you did – is – well – true to your character.
Just when I start to think you’re OK, you pull some shit like this, and you set yourself back again. It is Willis’ rep that Willis is ruining by Willis exhibiting Willis’ double standard.
You can quote me on that.
As to your PS:
First of all Willis, what do I owe you? Do I owe you personally an explanation when you show no sign of understanding what the Sun does in any regard – at all. I mean, I might as well be talking to a child. Are sunspots the only manifestation of solar activity? Think!
Why is it Willis, this late in the game, that you don’t appear to know anything else about the Sun beyond sunspot number counts and TSI?
When you show me any sign of getting beyond that very basic level, I’ll let you know.
There is a tremendous amount of data supporting Casati’s thesis that solar impulses of various kinds have the said effects, but first you have to understand what solar impulses are in and of themselves, and then you have to understand what they do in general to the Earth, and then more specifically, what impulses under what conditions can do the kind of damage earthquakes and volcanoes do. Take it one step at a time.
I recommend to Michele that he write up an article and submit it to WUWT, and if he does that, I will provide the data that I have right now in support, and not until then, unless I write that article.
Willis you owe Michele an apology for your shoddy mistreatment on his subject.

Bob Weber
Reply to  Willis Eschenbach
February 11, 2015 9:57 pm

My blood pressure is fine, always is. So is my judgment of character. For someone who studied psychology, your lack of people skills on occasion is glaring.
Michele is being kind and cooperative because this is your turf and he’s not from here, and he wants to expose his ideas to a wider audience, and he’s a younger man dealing with mostly older more experienced people set in their ways (from my perspective).
He has valid points that you’re not even addressing because you don’t demonstrate that you understand what the Sun regularly does, so how could you understand what he says.
Did it ever occur to you that high VEI and high mag EQs events result from solar activity events that occur from different sources during both high or low sunspot number periods, and thus the sunspot number isn’t always the main thing, even though it can be a factor? Did you ever think of that, or that even one sunspot can be enough?
Events rule the day. You’ll won’t figure this out using just statistics Willis.
For you and many others that’s counter-intuitive.
I know you just want the answer, and if you are given the answer without effort on your part, you won’t appreciate it, so I would rather that you figure it out yourself, or at least give it a good effort. If you’re not capable, just admit it, it’s no shame to admit ignorance – very few others have figured it out, if that’s any solace. And I’m not saying you’re stupid.
I’m not refusing to tell you anything either – I don’t answer to you – UNLESS I WANT TO.
You jack people around and then you expect them to want to give to you outright their fruits of their labor just for the asking whenever you demand? It doesn’t work like that.
You established your rules of engagement with your “quote exact words” demand, then you didn’t follow your own rules, and when you were called out on it, you weaseled out.
The very fact that you have such a rule at all makes you ‘Miss Manners’ here, not me.
When you are consistent in following the very rules you establish for others, everything will run smoothly. When you follow a different set of rules for yourself, well, you saw what happened today. Stick to your own rules!
I appreciate your efforts otherwise; and perhaps you do need a dog in your life.

Bob Weber
Reply to  Willis Eschenbach
February 13, 2015 7:16 am

So I’m your friend now? That’s great. Who couldn’t use a friend like you! I just like to point out that I can nitpick too, along with you, and yes, that does get old… Don’t dish it out if you can’t take it.
I’m holding back on explaining further until I get through evaluating a longer list of VEI4 and lower events, having already finished finding in the last week exciting and electrifying data for the only four high VEI5+ events on the list.
Since we only have four big VEI5+ in the modern satellite era, it was possible to locate exact data. In addition to getting the data on the VEI4 and under events, there’s a large number of papers out there that correspond to the solar impulse thesis, that I only recently found, and those should be cited too, as they do support the impulse thesis.
I am concerned that revealing partial information now buried here on a blog that’s nearly past it’s expiration date will be missed, misunderstood, and for many, misleading, so I don’t want to give out an incomplete analysis.
At this time it ought to be very apparent that sunspot numbers aren’t going to resolve this issue very well, as high VEI events occur during both high and low SSN conditions.
You appear to not be aware of some of the other solar indices aside from sunspot number, as you haven’t talked about them.
Potential sources of solar impulses:
1. solar sector boundary crossings
2. solar flares
3. coronal mass ejections
4. filament eruptions
5. coronal hole high speed streams
And then add in lunar and planetary influences, if any.
Perhaps even a data junky can appreciate that adding more factors into the analysis compounds the amount of time and effort necessary to collect data for EACH event!
The simple sunspot number method isn’t good enough to draw meaningful conclusions.

