Guest Post by Willis Eschenbach
Well, as often happens I started out in one direction and then I got sidetractored … I wanted to respond to Michele Casati’s claim in the comments of my last post. His claim was that if we include the Maunder Minimum in the 1600’s, it’s clear that volcanoes with a VEI greater or equal to 5 are affected by sunspots. Based on my previous analysis I figured “No way!”, but I thought I should take a look … and as is often the case, I ended up studying something entirely different.
Now, the SIDC monthly sunspot record that I used in my last analysis starts in 1700. Prior to that the only sunspot numbers available are a “reconstruction” by Hoyt and Schatten called the “Group Sunspot Number”, which is the dataset used by Michele. The Hoyt/Schatten Group sunspot data is available here. Now, as Leif Svalgaard has discussed here on WUWT, the SIDC sunspot numbers are in the process of being revised to remove an incorrect offset due to a change in the procedures in 1947. The result will be that the pre-1947 sunspot numbers will be increased by 20%. Figure 1 shows both the unrevised and revised SIDC annual average sunspot numbers, along with the annual average Group Sunspot numbers.
Figure 1. SIDC unrevised (black), revised (dotted blue), and Group (red) annual average sunspot numbers.
Several things are apparent. First, in the Group sunspot numbers (red) you can see what is called the “Maunder Minimum”, the period where there are no or few sunspots from about 1645 to about 1715 or so.
Next, although the Group sunspot numbers are a very good fit to the SIDC unrevised numbers since about 1880, prior to that the Group sunspot numbers are consistently lower, and sometimes much lower, than the SIDC unrevised numbers.
Next, the early sunspot data in the Group number dataset looks … well … odd …
Seeking to understand what made the early part of the Group sunspot number so odd, I decided to look at the most detailed underlying data. These are the individual daily observations of sunspots. When I did so, there were various strange and interesting aspects. Figure 2 shows the daily data, along with an indication of which days have missing data.
Figure 2. Group daily sunspot numbers, 1610-1995. The vertical light blue lines each represent a missing day.
There are some quite bizarre things about this dataset. First, the amount and the location of the missing data. A number of months have no data at all, and many are missing data. Prior to 1643, and also between 1720 and 1800, about two-thirds of the data is missing (65% and 66% missing respectively). During the “Maunder Medium” period between the two light blue areas above, however, only 3% of the data is missing … three percent?
And does anyone but me find it strange that there is very little data prior to 1635 or so, but what data there is shows normal sized sunspot cycles. Then we have a period that exactly coincides with the Maunder Minimum, where we have almost no days of missing data. Finally, from about 1720 on, we again have very little data … but what data there is shows normal sized solar cycles.
Say what? Why is there great data that exactly coincides with the Maunder Minimum? Does anyone find that even vaguely unusual?
Well, I found it very unusual. So I went to take a look at the underlying records. It just kept getting stranger. The numbers of sunspot groups observed is given here on an observer-by-observer basis. Looking through the entries for peculiarosities, I got to 1632, and I found the records of J. Zahn of his observations of sunspot groups made in Nuremberg, Germany. Figure 3 shows the observations of Herr Zahn in 1632:
Figure 3 Individual observer’s record used in the calculation of the Group sunspot number. A day when no observations were made is given the value of -99, and a day with observations made but no sunspots observed is given the value of zero.
I’m sorry, but given the reality of clouds and the fact that Germany is a ways north of the Equator, I’m not believing the idea that in the year 1632 in Germany the sun could possibly be observed in enough detail to count sunspots on every single day of the year. That’s simply not on. Never happened.
And sadly, the 1632 record is far, far from an isolated example. It’s just the first one I came across. Once I looked further I found that there are no less than FORTY-FIVE such observer’s reports claiming valid observations of zero sunspots every single day of the year … and I’m absolutely not buying a single one of them, even if they’re selling at a deep discount.
And when do these bogus records occur? Well, guess what? Forty-four of the forty-five such strange yearly records occur during or just prior to the “Maunder Minimum”, with one final lonesome yearly record of all zeroes in 1810.
I would suspect that what’s happened here is that Herr Zahn used the same symbol for “no observations attempted” and “no sunspots observed”, However, that’s just a guess. More importantly, whatever the reality might be, I’d say that including those impossible records is a major reason for the claims that the Maunder Minimum is so deficient in sunspots.
The next oddity in Figure 1, once I’d wrapped my head around the claim of being able to count sunspots on every day of the year, was the fact that the early data from about 1610 to about 1720 almost all occurs in even intervals of 15 sunspots, at e.g. 15,30, 45 sunspots and so on. Then after that, there is evenly spread data from about 1720-1750.
And then, after 1720, there is a section where once again the data almost all occurs in even intervals … but in that case the intervals appear to be 24 sunspots.
I suspected that this reflected the fact that each group of sunspots is counted as a certain number of individual spots. And upon checking records of the group counts against the Group sunspot number, I find this is the case, and there’s no problem with that … but bizarrely, the number keeps changing. In 1610, each group was counted as 18 sunspots. Then for a number of succeeding years each group was counted as 15 sunspots … until around 1720 when it was changed again, and after that, one sunspot group is counted as 12 individual sunspots. Not 24 sunspots as appears to be the case from Figure 2, but 12 … odd all around.
But wait … there’s more. Here’s the same data in Figure 1, but this time showing the annual Group sunspot numbers (red) and the annual SIDC sunspot numbers.
Figure 4. Daily (gray) and annual (red) Group sunspot numbers, along with the annual SIDC sunspot numbers (blue). Vertical light blue lines mark every day that has no data.
Now, take a look at the first three sunspot cycles just after 1700 … as you can see, the Group sunspot numbers greatly underestimate the apparent size of the actual cycle. How did this happen?
