
[NOTE: RSS is a satellite temperature data set much like the UAH dataset from Dr. Roy Spencer and John Christy – Anthony]
Image Credit: WoodForTrees.org
Guest Post By Werner Brozek, Edited By Just The Facts
The graphic above shows 3 lines. The long line shows that RSS has been flat from December 1996 to July 2013, which is a period of 16 years and 8 months or 200 months. The other slightly higher flat line in the middle is the latest complete decade of 120 months from January 2001 to December 2010. The other slightly downward sloping line is the latest 120 months prior from present. It very clearly shows it has been cooling lately, however this cooling is not statistically significant.
In my opinion, if you want to find out what the temperatures are doing over the last 10 or 16 years on any data set, you should find the slope of the line for the years in question. However some people insist on saying global warming is accelerating by comparing the decade from 2001 to 2010 to the previous decade. They conveniently ignore what has happened since January 2011. However, when one compares the average anomaly from January 2011 to the present with the average anomaly from January 2001 to December 2010, the latest quarter decade has the lower number on all six data sets that I have been discussing. Global warming is not even decelerating. In fact, on all six data sets, cooling is actually taking place.
The numbers for RSS for example are as follows: From January 2001 to December 2010, the average anomaly was 0.265. For the last 31 months from January 2011 to July 2013, the average anomaly is 0.184. The difference between these is -0.081. I realize that it is only for a short time, but it is long enough that there is no way that RSS, for example, will show a positive difference before the end of the year. In order for that to happen, we can use the numbers indicated to calculate what is required. Our equation would be (0.184)(31) + 5x = (0.265)(36). Solving for x gives 0.767. This is close to the highest anomaly ever recorded on RSS, which is 0.857 from April 1998. With the present ENSO conditions, there is no way that will happen.
A word to the wise: do not even mention accelerated global warming until the difference is positive on all data sets.
I have added rows 23 to 25 to the table in Section 3 with the intention of updating it with every post. This table shows the numbers that I have given for RSS above as well as the corresponding numbers on the other five data sets I have been discussing. Do you feel this would be a valuable addition to my posts?
(Note: If you read my last article and just wish to know what is new with the July data, you will find the most important new things from lines 7 to the end of the table.)
Below we will present you with the latest fact, the information will be presented in three sections and an appendix. The first section will show for how long there has been no warming on several data sets. The second section will show for how long there has been no statistically significant warming on several data sets. The third section will show how 2013 to date compares with 2012 and the warmest years and months on record so far. The appendix will illustrate sections 1 and 2 in a different way. Graphs and a table will be used to illustrate the data.
Section 1
This analysis uses the latest month for which data is available on WoodForTrees.com (WFT). All of the data on WFT is also available at the specific sources as outlined below. We start with the present date and go to the furthest month in the past where the slope is a least slightly negative. So if the slope from September is 4 x 10^-4 but it is – 4 x 10^-4 from October, we give the time from October so no one can accuse us of being less than honest if we say the slope is flat from a certain month.
On all data sets below, the different times for a slope that is at least very slightly negative ranges from 8 years and 7 months to 16 years and 8 months.
1. For GISS, the slope is flat since February 2001 or 12 years, 6 months. (goes to July)
2. For Hadcrut3, the slope is flat since April 1997 or 16 years, 4 months. (goes to July)
3. For a combination of GISS, Hadcrut3, UAH and RSS, the slope is flat since December 2000 or 12 years, 8 months. (goes to July)
4. For Hadcrut4, the slope is flat since December 2000 or 12 years, 8 months. (goes to July)
5. For Hadsst2, the slope is flat since March 1997 or 16 years, 4 months. (goes to June) (The July anomaly is out, but it is not on WFT yet.)
6. For UAH, the slope is flat since January 2005 or 8 years, 7 months. (goes to July using version 5.5)
7. For RSS, the slope is flat since December 1996 or 16 years and 8 months. (goes to July) RSS is 200/204 or 98% of the way to Ben Santer’s 17 years.
The next link shows just the lines to illustrate the above for what can be shown. Think of it as a sideways bar graph where the lengths of the lines indicate the relative times where the slope is 0. In addition, the sloped wiggly line shows how CO2 has increased over this period.

When two things are plotted as I have done, the left only shows a temperature anomaly. It goes from 0.1 C to 0.6 C. A change of 0.5 C over 16 years is about 3.0 C over 100 years. And 3.0 C is about the average of what the IPCC says may be the temperature increase by 2100.