February 11, 2015 11:00 am

The quote below from John Casey of the Space and Science Center. .
Finally, the coincidence of the Centennial and Bi-Centennial cycles of the RC Theory showed unmistakable relationships.
Willis prove to us with your data why the Centennial and Bi-Centennial cycles of the RC theory presented by John Casey do not apply.
rgbatduke- You make my point which is the data we have on past solar activity is not set in stone therefore to draw conclusions about solar variability and future solar variability is not on very solid ground.
That is a double edge sword because it can go one of two ways.

AJB
February 11, 2015 11:11 am

“From Galileo through the Maunder Minimum”
J.M.Vaquero & E.W. Cliver, 4th SSN Workshop, Locarno, 2014
http://www.leif.org/research/SSN/Vaquero6.pdf

February 11, 2015 11:49 am

One last point I want to make today which may or may not be the case is,
the less in intensity should the Maunder Minimum be or for that matter the Modern Day Solar Maximum ,the argument can then be made the more sensitive the climate may be to the slightest variations in solar activity due to primary and secondary effects. Always the double edge sword.
This would also serve to make this solar minimum stack up better against the Maunder Minimum if true. But it is a big IF, because past solar data as I have said has been ,is and will continue to be on shaky ground going forward despite what the so called experts may try to convey.

February 11, 2015 1:52 pm

I remember that my works are to be evaluated together :
EGU 2012 (The interplanetary magnetic field -IMF-)
EGU 2013 (SSN)
EGU 2013 (Inflation and deflation cycles)
EGU 2014 (Ap-index) – I remember that my works are to be evaluated together
My current conclusion is atypical electrical impulsive phenomena (EM solar-terrestrial interactions) occurred during the solar minimum (transitions), with an enormous amount of energy released during the geophysical event. Phenomena not yet fully understood from a physical point of view.
Michele

Reply to  Willis Eschenbach
February 12, 2015 5:19 am

Will say : ” mystic words ”
“The most beautiful thing we can experience is the mysterious. It is the source of all true art and science.”
Albert Einstein

February 11, 2015 1:53 pm

Sorry,
EGU 2013,2014 and 2015

February 11, 2015 2:03 pm

A long time ago during my library haunting days, I read anything astronomical in a local county library.
One of the books included some history about celestial observations; including several chapters about the history of ‘sunspot watching’.
I never connected the amateur and accidental solar observations to an allegedly detailed sunspot record. i.e. until Willis posted his excursion into sunspot exploration.
That old history percolated back up; it was certainly not sunspot counting or sunspot tracking!
“ca. 800 BC: The first plausible recorded sunspot observation”

“The two oldest record of a sunspot observation are found in the Book of Changes, probably the oldest extant Chinese book, compiled in China around or before 800 BC. The text reads “A dou is seen in the Sun”, and A mei is seen in the Sun”. From the context, the words (i.e., chinese characters) “dou” and “mei” are taken to mean darkening or obscuration.
Astronomers at the court of the Chinese and Korean emperors made regular notes of sunspots, most less elliptical than the one cited above. It seems, however, that observations were not carried out systematically for their own sake, but instead took place whenever astrological prognostication was demanded by the emperor. The surviving sunspots records, though patchy and incomplete, covers nearly 2000 years and represents by far the most extensive pre-telescopic sunspot record“.

naked-eye sunspot observations” (PDF download)

“…However, solar activity during the 5th century BC was very high and it is quite probable that ancient Greeks observed sunspots (including Anaxagoras)…”

Historical Occidental Observations ” (same “Naked Eye Observations” PDF download)

“…The most famous European observation of a naked-eye sunspot was related to the death of Charlemagne, King of the Franks and Emperor, by his secretary and adviser Einhard, who wrote The life of Charlemagne (Einhard, 1880). He was not very careful dating the sunspot event. However, there is no doubt that a spot was seen on the Sun in 807 over eight days. In the Annales Regni Francorum, a Mercury transit observation appears during the days 17–24 March 807, but it is evidently a sunspot observation that confirms Einhard’s account.
Another famous European observation was recorded by John of Worcester on December 8, 1128. He was not an Emperor, but he did make the earliest drawing of a sunspot. (Darlington and McGurk, 1995; McGurk, 1998). Curiously, the sunspots observed at Worcester were not observed elsewhere. However, this epoch coincides with a period of enhanced solar activity (“The Medieval Maximum”) and Willis and Stephenson (2001) presented evidence of recurrent geomagnetic storms and associated aurora from AD 1127 to 1129…”