Well, it’s a curious answer that can be understood by an early year of the data, 1614. In 1614, the annual average is given as 121 sunspots. This can be seen in the red line above in Figure 4.
But when you look at the data for 1614, care to guess how many days of data there are for the entire year?
Well … um … er … not to put too fine a point on it, but there is exactly one day of the year [1614] that has data.
One day’s worth of data , and the sunspot count for that day? Well … 121 sunspots.
Now, to me, that’s bull goose loony. Including a yearly average when there is only one day’s data for the whole year? Sorry, but that’s meaningless.
But wait, it gets stranger. According to the daily data, there’s exactly one day’s worth of data in 1610, with a value of 72 sunspots. That day is in December. But according to the monthly data files, there are TWO months with data in 1610. December [1610] has an average of 72 from the one data point, but the monthly data for February also has an average, in this case zero. So the average for the year is the average of two months, which is 36, and which can be seen as the first data point in the red line in Figure 3 above …
That’s not all. In many years, despite there being no daily data of any kind, we still have both monthly and yearly averages. Here’s a graphic that shows the difference.
Figure 5. Annual and average-of-daily Group sunspot numbers.
You can see the data for 1610 I discussed above, one day’s observation of 72 sunspots and the annual average of 36 sunspots. But the hole keeps getting deeper and deeper. Look, for example, at 1636. According to the daily data, there’s not one single observation for the whole year. But according to the monthly data, EVERY SINGLE MONTH has an average of zero sunspots. And the same is true for 1637, 1641, 1744, 1745, and 1747 as well. In each case there are no observations in the daily data, but there are 12 months of zeros in the monthly data. And this is backed up by the raw observer data files. There are no observers at all listed for [1636] and [1637], no observers and no data … but despite that the monthly and yearly averages claim zero.
A final math note. Rather than average all of the days in the year, their “yearly average” is actual an average of the monthly averages. In some cases this leads to strange results. For example, in some years there are a dozen or so observations in a single month, and only one observation during the entire rest of the year. Obviously, an average of the monthly averages will give a very different answer than averaging the individual data.
I gotta say … these numerous shenanigans with the data make me very suspicious about the whole Group Sunspot Number dataset. When I find entire years where there isn’t a single daily observation, but despite a total lack of data the monthly averages for that year are all zero and the yearly average is also zero … well, that makes me wonder about the entire idea that the “Maunder Minimum” is as extreme as is depicted by the Group Sunspot numbers.
In any case, as I said, I started out to look at Michele’s claim about eruptions in the Maunder and I got blind-slided off the path by the oddities of the Group sunspot number. I couldn’t use either the daily or the monthly Group sunspot numbers to compare with the eruptions, because a number of them didn’t have any sunspot data for either the day or the month. So I used the annual average Group sunspot number to compare to the eruptions. I didn’t splice the Group dataset like Michele did, I dislike spliced datasets, so I figured I’d see things as if the Group dataset were real. To start with, Figure 6 shows the dates of the eruptions overlaid by the daily Group sunspot number …
Figure 6. Large eruptions (VEI >= 5) and daily Group sunspot numbers.
Looking at just the vertical red lines showing the eruption dates, you can see the “clumpiness” of nature that I’ve remarked on before. However, there doesn’t seem to be any obvious correlation between sunspots and eruptions. So I turned to the histograms showing the distribution of the annual Group sunspot numbers on the dates of the eruptions, and I compared that eruption distribution to the distribution of all of the Group sunspot numbers over the entire period. Figure 7 shows that relationship:
Figure 7. Comparison of the distributions of the sunspot level during the eruptions (gold) and the distribution of all of the Group sunspot levels. Numbers at the top of the gold bins show the count of eruptions in each bin.
Now, Michele’s claim was that most of the eruptions occurred during periods of low Group sunspot numbers … and he’s right. Of the 37 eruptions, about seventy percent of them occur when Group sunspot number is below forty.
But the part he didn’t take into account was that most of the Group sunspot record is made up of periods of low Group sunspot numbers. And of course, with a small dataset of only 37 eruptions, the 98% confidence intervals are very wide. As a result, none of the results are even slightly significant.
So no, I’m afraid that the Group sunspot number, as terrible as it is, still doesn’t show any relationship between sunspots and big eruptions …
Conclusions? Well … my main conclusion is that whenever you see the word “sunspots” in a scientific study, hold tight to your wallet and check the datasets very, very closely. There may indeed have been a Maunder Minimum … but the Group sunspot number dataset is so bad that we can’t conclude anything from it regarding the Maunder or anything else.
My best wishes to everyone,
w.
AS ALWAYS: If you disagree with someone, please quote the exact words you disagree with, so that we can all understand what you are objecting to.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
I don’t think cloud cover is necessarily a bar to having a reasonably accurate record of sunspots in the 17th century. After all, sunspots to not appear and disappear in the space of a single day or two, do they? Don’t sunspots often hang around until they revolve out of sight round the other side?
Indeed they do, and most intervals without observations in the 17th century were short, less than a week.
marchesarosa February 11, 2015 at 4:42 am
tty February 11, 2015 at 5:10 am
Not according to the Group sunspot folks. According to them, you could measure and record sunspots every single day of the year, year after year. That’s the part I found unbelievable.
w.
Read my post below, please. The reason for the “every day of the year” records is explained in the referred paper.
Thanks for that reference, tty. Although as you say “the reason for the “every day of the year” records is explained” in that document, it still makes no sense. According to the document, if someone says “I looked for sunspots from January to December and found none”, that is interpreted as looking every single day of the year … still not possible no matter what the explanation.
w.
Even more to the point, you mentioned there were no observers listed. No observers == no counts.
I think of Piers Corban when sunspots are mentioned.
Corbyn gets it right most of the time!