So for this to be the case, the slope for all of the data sets would have to be as steep as the CO2 slope. Hopefully the graphs show that this is totally untenable.
The next graph shows the above, but this time, the actual plotted points are shown along with the slope lines and the CO2 is omitted.

Section 2
For this analysis, data was retrieved from SkepticalScience.com. This analysis indicates for how long there has not been statistically significant warming according to their criteria. The numbers below start from January of the year indicated. Data go to their latest update for each set. In every case, note that the magnitude of the second number is larger than the first number so a slope of 0 cannot be ruled out. (To the best of my knowledge, SkS uses the same criteria that Phil Jones uses to determine statistical significance.)
The situation with GISS, which used to have no statistically significant warming for 17 years, has now been changed with new data. GISS now has over 18 years of no statistically significant warming. As a result, we can now say the following: On six different data sets, there has been no statistically significant warming for between 18 and 23 years.
The details are below and are based on the SkS Temperature Trend Calculator:
For RSS the warming is not statistically significant for over 23 years.
For RSS: +0.120 +/-0.129 C/decade at the two sigma level from 1990
For UAH the warming is not statistically significant for over 19 years.
For UAH: 0.141 +/- 0.163 C/decade at the two sigma level from 1994
For Hadcrut3 the warming is not statistically significant for over 19 years.
For Hadcrut3: 0.091 +/- 0.110 C/decade at the two sigma level from 1994
For Hadcrut4 the warming is not statistically significant for over 18 years.
For Hadcrut4: 0.092 +/- 0.106 C/decade at the two sigma level from 1995
For GISS the warming is not statistically significant for over 18 years.
For GISS: 0.104 +/- 0.106 C/decade at the two sigma level from 1995
For NOAA the warming is not statistically significant for over 18 years.
For NOAA: 0.085 +/- 0.102 C/decade at the two sigma level from 1995
If you want to know the times to the nearest month that the warming is not statistically significant for each set to their latest update, they are as follows:
RSS since August 1989;
UAH since June 1993;
Hadcrut3 since August 1993;
Hadcrut4 since July 1994;
GISS since January 1995 and
NOAA since June 1994.
Section 3
This section shows data about 2013 and other information in the form of a table. The table shows the six data sources along the top and bottom, namely UAH, RSS, Hadcrut4, Hadcrut3, Hadsst2, and GISS. Down the column, are the following:
1. 12ra: This is the final ranking for 2012 on each data set.
2. 12a: Here I give the average anomaly for 2012.
3. year: This indicates the warmest year on record so far for that particular data set. Note that two of the data sets have 2010 as the warmest year and four have 1998 as the warmest year.
4. ano: This is the average of the monthly anomalies of the warmest year just above.
5. mon: This is the month where that particular data set showed the highest anomaly. The months are identified by the first two letters of the month and the last two numbers of the year.
6. ano: This is the anomaly of the month just above.
7. y/m: This is the longest period of time where the slope is not positive given in years/months. So 16/2 means that for 16 years and 2 months the slope is essentially 0.
8. sig: This is the whole number of years for which warming is not statistically significant according to the SkS criteria. The additional months are not added here, however for more details, see Section 2.
9. Jan: This is the January, 2013, anomaly for that particular data set.
10. Feb: This is the February, 2013, anomaly for that particular data set, etc.
21. ave: This is the average anomaly of all months to date taken by adding all numbers and dividing by the number of months. However if the data set itself gives that average, I may use their number. Sometimes the number in the third decimal place differs by one, presumably due to all months not having the same number of days.
22. rnk: This is the rank that each particular data set would have if the anomaly above were to remain that way for the rest of the year. Of course it won’t, but think of it as an update 30 or 35 minutes into a game. Due to different base periods, the rank may be more meaningful than the average anomaly.
23.new: This gives the average anomaly of the last 31 months on the six data sets I have been discussing, namely from January 2011 to the latest number available.
24.old: This gives the average anomaly of the 120 months before that on the six data sets I have been discussing. The time goes from January 2001 to December 2010.
25.dif: This gives the difference between these two numbers.