Some of the naked eye observations prior to consistent telescope use were made by the shadow box or pinhole projection method.
Pinhole projection is a misnomer or misrepresentation though. we’re taught when young to use an actual pinhole to make shadow projections in order to watch eclipses.
Observers can use a much larger hole though and project the shadow image against a wall in a dark room. The sun’s image substantially larger as are any sunspots and surprisingly clear.
Can these shadow projections highlight pinpricks? Not anywhere near as well as current telescope technology.
The early telescope observers often made their own telescopes and smoked their own shade glass.
From the good old Britannica dot com

“…While the quality of observations was good, consistent observation was lacking. The sunspot cycle, a huge effect, was not discovered until 1843 by Samuel Heinrich Schwabe. The German amateur astronomer was looking for a planet inside the orbit of Mercury and made careful daily drawings to track its passage across the face of the Sun. Instead he found that the number of sunspots varied with a regular period. The Swiss astronomer Rudolf Wolf confirmed Schwabe’s discovery by searching through previous reports of sunspots and established the period as 11 years. Wolf also introduced what is termed the Zurich relative sunspot number, a value equal to the sum of the spots plus 10 times the number of groups, which is still used today. Much of the work at this time was carried out by wealthy amateurs such as Richard Christopher Carrington of Britain, who built a private observatory and discovered the differential rotation and the equatorward drift of activity during a sunspot cycle…”

“…Photographic monitoring began in 1860, and soon spectroscopy was applied to the Sun, so the elements present and their physical state could begin to be investigated. In the early part of the 19th century, Fraunhofer mapped the solar spectrum. At the end of the 19th century, spectroscopy carried out during eclipses revealed the character of the atmosphere, but the million-degree coronal temperature was not established until observations of coronal spectral lines were made in 1940 by the German astrophysicist Walter Grotrian.
In 1891, while he was a senior at the Massachusetts Institute of Technology in Cambridge, Mass., George Ellery Hale invented the spectroheliograph, which can be used to take pictures of the Sun in any single wavelength. After using the instrument on the great Yerkes refractor in Williams Bay, Wis., U.S., Hale developed the Mount Wilson Observatory in California and built the first solar tower telescopes there. Prior to the construction of the Mount Wilson facility, all solar observatories were located in cloudy places, and long-term studies were not possible.

“…After 1950, new observatories were established in areas that were less cloudy. By 1960 astronomers realized that these sites not only had to be clear but that they also had to have stable air. By locating observatories near lakes and by employing electronic imaging and vacuum telescopes, astronomers were able to make new, higher-resolution observations. In 1969 the movement began with the Aerospace Corporation Observatory (now the San Fernando Observatory) and the Big Bear Solar Observatory, both in California. Free of ground effects, these observatories achieved a new level of stable images and were soon followed by lake-sited solar observatories in India and China.
An entirely new dimension of solar studies was initiated by the space age …”

“Sunspot Drawing Resource Page: The Early Observers, 1128 to 1800 AD.”