Jay Hope February 11, 2015 at 6:56 am
Corbyn claims he gets it right most of the time … like the time he said there was a 50& chance of a cyclone forming, and when no cyclone appeared he claimed success. True story. Or the time he said there would be wildfires in Colorado, and claimed success when there were wildfires in Arizona …
Then there’s the time when, after challenging people to bet with him about rain at the Olympics opening ceremony in London, he chickened out and wouldn’t bet with me …
Sorry, Jay, but Piers is like the astrologers. He makes his predictions vague enough that he can almost always claim success. See Anthony’s post here and my succeeding post here for the ugly details …
w.
PS—Please don’t say, as so many have, that he must be right or people wouldn’t pay him. Look at the numbers of people paying astrologers around the world, that argument doesn’t hold water.
Willis:
I strongly recommend that you read this paper:
Title: How Well Was the Sun Observed during the Maunder Minimum?
Authors: Hoyt, D. V. & Schatten, K. H.
Journal: Solar Physics, Volume 165, Issue 1, pp.181-192
http://articles.adsabs.harvard.edu//full/1996SoPh..165..181H/0000181.000.html
It explains the nature and quality of the data. The years with all zeroes are from observers that only reported seeing no sunspots during the year despite looking for them but did not identify which specific days they observed the Sun, they are of course “minimum estimates” only.
“minimum estimates”
The first instance of data in-filling in science?
The “infilling” was actually done 350 years later. However it was done with a lot more care than is normal in climate science. Read the paper.
Thanks, TTY, but your link goes no where.
And when someone says they didn’t see sunspots but didn’t identify which days they looked, converting that into a claim that they looked every single day and didn’t see any sunspots is a joke.
w.
I did track down your reference, many thanks TTY, it’s here. Very interesting.
w.
Read the paper please! They give minimum and maximum estimates with and without these records and a “best estimate” based on how many days the sun was probably visible during a year and the probability that a sunspot would be missed. They also note that most recorded sunspots were noticed almost immediately they became visible suggesting that the Sun was fairly closely observed.
Remember that these records are more than three hundred years old. Not all original notes have survived, but when known skillful astronomers like Heveliusz reported that they had watched the Sun carefully during a particular year without seeing a single sunspot it certainly has some weight. Particularly as he reports specific days in other years when he did see sunspots.
And also note that more than one visible sunspot at a time was quite unusual.
Unfortunately WordPress truncates links at multiple dots, so you have to copy the whole link into your browser for it to work.
Willis Eschenbach February 11, 2015 at 10:48 am
tty February 11, 2015 at 10:58 am TEN MINUTES LATER
Dang, dawg, give me a few minutes to digest it … I’m now looking at the original docs to see the backup data from their paper. Most interesting, as I said. I’ll produce my own analysis of the data when it’s done … but it’s gonna take more than ten minutes …
Best to you,
w.
In sunspot counting during the MM, considering only rare appearances exact date is nice but not critical, quoting a month is adequate..
That’s not correct about Corbyn. My uncle is a client of his as he needs to get reliable weather forecasts for his farming. Over the last two and a half years, Corbyn’s predictions have been spot on, most of the time. My uncle is a very down to earth and practical guy, and he would not pay someone who didn’t deliver the goods. And he doesn’t believe in astrology! 🙂
Corbyn doesn’t claim to get it right all the time. He even states that on his website.
There is also this but very interesting old article, by John Eddy
http://www.predsci.com/ESWE-workshop/session2_9/The%20maunder%20minimum.pdf
Very interesting, indeed. I have always found the extremely low sunspot numbers during the LIA quite spectacular and somewhat unbelievable, especially when coupled with the lack of telescopes in the earlier years of the dataset and no standard for how sunspots are recorded. This analysis leads to a couple of potential conclusions:
1. That if the LIA indeed occurred as is evidenced by anecdotal evidence from that period, then the extremely low sunspot numbers recorded during that time are highly anomalous and unlikely to be repeated. However, Willis has shown that the dataset has serious problems which draws this conclusion into question. Or,
2. The cooling experienced during the LIA as is evidenced by anecdotal data occurred with sunspot numbers quite likely much higher than those exhibited by the dataset. Put another way, if indeed cooling is associated with periods of low sunspot activity, it doesn’t take the phenomenally low numbers of the Maunder Minimum to result in significant cooling. This does not bode well for the current period of relatively low sunspot activity.
Of course, I also must admit that there is the possibility that, given the poor quality of the earlier portions of the dataset, cooling is not associated with low sunspot activity at all. I’m sure some will find that heretical, but it is a conclusion one must concede when the dataset has such obvious deficiencies.
Agree
You know, I got to thinking about the same thing after I posted. I wonder if increased cloud cover in a cooling world impacted the ability to observe sunspots directly. Think about what it would take to see frosts/freezes in summertime like the anecdotal information suggests.
It might be added that the existence of the “Maunder minimum” is confirmed by higher levels of radionuclides (e. g. 7Be, 10Be, 14C) in ice-cores and tree-rings from c. 1645-1715. This of course does not directly “count sunspots”, but it shows that the solar wind was significantly weaker at the time.
100%
Very true. Didn’t William Herschel notice that the price of wheat was higher when sunspots were scarce? I think he did a lot of research into it, and used Adam Smith’s Wealth of Nations to get the data. Interestingly, he got lampooned for it. Nothing changes. 🙁
For thousands of years the sun has been gazed at by Intelligent observers.
The people then, were as intelligent then as now.
Though I think more practical.
If some one from China or the 1600 Germany observed sun spots.
Then I would have thought that Common sense would prevail.
Thus have look at the sun count sun spots, keep record.
Nothing different to see nothing different to record.
To arbitrarily say that they were not interested, or sun spot observation was of little value is invalid.
Then why keep any record.
I agree. It’s very unscientific to suggest that they were not interested!
Actually 17th Century astronomers often seem to have become rather excited when they did see sunspots, and reported on it to their colleagues. Which tells you that they can’t have been common.