Note that in every single case, the difference is negative. In other words, from the previous decade to this present one, global warming is NOT accelerating. As a matter of fact, cooling is taking place.
| Source | UAH | RSS | Had4 | Had3 | Sst2 | GISS |
|---|---|---|---|---|---|---|
| 1. 12ra | 9th | 11th | 9th | 10th | 8th | 9th |
| 2. 12a | 0.161 | 0.192 | 0.448 | 0.406 | 0.342 | 0.57 |
| 3. year | 1998 | 1998 | 2010 | 1998 | 1998 | 2010 |
| 4. ano | 0.419 | 0.55 | 0.547 | 0.548 | 0.451 | 0.66 |
| 5. mon | Ap98 | Ap98 | Ja07 | Fe98 | Au98 | Ja07 |
| 6. ano | 0.66 | 0.857 | 0.829 | 0.756 | 0.555 | 0.93 |
| 7. y/m | 8/7 | 16/8 | 12/8 | 16/4 | 16/4 | 12/6 |
| 8. sig | 19 | 23 | 18 | 19 | 18 | |
| Source | UAH | RSS | Had4 | Had3 | Sst2 | GISS |
| 9. Jan | 0.504 | 0.441 | 0.450 | 0.390 | 0.283 | 0.63 |
| 10.Feb | 0.175 | 0.194 | 0.479 | 0.424 | 0.308 | 0.50 |
| 11.Mar | 0.183 | 0.205 | 0.405 | 0.384 | 0.278 | 0.58 |
| 12.Apr | 0.103 | 0.219 | 0.427 | 0.400 | 0.354 | 0.48 |
| 13.May | 0.077 | 0.139 | 0.498 | 0.472 | 0.377 | 0.56 |
| 14.Jun | 0.269 | 0.291 | 0.451 | 0.426 | 0.304 | 0.66 |
| 15.Jul | 0.118 | 0.222 | 0.514 | 0.490 | 0.468 | 0.54 |
| Source | UAH | RSS | Had4 | Had3 | Sst2 | GISS |
| 21.ave | 0.204 | 0.244 | 0.459 | 0.427 | 0.339 | 0.564 |
| 22.rnk | 6th | 8th | 9th | 8th | 10th | 10th |
| 23.new | 0.158 | 0.184 | 0.436 | 0.385 | 0.314 | 0.562 |
| 24.old | 0.187 | 0.265 | 0.483 | 0.435 | 0.352 | 0.591 |
| 25.dif | -.029 | -.081 | -.047 | -.050 | -.038 | -.029 |
If you wish to verify all of the latest anomalies, go to the following links, For UAH, version 5.5 was used since that is what WFT used,, RSS, Hadcrut4, Hadcrut3, Hadsst2,and GISS.
To see all points since January 2012 in the form of a graph, see the WFT graph below.

Appendix
In this section, we summarize the data for each set separately.
RSS
The slope is flat since December 1996 or 16 years and 7 months. (goes to June) RSS is 199/204 or 97.5% of the way to Ben Santer’s 17 years.
For RSS the warming is not statistically significant for over 23 years.
For RSS: +0.122 +/-0.131 C/decade at the two sigma level from 1990.
The RSS average anomaly so far for 2013 is 0.248. This would rank 7th if it stayed this way. 1998 was the warmest at 0.55. The highest ever monthly anomaly was in April of 1998 when it reached 0.857. The anomaly in 2012 was 0.192 and it came in 11th.
Following are two graphs via WFT. Both show all plotted points for RSS since 1990. Then two lines are shown on the first graph. The first upward sloping line is the line from where warming is not statistically significant according to the SkS site criteria. The second straight line shows the point from where the slope is flat.
The second graph shows the above, but in addition, there are two extra lines. These show the upper and lower lines using the SkS site criteria. Note that the lower line is almost horizontal but slopes slightly downward. This indicates that there is a slight chance that cooling has occurred since 1990 according to RSS.
UAH
The slope is flat since July 2008 or 5 years, 0 months. (goes to June)
For UAH, the warming is not statistically significant for over 19 years.
For UAH: 0.139 +/- 0.165 C/decade at the two sigma level from 1994
The UAH average anomaly so far for 2013 is 0.219. This would rank 4th if it stayed this way. 1998 was the warmest at 0.419. The highest ever monthly anomaly was in April of 1998 when it reached 0.66. The anomaly in 2012 was 0.161 and it came in 9th.
Following are two graphs via WFT. Everything is identical as with RSS except the lines apply to UAH.
Hadcrut4
The slope is flat since November 2000 or 12 years, 7 months. (goes to May.)
For Hadcrut4, the warming is not statistically significant for over 18 years.