“…Brother John of Worcester – 1128
Monastery at Worcester, England.
December 8, 1128.
1 drawing.
No telescope – unaided eye method.
John’s drawing.
Thomas Harriot – 1610 England.
Observations from December 8, 1610, and December 1, 1611 to January 18, 1613.
200 drawings.
Refractor.
Observation method: attenuated eyepiece observations by atmospheric haze or colored glass.
Cavalier Domenico Cresti di Passignano – 1611 Rome, Italy.
Observations in August and September 1611.
Number of drawings: unknown.
Attenuated eyepiece observation method.
Lodovico Cardi da Cigoli – 1611 Rome, Italy.
Observations on September 16, 1611, and February 18, to March 23, 1612.
27 drawings.
Attenuated eyepiece observation method.
Christopher Scheiner – 1611 Germany – Italy.
Observations from October 21, 1611 to June 1627.
70+ published drawings, perhaps 900 observations. (Several observation days were often included within one drawing.)
Refractors of different dimensions.
Observation methods: Pinhole projection, small mirror projection, attenuated eyepiece, eyepiece projection, and
construction of special telescope with both lenses made of colored glass.
Location of original drawings unknown.
Galileo Galilei – 1612 Italy.
Observations (non-contiguous) from May 3 to August 21, 1612.
47 drawings known.
16mm, f/11 Galilean refractor.
Observation method: attenuated eyepiece and eyepiece projection.
Original drawings in the Vatican archives and the archives of the Accademis dei Lincei
Petrus Saxonius – 1616 Germany
Observations from February 24 to March 17, 1616.
12 drawings.
Johannes Hevelius – 1642 Poland.
Observations from 1642 to 1679.
Original sunspot drawings lost to a fire in 1679.
Drawings published in: Selenographia size Lunae Descripto, 1647; Cometographia, 1679; Machinae Coelistis, 1679.
J. W. Pastorff – 1819 England.
Observations from 1819 to 1833.
1,477 drawings.
Drawings are in the Royal Astronomical Society Library archives.
Charles H. Adams – 1819 England.
Observations from August 1819 to March 1822.
977 drawings.
Drawings in Royal Astronomical Society archives?
Samuel Heinrich Schwabe – 1825 Germany.
Observations from October 30, 1825 to 1868.
9,000+ drawings.
1.25 and 2.5 inch aperture refractors, 3.5 and 6-foot FL.
Observation method: attenuated eyepiece, drawn to 2.1 inch circle.
Drawings are in the Royal Astronomical Society Library archives.
Rev. T. J. Hussey – 1826 England.
Observations from 1826 to 1837.
1,207 drawings.
Drawings are in the Royal Astronomical Society Library archives.
Henry Lawson – 1831 England.
Observations from August 1831 to 1832.
200 drawings.
Drawings are in the Royal Astronomical Society Library archives.
Capt. Charles Shea – 1847 England.
Observations from 1847 to 1866.
5,538 drawings.
Drawings are in the Royal Astronomical Society Library archives.
Rev. Temple Chevallier – 1847 England.
Observations from 1847 to 1849.
Unknown number of observations.
Drawings are in the Royal Astronomical Society Library archives?
William Cranch Bond – 1847 United States.
Observations from August 1847 to December 1849.
200+ drawings.
Refractor.
Observation method: eyepiece projection.
Observations published in: Observations of Solar Spots, 1847-1849,
Annals of the Astronomical Observatory of Harvard College, Vol. VII, 1871.
Joseph Turnbull – 1851 England.
Observations from March 22 to October 2, 1851.
Drawings in Royal Astronomical Society Archives?
Richard Christopher Carrington – 1853 Redhill, England.
Observations from November 9, 1853 to March 24, 1861.
1,215 drawings.
4.5-inch, f/11 refractor.
Observation method: eyepiece projection, 11-inch image.
Drawings in Royal Astronomical Society Archives?
Observations Published in: Observation of the Spots on the Sun, Richard Carrington, 1863.
Rev. Frederick Howlett – 1859 England.
Observations from 1859 to 1894.
766 drawings.
3-inch refractor.
Eyepiece projection method to screen, 32-inch image.[!]
Drawings are in the Royal Astronomical Society Library archives, London.
Johann Rudolf Wolf – 1866 Zurich, Switzerland.
Observations from 1866 to 1893.
7,000+ drawings?
80mm f/14 Fraunhofer refractor.
Observation method: Eyepiece projection, 25cm image.
Drawing example from Zurich (not Wolf’s).
Fr. Angelo Secchi – 1871 Rome, Italy.
Observations from 1871 to 1877
1,500 drawings.
Fr. Stephen Joseph Perry – 1875 Stonyhurst College Observatory, England.
Observations from 1875 to ?
Drawings in Royal Astronomical Society Archives?
P. Julius Fenyi, S. P., Haynald Observatory, Kalocsa – 1880 Hungary.
Observations from June 9, 1880 to May 13, 1919.
6,092 drawings by Fenyi, Schreiber, and other observers.
10 cm refractor.
Observation method: eyepiece projection, 22cm image.
Drawings archived at Heliophysical Observatory, Debrecen, Hungary.
Contact: Dr. Andras Ludmany
David E. Hadden – 1890 Alta, Iowa, United States.
Observations from 1890 to ?.
67+ drawings.
George Ellery Hale,Kenwood Observatory – 1891 United States. – 1891
Observations from June 27, 1891 to April 2, 1892.
58 full-disk drawings, 22mm or 50mm dia.
12-inch Brashear refractor?
Observation method: direct using attentuated eyepiece?
Original drawings in L.S.Webster collection.
Osservatorio Astrofisico Catania – 1893 Italy.
Observations from 1893 to present?
150mm, f/15 refractor.
Observation method: eyepiece projection.
Drawings in observatory archives?