Remember most of these astronomers were skillful and careful observers, and that astronomers are uniquely subject to ex post facto control. If an astronomer fubbed the time he saw an occultation, or how long an eclipse lasted, or the attitude of Saturnus rings on a particular day, it can easily be checked, even centuries afterwards.
In the first half of the year, the earth is moving away from the sun. Hence the gravitational dynamics are different in H1&H2. God only knows how, but some physical link with volcanoes isn’t entirely crazy.
As regards sunspots, I think I’m right that the Sunspot cycle is related to the Orbit of ?Jupiter?, which is the main influence of the movement of the sun around the Solar system barycentre. If the sunspot cycles relate to the position of the sun relative to earth, again some link it not neccesarily nuts.
Idle speculation, but at least relevant!
R.
Reblogged this on The Next Grand Minimum and commented:
Maybe there was a Maunder Minimum and may be it was only the result of some missing data. Willis Eschenbach, does the analysis.
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1897240
http://cna.uop.gr/Student_Papers/eureka2011-paper18.pdf
[Good links but it would help the readers here if you could give some supporting narrative as many will just go past the links when presented like this . . thanks . . mod]
Spot on Mod!
It has been mentioned in passing, but I think it should be emphasized: DON’T START AN ANALYSIS OF DATA UNTIL AFTER YOU REVIEW THE VALIDITY OF THE DATA!! After Anthony’s Site Review, after all the adjustments to temperature records that somehow ALWAYS end up making the past colder and the present (and future, of course) warmer, after ignoring the data comparing digital vs glass thermometers, after…(the list could be very extensive), there is no wonder left to wonder about why the predictions of “climate science” based on inconsistent, over-manipulated and frequently uncalibrated data don’t come to pass. And please note that Willis didn’t say the observations were bad, only that the data record makes it difficult if not impossible to analyze it meaningfully without a whole big bunch of caveats and assumptions.
Sigh. This is why I don’t take anything in the “climate data” Universe too seriously before (at the earliest) 1950, if not 1965 or 1980. It’s not that there aren’t good records to be had prior to that time, it’s just that there are ten years of apples, then twenty years of kiwi fruit, then a decade of rutabagas, before eventually settling in on oranges for a while. Then people play these enormously entertaining games trying to “renormalize” oranges to rutabagas, rutabags to kiwi, kiwi to apples, and then publish a “climate record” that spans the ranges of fruit (and a few odd vegetables) as if it is something other than the idle amusement of a bored speculator, usually portraying it without the error estimates that would reveal the silliness of it all.
And it isn’t just Michael Mann (although he is arguably one of the most infamous of the lot, filtering out trees that match his beliefs in the present and that just happen to correspond to his beliefs in the past as well). This happens with sunspots, the temperature record, carbon dioxide either directly measured or known through proxies, the list goes on.
Occasionally one does encounter some decent science done with adequate instrumentation (by which I mean instrumentation that one can probably trust to be sufficiently precise and accurate and wielded by individuals who knew what they were doing and kept careful records) that can be used to create a reasonably reliable picture over as much as 150 years — prior to the mid-late 19th century I don’t think much of either instrumentation or physics, although again there were a handful of places doing good work back then. Lief has presented some of that regarding the record of solar activity, trying very hard to rationalize apples with rutabagas and kiwis — the same record type (e.g. sunspot counts) made by different observers who discretely changed the criteria (as different observers will) vs objective e.g. magnetic data where all one has to do is worry about the quality of the apparatus compared to the measurement being made and the competence of its user to make it with LESS room for judgement and interpretation. But a lot of climate science is reduced to “We know the thermometric temperature in a handful of places in Europe and Asia, which permits us to estimate what the global average surface temperature was in (for example) 1790.” Excuse me, sorry, I meant estimate the global average surface temperature anomaly in 1790, or 1850, or whenever, since we cannot estimate the global average surface temperature to within one whole degree C even now.
And of course, this is true. If one has a small sampling of data from a remote date, if one has a small mountain of assumptions (some of them based on data themselves), one absolutely can make an estimate on the basis of that small sample. That’s not the problem. The problem is estimating the probable accuracy of the estimate.
Two examples:
a) Forget the past. Let’s consider the present. I live in North Carolina, so let’s consider North Carolina’s temperature record as a proxy for global average surface temperature. I’ll start by looking here:
http://en.wikipedia.org/wiki/U.S._state_temperature_extremes
and discover that NC’s high temperature record was set in 1983. I remember that year — hot as hell, dry, miserable. I then look over at the low temperature record and note that it was set in 1985. OMG! Global cooling, over just two years! Disaster looms!
OK, so that’s maybe cheating. Let’s take the state average temperature record:
http://www.nc-climate.ncsu.edu/climate/climate_change
where there is a lovely graph. I quote from the text:
(I offer this, BTW, as evidence to counter the oft-repeated claim that all climate scientists are corrupt. That is an absolutely honest, and correct, assessment, on a public climate website run over at NC State.)
Now let’s run this backwards. The warming post-1970’s corresponds pretty well to the presumably accurate global estimates over the same period — in fact, it might be a bit greater, as the 2 F range from the mid-1900s to the present is a bit over 1 C and hence is a bit LARGER than global warming estimates. This means that it is a good proxy for the first half of the 20th century back to maybe the 1880’s. And behold! No Warming over this period! Crisis over.
This is precisely equivalent to the reasoning used to form global temperature estimates from the increasingly remote past, with increasingly sparse data coverage, and — note well — does not correct for the UHI effect. So I’ll simply point out that there is ample direct evidence that the “official” weather stations located at places like RDU or sometimes even downtown in major cities consistently return temperatures 1 to 2 F higher than they are in My Back Yard at exactly the same time. Or if you prefer better data, one can look at the temperature field returned by personal weather stations hooked into the weather underground relative to the “official” records. That isn’t to say that there hasn’t been any real warming in NC since 1965, only that the average temperature produced by the “official” temperature measurements for the state are almost certainly strict upper bounds to the actual average temperature across the state, with a probable high-side error of a half-degree C or so. There are many possible causes of this — actual UHI, re-siting of thermometers at airports, local GHE warming as building large impoundments near cities and increasing the number of cars and fraction of land surface devoted to parking lot and roadway by a couple of orders of magnitude all both heat the ground and air and then trap the heat in increased local humidity.
But how can one correct for this extrapolating into the remote past and using NC as a proxy for the entire globe? One can’t, not really, not without assumptions, not without introducing probable error almost as large as just saying “we really don’t know”.
b) The real world is too messy — all errors there are much larger because there are BOTH statistical errors AND method/measurement errors to consider. Let’s consider a very simple example that is purely statistical and Bayesian.
You are given a coin (by me) and wish to estimate the probability of getting heads, p, with a fair flip of this coin. (The probability of getting tails will be 1 – p, pure Bernoulli trials). You flip the coin and get three heads in a row. What is your best estimate for p?
The answer is: it depends entirely on your assumptions! If you assume that the “coin” is a sample pulled from a bag of coins that have p uniformly distributed between 0 and 1, you get one answer. If you assume that the coin is an actual coin more likely than not to be approximately fair, you get a different answer. But you don’t get to see how I prepared the coin! I might have specially crafted it to have p = 1 in an entirely non-random way!
Furthermore, whatever your estimate was based on your initial assumptions, the probable truth of those assumptions is also being tested during the experiment! At some point you would reject the notion that the coin was fair if it kept flipping heads, even though you can compute the probability that a fair coin might produce the sequence you observe and it isn’t zero and it is a one-shot universe where any substantially non-zero chance can and sooner or later probably does happen. Getting 32 heads in a row happens — once in 4 billion trials of 32 flips.
rgb
I have repeatedly made the point that one should bear in mind that we are discussing a system that has been going for some 4 billion years, so a trend of 20 or 30 or 40 years is unlikelyb to be significant. It falls within chance.
Getting 32 heads in a row happens — once in 4 billion trials of 32 flips.
Indeed, but it could happen in the first 32!
And the odds against that happening in the first 32 are about 4 billion to one.
What would the chance be of getting 32 in a row, if by the penultimate flip of the 4 billion 32 in a row had not yet occured…100% or no chance…being a betting man my money would be on no chance.
The only chance of it occurring on the last toss of 4 billion would be if the last 31 had been heads, in which case the odds would be 50:50, if the last 31 weren’t all heads then the odds are 0.
I believe it was Nicholas Nassim Taleb who pointed out that pragmatically the odds in this case are actually much higher than 50:50 due to the high probability that the game is intentionally or inadvertantly rigged.
I don’t think Taleb’s right in this case, why wait for 4 billion tosses before cheating?
There are other considerations that you can roll into whether the flip was fair or not. Coin size for example, physical dexterity of the subject doing the toss, etc. I used to collect lunch money in college and high school by reliably winning coin tosses. My preferred coins were fifty-cent pieces and quarters in descending order of preference (dimes and pennies are to small and light to reliably handle, nickles get iffy), A silver dollar (real silver) works even better. I have always figured that the results were controlled by 1) coin size, which correlates to coin mass, and thus to the rate at which the coin spins during the toss (your thumb is only so strong); slower spin means more consistent results, 2) the flip, which sets the rate at which the coin spins, 3) the height of the toss, which sets that precise number of times the coin turns in the trip (you don’t know what that rate is, but during a typical toss the count up and down are going to be very close to the same), and 4) the consistency of the height at which the tosser intercepts the coin on the return trip; if you can catch each coin at the same height and you toss to a consistent height, then the coin is in the same relative position each time. If you know which face was up at the toss, given the necessary conditions and physical skill, then you can call with much better than chance. You usually need a few practice tosses to “calibrate” and then you find your mark and eat lunch.
Did the increased number of volcanoes cause more clouds (or increase the haze in the atmosphere) thus making it more difficult to observe the sunspots?
There are other proxies (Carbon-14 and Beryllium-10) that suggest minimal activity during the Maunder, Sporter, Oort, and Wolf minima.
In any case, excellent work Willis about the data ‘quality’ of what I always assumed was an actual observational record.
So regarding the historical sunspot reference to Maunder-like climate conditions; the bar is not as low as we thought. All LIA predictions based on the near absence of sunspots, at face-value, would likely need to be adjusted to account for the likelihood that Maunder-like conditions can occur somewhere below the lowest reliable solar cycle/sunspot data, absent Maunder-like conditions, but they are not predicated on a number as low as previously believed. So where is the actual Maunder threshold? What is the new target? And now the modern era data (except for the Layman’s Sunspot) is further altered by over counting (specks). What a mess.
It may be that as sunspots became scarce, observers gave up looking for them. No use checking every day if you haven’t seen one for years. “Sunspots were rarely recorded during the second part of 17th century. Later analysis revealed the problem not to be a lack of observational data but included references to negative observations.” (Wikipedia) –AGF
I should have hit refresh, we were thinking along the same lines and I did not see your comment
That’s OK. Others beat me to it too.
Actually a lot of observers did check every day, and they didn’t give up. The number of observers, and the number of days with observations, negative or (rarely) positive increases during the Maunder minimum. For the first few years (1645-1653), there is indeed little data.
I can believe that “a lot of observers did check every day, and they didn’t give up.” What I can’t believe is that they actually were able to observe the sun every day. As a result, infilling the data to show that is an illegitimate procedure.
w.
Is it possible that there were no spots observed for several days where they could see the sun, followed by several days with no sun, then another sunny day observation with no spots? They may have assumed the intervening days had no spots?