Until Mount Wilson Observatory was built circa 1917, sunspot observations were accidental, dilettante, casual, curiosity, occasional, by product and definitely all of the above.
As Willis identified above, sunspot observations are not continuous nor rigorous. All subsequent attempts to torture sunspot records into confessing do not replace detailed records by a competent observer.

Reply to  ATheoK
February 12, 2015 12:56 am

Mods, my apologies for screwing up another quote comment.
If it helps and doesn’t cause you any grief; I missed the slash (/) for the closing blockquote in the paragraph just following the linked ‘Britannica dot com’ line.
e.g. currently at the paragraph end:
The Swiss astronomer Rudolf Wolf confirmed Schwabe’s discovery by searching through previous reports of sunspots and established the period as 11 years. Wolf also introduced what is termed the Zurich relative sunspot number, a value equal to the sum of the spots plus 10 times the number of groups, which is still used today. Much of the work at this time was carried out by wealthy amateurs such as Richard Christopher Carrington of Britain, who built a private observatory and discovered the differential rotation and the equatorward drift of activity during a sunspot cycle…”


That blockquote at the end of the paragraph should be a closing blockquote.
Sorry to be a burden. Please delete this request as it doesn’t aid the thread.

February 11, 2015 2:42 pm

http://www.sott.net/article/252523-Scientists-link-magnetic-reversal-climate-change-and-super-volcano-to-same-time-period
Along those lines the evidence is there for a link between the geo magnetic field -climate- geological activity and even extinctions of some species

February 11, 2015 3:10 pm

a the ok
The only point you are making is in the past solar variability is really unknown which really does nothing to prove or disprove solar/geological connections or solar/climate connections.
It proves nothing other then to show solar variability is unknown which is one of my points in my paper -how the climate may change.

Reply to  Salvatore Del Prete
February 12, 2015 12:42 am

“Salvatore Del Prete February 11, 2015 at 3:10 pm
a the ok
The only point you are making is in the past solar variability is really unknown which really does nothing to prove or disprove solar/geological connections or solar/climate connections.
It proves nothing other then to show solar variability is unknown which is one of my points in my paper -how the climate may change.”

You’re in denial Salvatore.
I laid out a short history of sunspot counters, along with their estimated counts and on which years those counts were made. Please note that years without observations outnumber years with observations.
Until the late 1800’s sunspots were not counted! Sunspots were curiosities for discussion, not counting spots. There are what amounts to incidental drawings with sunspots.
Accurate sunspot tracking did not occur until the modern observatory period beginning with Mount Wilson which came into fullness with satellites. Prior so called sunspot counts are casual occasional observations turned into assumed counts by someone else.
Casual observations are not definitive counts.
Third party assumptions of counts are not sunspot counts; they’re, at best, approximations.
Applying modern, satellite observations, standards to sunspot counts in retrospect does not form a basis for correlating sunspots to Earth geological processes!
If you are claiming that “solar variability is unknown”, than by your own admission, Earth geology relationships and responses to solar variability is anecdotal and technically unknown.
Variable ‘Cosmic Ray’ linkage to cloud formation is still in the process of proof
A modern sunspot record of a maximum one hundred years, (Mount Wilson 1917), makes it impossible to validate theory linking solar variability to Earth processes.
Theory remains theory, validation requires proof.
By the way, personally I believe there are a number of solar impacts to Earth; but that is belief without reasonable proof.

AJB
Reply to  ATheoK
February 12, 2015 1:05 pm

“Please note that years without observations outnumber years with observations.”
“Accurate sunspot tracking did not occur until the modern observatory period beginning with Mount Wilson.”
Cobblers. http://www.leif.org/research/SSN/Vaquero6.pdf (Slide 3 in particular).
Please stop your provincial nonsense denigrating not only the work of Rudolf Wolf but modern researchers too, it’s becoming tiresome.
Here is today’s “incidental drawing with sunspots”. Or perhaps you’d prefer that we discarded the international standard one here.
You can learn why it’s important to search out, preserve and align all this “accidental, dilettante, casual, curiosity, occasional, by product” data (including the discontinuity in 1947) here, starting with the first link on the page.
None of it has anything to do with volcanoes of course.

Reply to  ATheoK
February 13, 2015 9:01 am

AJB:
Leif slides reinforce a number of the points I made, e.g. slide 40.
No denigration of Wolf or his achievements is intended
Wolf initiated the beginnings of proper observation and recording. Still, he observed when he could, (clear skies), and how he could. Unfortunately, Wolf did not have access to modern technology nor reliably clear skies for making his observations.
Construction of Mount Wilson above the clouds ushered in modern observation of sunspots. Their ability to use a very superior piece of equipment every day to properly observe, chart and record made our current series of sunspot tracking possible and quite complete though sun specks are still argued over.
From Leif’s presentation you provided the link to, page 30.

“Conclusions (first part)
1) We think that we cannot use the backbone methodology in the early part of the sunspot number series.
2) Solar meridian observations should be used with extreme caution to evaluate past solar activity.
3) We have modified the HS 98 data base, improving the quality of the compiled data (we hope!)…”

Leif documents an excellent and high quality reconstruction regarding the observations of sunspots. His warnings above are clear and well stated.
That reconstruction can not reliably turn accidental observation into quality recording.
Accidental; e.g. an astrologist checks the sun’s position and notices spots then records the spots. Only when the astrologist happens to check the sun’s position.
Accidental; e.g. an amateur scientist notices the spots on the sun and tracks the spots believing they are observing a transit of mercury, venus or unknown planetoid. This observation comes when the amateur has free time, not as an occupation.
Even after the sunspots were proved and planet transits disproved, observations were not the results of dedicated scientists whose occupations required regular observations. Until Rudolf Wolf at the Bern Observatory, intrigued by Schwabe’s observation that there was a ten year cycle in sunspots, did he make sunspot observations required science.
From: American Association of Variable Star Observers (AAVSO)

“…It is said that Wolf would have preferred to measure the areas covered by the sunspots rather than their number (Waldmeier, 1961), but the methods and equipment of the day were not adequate for this task [2]. As an alternative, he developed an index based on the number of spots and spot groups (clusters of related spots). Working with a polarizer-equipped 8cm, f/14 refractor at 64x and recognizing that groups of related spots were more closely tied to his desired area measure than individual spots, he chose to weight the groups more heavily than the spots in his index. He also chose to exclude in his daily observations those small spots and pores that were visible only under excellent seeing conditions…”

.

Reply to  ATheoK
February 13, 2015 9:10 am

To keep the sunspot series more homogeneous, sunspot counting has always been and still is done with small telescopes, so the availability of modern technology [Mt. Wilson, satellites, etc] is not and has never been an issue: it is simply not used. To repeat: sunspots are deliberately counted with small telescopes of aperture between 8 and 15 cm. Larger telescopes simply amplify the problem of ‘seeing’ so are also for that reason not used. The telescopes used by Wolf still exist and are still being used.

AJB
Reply to  ATheoK
February 14, 2015 1:31 am

ATheoK. You are confusing the pre-Staudacher era with what came later. Thanks Leif, that is precisely the point.

rgbatduke
February 11, 2015 3:12 pm

Now, Michele’s claim was that most of the eruptions occurred during periods of low Group sunspot numbers … and he’s right. Of the 30 eruptions, about three-quarters of them occur when Group sunspot number is below forty.
But the part he didn’t take into account was that most of the Group sunspot record is made up of periods of low Group sunspot numbers. And of course, with a small dataset of only 30 eruptions, the 98% confidence intervals are very wide. As a result, none of the results are even slightly significant.