Indeed. And this has to be allowed for, unless some observer elsewhere looked during the missing days. However sunspots normally last for several days, so one is unlikely to be missed if the break is shorter than about 6 days.
Note that the the observers were spread all over Europe, plus sporadic observations by jesuit astronomers in China.
Thanks for the “Link” tty. Was like being a kid again and seeing the names for the first time. Another thing when assessing the work of these early astronomers remember this was the onset of the “Enlightenment” Wheres the enthusiasm for discovery held no bounds. Everything was new, and a mystery to be solved
michael
Great Job,
I had links to Chinese sunspot data that went back thousands of years but all links I had no longer work. There were also a few good articles written(non peer reviewed) on the very old sunspot data but they are also no longer available.
Not sure If you have seen this but reconstructed solar going back 3,000 years.
Thanks.
http://www.co2science.org/articles/V17/N32/C1.php
Thirty Years War in Europe, 1618-1648, corresponds to a lack of data in the period. Maybe wars correlate with low sunspot numbers.
Actually there are quite a few sunspot observations during the 1610-1645 period. The drop comes after the 30 year war.
Luckily, there is the cosmogenic isotope data to use as a reconstruction for solar flux, though it’s not perfect either. This data suggests that the early sun spot count data is spurious as well, however, the Maunder Minimum is still there and there may have been a full solar cycle without sun spots near the end of the 17th century. Interestingly, the cosmogenic isotope reconstructions show that solar activity has been relatively high over the past century, within the top 10% compared to the last 11,000 years. Is anyone else eagerly awaiting solar cycle 25?
http://www.nature.com/nature/journal/v431/n7012/fig_tab/nature02995_F2.html
http://solarphysics.livingreviews.org/Articles/lrsp-2013-1/LR_min.png
Lief has made any number of comments on Ushokin et. al. on WUWT, and the long and the short of them are: probably not. That is, I do not think this figure is particularly well regarded by those working in the field any more, quite possibly including the original authors.
There are so many reconstructions but they all appear to be generally similar, to someone that is not a solar physicist that is. What part in particular is thought to be in error?
Good freaking Grief!!! Absolutely not!
In spite of the warmistas crying wolf, I’d much rather that my children and grandchildren suffer from warmth than cold.
The longer it takes the warmists to cry their pitiful cries, the longer the weather record grows.
Eventually someone, I hope an Inspector General, will investigate temperature records for accuracy of data collection, meta data, data storage, retrieval and presentation.
That may be the true start of accurate climate data. Please don’t wish for us to start freezing just for spite.
I said I’m eagerly awaiting solar cycle 25, not that I hope we’d all freeze. I’m not sure where you came to that conclusion.
@ur momisugly RWturner…I agree with you. This potential upcoming change should be an exciting time for science, as it will bring with it the opportunity for a leap forward in understanding of the system.
The data clearly shows low sunspot increase geological activity.
Perhaps this is the first example of ‘adjustments’ fitting the mission.
Willis, this is my presentation why don’t you come up with something better, since I am positive you do not agree with anything I have to say? Why don’t you address the questions I pose?
Again Willis, where you continuously fail is you keep trying to ISOLATE factors which influence the climate as if in a vacuum without looking at the whole spectrum of factors effecting the climate at that given time as well as the Initial State Of The Climate at that given time, which causes you to come up with your data which shows no cause and effect when in reality that can not be further from the truth.
Even in regards to the sunspot /volcanic correlation you go to great lengths to ISOLATE the data to make it fit your perception of how you think it should be not like it really is. What you do is ISOLATE the data and say ,see no correlation. Willis, it does not work that way and as this decade proceeds we will see who is correct and who is not correct.
Here is what I have concluded. My explanation as to how the climate may change conforms to the historical climatic data record which has led me to this type of an explanation. It does not try to make the historical climatic record conform to my explanation. It is in two parts.
PART ONE
HOW THE CLIMATE MAY CHANGE
Here are my thoughts about how the climatic system may work. It starts with interesting observations made by Don Easterbrook. I then reply and ask some intriguing questions at the end which I hope might generate some feedback responses. I then conclude with my own thoughts to the questions I pose.
From Don Easterbrook – Aside from the statistical analyses, there are very serious problems with the Milankovitch theory. For example, (1) as John Mercer pointed out decades ago, the synchronicity of glaciations in both hemispheres is ‘’a fly in the Malankovitch soup,’ (2) glaciations typically end very abruptly, not slowly, (3) the Dansgaard-Oeschger events are so abrupt that they could not possibility be caused by Milankovitch changes (this is why the YD is so significant), and (4) since the magnitude of the Younger Dryas changes were from full non-glacial to full glacial temperatures for 1000+ years and back to full non-glacial temperatures (20+ degrees in a century), it is clear that something other than Milankovitch cycles can cause full Pleistocene glaciations. Until we more clearly understand abrupt climate changes that are simultaneous in both hemispheres we will not understand the cause of glaciations and climate changes.
. My explanation:
I agree that the data does give rise to the questions/thoughts Don Easterbrook, presents in the above. That data in turn leads me to believe along with the questions I pose at the end of this article, that a climatic variable force which changes often which is superimposed upon the climate trend has to be at play in the changing climatic scheme of things. The most likely candidate for that climatic variable force that comes to mind is solar variability (because I can think of no other force that can change or reverse in a different trend often enough, and quick enough to account for the historical climatic record) and the primary and secondary effects associated with this solar variability which I feel are a significant player in glacial/inter-glacial cycles, counter climatic trends when taken into consideration with these factors which are , land/ocean arrangements , mean land elevation ,mean magnetic field strength of the earth(magnetic excursions), the mean state of the climate (average global temperature gradient equator to pole), the initial state of the earth’s climate(how close to interglacial-glacial threshold condition it is/ average global temperature) the state of random terrestrial(violent volcanic eruption, or a random atmospheric circulation/oceanic pattern that feeds upon itself possibly) /extra terrestrial events (super-nova in vicinity of earth or a random impact) along with Milankovitch Cycles.
What I think happens is land /ocean arrangements, mean land elevation, mean magnetic field strength of the earth, the mean state of the climate, the initial state of the climate, and Milankovitch Cycles, keep the climate of the earth moving in a general trend toward either cooling or warming on a very loose cyclic or semi cyclic beat but get consistently interrupted by solar variability and the associated primary and secondary effects associated with this solar variability, and on occasion from random terrestrial/extra terrestrial events, which brings about at times counter trends in the climate of the earth within the overall trend. While at other times when the factors I have mentioned setting the gradual background for the climate trend for either cooling or warming, those being land/ocean arrangements, mean land elevation, mean state of the climate, initial state of the climate, Milankovitch Cycles , then drive the climate of the earth gradually into a cooler/warmer trend(unless interrupted by a random terrestrial or extra terrestrial event in which case it would drive the climate to a different state much more rapidly even if the climate initially was far from the glacial /inter-glacial threshold, or whatever general trend it may have been in ) UNTIL it is near that inter- glacial/glacial threshold or climate intersection at which time allows any solar variability and the associated secondary effects no matter how SLIGHT at that point to be enough to not only promote a counter trend to the climate, but cascade the climate into an abrupt climatic change. The back ground for the abrupt climatic change being in the making all along until the threshold glacial/inter-glacial intersection for the climate is reached ,which then gives rise to the abrupt climatic changes that occur and possibly feed upon themselves while the climate is around that glacial/inter-glacial threshold resulting in dramatic semi cyclic constant swings in the climate from glacial to inter-glacial while factors allow such an occurrence to take place.
The climatic back ground factors (those factors being previously mentioned) driving the climate gradually toward or away from the climate intersection or threshold of glacial versus interglacial, however when the climate is at the intersection the climate gets wild and abrupt, while once away from that intersection the climate is more stable. Although random terrestrial events and extra terrestrial events could be involved some times to account for some of the dramatic swings in the climatic history of the earth( perhaps to the tune of 10% ) at any time , while solar variability and the associated secondary effects are superimposed upon the otherwise gradual climatic trend, resulting in counter climatic trends, no matter where the initial state of the climate is although the further from the glacial/inter-glacial threshold the climate is the less dramatic the overall climatic change should be, all other items being equal.
The climate is chaotic, random, and non linear, but in addition it is never in the same mean state or initial state which gives rise to given forcing to the climatic system always resulting in a different climatic out-come although the semi cyclic nature of the climate can still be derived to a degree amongst all the noise and counter trends within the main trend.
QUESTIONS:
Why is it when ever the climate changes the climate does not stray indefinitely from it’s mean in either a positive or negative direction? Why or rather what ALWAYS brings the climate back toward it’s mean value ? Why does the climate never go in the same direction once it heads in that direction?
Along those lines ,why is it that when the ice sheets expand the higher albedo /lower temperature more ice expansion positive feedback cycle does not keep going on once it is set into motion? What causes it not only to stop but reverse?
Vice Versa why is it when the Paleocene – Eocene Thermal Maximum once set into motion, that being an increase in CO2/higher temperature positive feedback cycle did not feed upon itself? Again it did not only stop but reversed?
My conclusion is the climate system is always in a general gradual trend toward a warmer or cooler climate in a semi cyclic fashion which at times brings the climate system toward thresholds which make it subject to dramatic change with the slightest change of force superimposed upon the general trend and applied to it. While at other times the climate is subject to randomness being brought about from terrestrial /extra terrestrial events which can set up a rapid counter trend within the general slow moving climatic trend.
.
Despite this ,if enough time goes by (much time) the same factors that drive the climate toward a general gradual warming trend or cooling trend will prevail bringing the climate away from glacial/inter-glacial threshold conditions it had once brought the climate toward ending abrupt climatic change periods eventually, or reversing over time dramatic climate changes from randomness.
NOTE 1- Thermohaline Circulation Changes are more likely in my opinion when the climate is near the glacial/ inter-glacial threshold probably due to greater sources of fresh water input into the North Atlantic.
PART TWO
HOW THE CLIMATE MAY CHANGE
Below I list my low average solar parameters criteria which I think will result in secondary effects being exerted upon the climatic system.
My biggest hurdle I think is not if these low average solar parameters would exert an influence upon the climate but rather will they be reached and if reached for how long a period of time?
I think each of the items I list , both primary and secondary effects due to solar variability if reached are more then enough to bring the global temperatures down by at least .5c in the coming years.
Even a .15 % decrease from just solar irradiance alone is going to bring the average global temperature down by .2c or so all other things being equal. That is 40% of the .5c drop I think can be attained. Never mind the contribution from everything else that is mentioned.
What I am going to do is look into research on sun like stars to try to get some sort of a gage as to how much possible variation might be inherent with the total solar irradiance of the sun. That said we know EUV light varies by much greater amounts, and within the spectrum of total solar irradiance some of it is in anti phase which mask total variability within the spectrum. It makes the total irradiance variation seem less then it is.
I also think the .1% variation that is so acceptable for TSI is on flimsy ground in that measurements for this item are not consistent and the history of measuring this item with instrumentation is just to short to draw these conclusions not to mention I know some sun like stars (which I am going to look into more) have much greater variability of .1%.
I think Milankovich Cycles, the Initial State of the Climate or Mean State of the Climate , State of Earth’s Magnetic Field set the background for long run climate change and how effective given solar variability will be when it changes when combined with those items. Nevertheless I think solar variability within itself will always be able to exert some kind of an influence on the climate regardless if , and that is my hurdle IF the solar variability is great enough in magnitude and duration of time. Sometimes solar variability acting in concert with factors setting the long term climatic trend while at other times acting in opposition.