BTW, I forgot to agree with this in its entirety. The conclusion is completely silly.
Willis, I repeat: If you take the eruption count (say) and divide by the sunspot index (say) you’ll get the probability of having an eruption given the index, the “rate” of eruptions per value of index. This will flatten the curve out. This is basically doing the same thing that one does with epidemiology in general — the raw curve showing the number of eruptions for a given sun activity level is irrelevant without knowing how much time the system spends at that solar activity level. The fundamental question is whether or not eruptions are more probable at some activity level than at some other, not whether or not they are uniformly distributed in time and hence naturally occur most frequently in the most common solar state.
If you normalize in this way, you can do a K-S test on the resulting distribution against uniformity and come up with an actual p-value for the null hypothesis of no correlation. Obviously, as was the case last time, it is going to be around 0.7 or 0.8, nowhere near the <0.05 needed to THINK about rejecting the null hypothesis, and that's before one looks at the error bars which all by themselves make the issue moot.
This (to me) is not surprising. The Earth is large and far away, and I can think of no possible coupling between solar activity — especially LOW solar activity — and major vulcanism. Well, that's not quite true. I can think of exotica — lower solar magnetic activity means less screening from extraplanetary radiation. More incoming radiation means more upper atmospheric pair-producing collisions, including collisions that make pions that make muons. More muons mean more muon catalyzed fusion events. On the surface this is completely unimportant, but more fusion events in the core could release more heat, which could cause more volcanoes. The problem is that I think this is almost absurdly unlikely to be true — it's out there with Olson's dragonslayer stuff, especially given that muons have little penetrating power (charged particles), pions ditto (charged particles), and so I can't see why or how enough muons would penetrate deep enough into the mantle to increase either heat production or movement of magma, especially locally.
So aside from science fantasy explanations, it is a bit difficult to see why there would be any sort of solar magnetic signal in Earthly volcanic eruptions. We're talking enormous amounts of energy. Tambora was arguably the most powerful explosion on the surface of the Earth in recorded history, including the Tsar Bomba superbomb exploded by the Soviets during the cold war. This is caused by a quiet sun? I don’t think so.
rgb

Jay Hope
Reply to  rgbatduke
February 14, 2015 1:23 am

Thanks for that link, AGB.

Jay Hope
Reply to  Jay Hope
February 14, 2015 1:25 am

Sorry, meant to write AJB.

Mark
February 11, 2015 3:24 pm

Some places in Germany are very sunny. Freiburg averages ~3 hours per day throughout the year so a dedicated observer could fill in a lot of entries…

February 11, 2015 3:31 pm

rgb- the data says otherwise.

Tom in Florida
Reply to  Salvatore Del Prete
February 11, 2015 4:55 pm

From the conclusion of the link: “It is expected beginning at any time and during the next twenty years of the solar hibernation, that potentially historic volcanic eruptions are likely globally and similarly record setting new earthquakes are likely within the continental United States.”
It is now 5 years since this was published, how many historic volcanic eruptions and record setting new earthquakes have been recorded so far?

February 11, 2015 3:42 pm

My final comment is the ones that are in denial of solar/climate connections are going to remain so no matter how much data is thrown at them, and will go to any lengths to prove their absurd assertions.
The test is likely coming soon as this prolonged solar minimum kicks in and then we shall see. I plan on being correct on every single point I have made.

Jay Hope
Reply to  Salvatore Del Prete
February 14, 2015 1:27 am

I agree with you, Salvatore!

February 11, 2015 6:57 pm

Speaking of volcanoes, here is a shot of an erupting volcano at McMurdo base in Antarctica. How many ice cubes lost their little lives from this terrible act of nature?
..http://earthquake-report.com/2013/05/27/wordwide-volcano-activity-copahue-volcano-chile-alert-raised-to-red/

Rob Beckett
February 11, 2015 7:06 pm

Willis,
The Thirty Years War (1618 – 1648). With ragtag armies rampaging around central Europe, raping, pillaging and burning, counting sunspots might not have been at the top of the list of things to do today.
Maybe there’s a correlation between wars and low sunspot count.
Your tenacity in digging through data is amazing, thanks very much.
Rob Beckett

Mike the Morlock
Reply to  Rob Beckett
February 11, 2015 8:13 pm

Oh yes there is a correlation, generals who learn to adapt to change win (M.M)Those who do not have have their armies reduced to rage-tag mobs that freeze and perish in the winter as the mercenary general Mansfield http://en.wikipedia.org/wiki/Ernst_von_Mansfeld
Wallenstein is the other side of the coin.
http://biography.yourdictionary.com/albrecht-wenzel-eusebius-von-wallenstein

Steve Garcia
February 11, 2015 8:36 pm

I can’t state it as fact, but this Willis statement I need to respond to. From what I’ve read when near the end of the Maunder Minimum they started spotting sunspots (no pun intended), what I’ve [read] is that the other observers were skeptical about the reports, because it had been so long without sunspots at all. I don’t recall the exact numbers but there were approximately a dozen sunspots observed over a period of 70 years or so. I make no pretense that those numbers are exact, but in principle, that is what I’d read.
I’ve moved and the source of that is a book that I’ve lost track of, but the subject of the entire book was the history of sunspots.