THE CRITERIA
Solar Flux avg. sub 90
Solar Wind avg. sub 350 km/sec
AP index avg. sub 5.0
Cosmic ray counts north of 6500 counts per minute.
Total Solar Irradiance off .15% or more.
EUV light average 0-105 nm sub 100 units (or off 100% or more) and longer UV light emissions around 300 nm off by several percent.
IMF around 4.0 nt or lower.
The above solar parameter averages following several years of sub solar activity in general which commenced in year 2005.
If , these average solar parameters are the rule going forward for the remainder of this decade expect global average temperatures to fall by -.5C, with the largest global temperature declines occurring over the high latitudes of N.H. land areas.
The decline in temperatures should begin to take place within six months after the ending of the maximum of solar cycle 24.
Secondary Effects With Prolonged Minimum Solar Activity. A Brief Overview.
A Greater Meridional Atmospheric Circulation- due to less UV Light Lower Ozone in Lower Stratosphere.
Increase In Low Clouds- due to an increase in Galactic Cosmic Rays.
Greater Snow-Ice Cover- associated with a Meridional Atmospheric Circulation/an Increase In Clouds.
Greater Snow-Ice Cover probably resulting over time to a more Zonal Atmospheric Circulation. This Circulation increasing the Aridity over the ice sheets eventually. Dust probably increasing into the atmosphere over time.
Increase in Volcanic Activity – Since 1600 AD, data shows 85 % approximately of all major Volcanic eruptions have been associated with Prolonged Solar Minimum Conditions. Data from the Space and Science Center headed by Dr. Casey.
Volcanic Activity -acting as a cooling agent for the climate,(SO2) and enhancing Aerosols possibly aiding in greater Cloud formation.
Decrease In Ocean Heat Content/Sea Surface Temperature -due to a decline in Visible Light and Near UV light.
This in turn should diminish the Greenhouse Gas Effect over time, while promoting a slow drying out of the atmosphere over time. This may be part of the reason why Aridity is very common with glacial periods.
In addition sea surface temperature distribution changes should come about ,which probably results in different oceanic current patterns.
http://spaceandscience.net/sitebuildercontent/sitebuilderfiles/ssrcresearchreport1-2010geophysicalevents.pdf
The above is the objective way to view the solar/geological correlations. This tells the story to a much greater degree is not taken out of context. Even so this does not take into account the earth’s magnetic field which very likely plays a role in all of this.
The Maunder Minimum (1645 and continuing to about 1715 ) happens to follow the 30 years war (1618 and 1648). Coincidence? Maybe the people of euope had bigger issues to deal with than sun spot counting. The 30 years war devistated most of the continent, especialy the area that is now called Germany (where presumably Herr Zahn was doing his “counting”). Just one thought on why the observational record was so poor.
Don’t forget plague, as well. There were major European plague outbreaks in 1602–11; 1623–40; 1644–54; and 1664–67. Over a million people died in France alone in 1628-1631. The 17th century saw somewhere between 1/3 and 1/2 of the population of Europe in general dying of the plague (some of it spread by troop movements in the 30 year war. This was (for example) the time of the Great Plague of London, which killed about 15% of its population.
All in all, the 17th century was a pretty sucky time to be alive in Europe — if you lived through it. 10’s of thousands of people were executed for witchcraft. The Reformation. The 30 years war. The execution of Giordano Bruno (who went far beyond the Copernican model to propose that stars were suns and had their own planets — in the late 16th century!) to kick it off followed closely by the trial of Galileo. Nobody was safe — plenty of royalty lost their heads at one time or another.
But all that this means is that observational data from prior to the 18th century — some would even say the mid to late 18th century — is largely anecdotal evidence, not so very reliable. The rituals of the scientific method were not well spelled out, and while there are bright spots — Tycho Brahe’s systematic data collection, Kepler’s equally systematic analysis — chemistry was still “alchymie” and even the handful of “natural philosophers” supported by the courts of Europe and England were far from regular in their experiments and observations until the second half of the 17th century (following Bacon’s “New Atlantis” paper and the eventual and consequent birth of e.g. the Royal Society and related organizations throughout Europe).
Thanks for mentioning the 30-years War. I was going to look that up. Now I don’t have to. BTW, do you mean Bacon;s “New Atlantis” or the “New Organon?” The New Organon is the actual outline of Bacon’s concept of the scientific methods as well as a catalog and discussion of logical errors. One of the sad aspects of “post-normal” science is the fact that it constitutes a reversion to pre-Baconian methods. One of the remarkable things that Bacon does in the New Organon is to offer an example of how the method works. In that example he draws a kinetic hypothesis of heat long before Rumford and Carnot.
However the observational record isn’t particularly poor. And astronomers were spread all over Europe (plus China).
Barring the actual disappearance of data records, I would guess more people were paying attention to the sun during the Maunder.
By the 1640’s, the normal-appearing face of the sun, with a certain number of spots, must have been well known – and anticipated. The “sudden” disappearance of those reassuring features must have sparked a good bit of novelty “sun-spot seeking” (and probably prognosticating); for these people, fascination over the next six decades would have only persisted until the resumption of more normal solar activity caused the resumption of spotting. Lacunae (the blue lines) are prevalent before and after the Maunder, when periods of normal solar behavior prevailed, with the exception of ~ 1170’s, when it appeared that spots were returning.
We like ephemera. Natural anomalies are one thing, but when something is clearly fleeting, it generates interest. When it looked like solar spots were fleeting, lots of people started looking for them, as the “fans” of ivory billed woodpeckers seem to have surged since the bird’s evident extinction.
My 2 cents.
Cherry picking the data does not cut it which is being done constantly.