February 12, 2015 4:04 am

The lack of credible consecutive daily sunspot records, IMHO, has relatively little impact on proving the existence of the Maunder Minimum (1645-1715) because the Sun rotates on its axis once every 27 days or so. So roughly 95% of the spots that were there yesterday will be there today. Sampling even once a week would be enough to get a fair estimate of the overall activity level. Hard to imagine that even if sampled sporadically, over a period of 75 years, that any ‘normal’ episodic activity would be missed.
It is remarkable that the MM coincided very closely to the life span of Isaac Newton (1643-1727), who built the first reflecting telescope in 1688 and also showed that sunlight can be split into a spectrum using a glass prism.
So it is curious that Newton did not study sunspots to follow up on the recorded sunspot observations of Galileo (who died the year Newton was born). I think that lends support to the existence of the MM.

Reply to  Johanus
February 12, 2015 4:19 am

… hmm, it seems I have ‘misremembered’ that Galileo died on 8 January, 1642 and Newton was born on 4 January, 1643

Eric
February 12, 2015 4:07 am

Curious, can we measure the gravity that is affecting the earth from the mass of the sun and the planets? Does any of that change? I was wondering if something could pull on the earth, like the moon on the oceans, affecting the magma deep within the earth.

February 12, 2015 9:27 am

The proximate cause of volcanic activity on earth is shallow lineations of molten rock that appear to act as spreading centers.comment image
These lineations are not convincingly supported from below. At even 100km the “ridges” are only marginally distinguishable from the “trenches”. At the 600km discontinuity only tiny possible venturi from below remain and the more so at 1000km. Near the CM boundary at 2800km all that remain are these two massive extrusions from the core called LLSVP’s.comment image
These dudes look like this and I call them the doughboys. There is one under Africa and another in the middle of the Pacific Ocean. They flatten out at the 660km discontinuity like thunderheads hitting the stratosphere.
The point of all this in this context is that any magnetic or quantum response in the core or mantle would seemingly take far to long to filter through a maze of offset venturi in a substantially stratified mantle to respond to sunspot cycles. It is not even clear that deep earth energy is feeding the ridge system.
A further point is that we really have no idea what IS energizing these shallow lineations of molten rock and if we are going to look at sunspots, electromagnetic storms or whatever music of the spheres in relation to volcanic activity, these guys are the modulators. they may hold the key to a LOT of other stuff too.

February 12, 2015 10:26 am

http://adsabs.harvard.edu/full/2003ESASP.535..393S
Another study which shows a linkage between solar /volcanic activity.
One thing to remember , the plates are unstable to begin with as well as the structure of the earth in volcanic/earthquake fault areas in that any added catalyst or force no matter how slight might be enough to push existing unstable conditions over the edge more often then not resulting in greater geological activity. force or catalyst is not present.
I can see how MUONS can accomplish this especially when the geo magnetic field of the earth is weak and or subject to shocks via strong solar activity in an otherwise prolonged solar minimum period. A recent HONG KONG solar research paper recently investigated this and concluded that MUONS could excite the calderas of certain volcanos especially in the higher latitudes at times of prolonged solar weakness. I might add perhaps exasperated by geomagnetic conditions.
I for one go with the data and always try to make my explanations conform to what the data presents, rather then try to make the data conform to my explanations. The data shows a correlation as to why I gave it my best estimate in the above.

February 12, 2015 10:28 am

corrected text below
One thing to remember , the plates are unstable to begin with as well as the structure of the earth in volcanic/earthquake fault areas in that any added catalyst or force no matter how slight might be enough to push existing unstable conditions over the edge more often then not resulting in greater geological activity.
I can see how MUONS can accomplish this especially when the geo magnetic field of the earth is weak and or subject to shocks via strong solar activity in an otherwise prolonged solar minimum period. A recent HONG KONG solar research paper recently investigated this and concluded that MUONS could excite the calderas of certain volcanos especially in the higher latitudes at times of prolonged solar weakness. I might add perhaps exasperated by geomagnetic conditions.
I for one go with the data and always try to make my explanations conform to what the data presents, rather then try to make the data conform to my explanations. The data shows a correlation as to why I gave it my best estimate in the above.

Verified by MonsterInsights