For Hadcrut4: 0.093 +/- 0.107 C/decade at the two sigma level from 1995
The Hadcrut4 average anomaly so far for 2013 is 0.450. This would rank 9th if it stayed this way. 2010 was the warmest at 0.547. The highest ever monthly anomaly was in January of 2007 when it reached 0.829. The anomaly in 2012 was 0.448 and it came in 9th.
Following are two graphs via WFT. Everything is identical as with RSS except the lines apply to Hadcrut4.
Hadcrut3
The slope is flat since April 1997 or 16 years, 2 months (goes to May, 2013)
For Hadcrut3, the warming is not statistically significant for over 19 years.
For Hadcrut3: 0.091 +/- 0.110 C/decade at the two sigma level from 1994
The Hadcrut3 average anomaly so far for 2013 is 0.414. This would rank 9th if it stayed this way. 1998 was the warmest at 0.548. The highest ever monthly anomaly was in February of 1998 when it reached 0.756. One has to go back to the 1940s to find the previous time that a Hadcrut3 record was not beaten in 10 years or less. The anomaly in 2012 was 0.405 and it came in 10th.
Following are two graphs via WFT. Everything is identical as with RSS except the lines apply to Hadcrut3.
Hadsst2
For Hadsst2, the slope is flat since March 1, 1997 or 16 years, 2 months. (goes to April 30, 2013).
The Hadsst2 average anomaly for the first four months for 2013 is 0.306. This would rank 11th if it stayed this way. 1998 was the warmest at 0.451. The highest ever monthly anomaly was in August of 1998 when it reached 0.555. The anomaly in 2012 was 0.342 and it came in 8th.
Sorry! The only graph available for Hadsst2 is this.
GISS
The slope is flat since February 2001 or 12 years, 5 months. (goes to June)
For GISS, the warming is not statistically significant for over 18 years.
For GISS: 0.105 +/- 0.110 C/decade at the two sigma level from 1995
The GISS average anomaly so far for 2013 is 0.57. This would rank 9th if it stayed this way. 2010 was the warmest at 0.66. The highest ever monthly anomaly was in January of 2007 when it reached 0.93. The anomaly in 2012 was 0.56 and it came in 9th.
Following are two graphs via WFT. Everything is identical as with RSS except the lines apply to GISS. Graph 1 and Graph 2
Conclusion
So far in 2013, there is no evidence that the pause in global warming has ended. As well, all indications are that RSS will reach Santer’s 17 years in three or four months. The average rank so far is 8.5 on the six data sets discussed here. ENSO has been neutral all year so far and shows no signs of changing. The sun has been in a slump all year and also shows no sign of changing. As far as polar ice is concerned, the area that the north is losing is close to what the south is gaining. So the net effect is that there is little overall change and this also shows no sign of changing.
If temperatures are flat but CO2 is rising for 16-23 years doesn’t the inescapable warming due to more CO2 have to be counterbalanced by some negative natural cooling to keep the temperatures flat or is that too small to affect things?
Auto says: August 25, 2013 at 12:19 pm
Third graph upside down, it seems.
Fixed, thanks.
What is RSS? I had the same question.
ftp://ftp.ssmi.com/
Heh, I also just fixed it. Problem is related to how some graphics programs save images and the X-Y origin point. Browsers don’t handle some output well.
RSS stands for Remote Sensing System: a satellite-based global reading of temperature equivalents. They don’t read temperature directly.
JustTheFacts fixed it the third time it got a mention, and Anthony fixed it as well.
Guy’s you should have left it upside down and instead added a note saying that it was to help Mann and his fans who otherwise wouldn’t be able to understand it.
@Jurgen Yes, “RSS” means “remote sensing system(s)”. In this case it’s the name of the outfit that collects the data. I think this is them:
http://www.ssmi.com/
Every “flat” month, year, decade further reduces the 30 year (WMO standard for Climate) rate of warming. The rate of warming that you are “professionally” advised is accelerating?
Now if you find out that the rate of return on the investments your financial advisor had described as “accelerating” had actually been reducing for a over decade, how would you describe that person?
Global 30 year rate of warming (WMO standard for Climate) peaked, for one month, in early in 2003 at the implied “Armageddon” rate of +2c/century. Since then it has declined, presently circa +1.6c/century and every “flat” print can only reduce it further.
Ladies and Gentlemen, the Pope is about to elope!
Sunsettommy says:
August 25, 2013 at 11:57 am
Let’s not lose sight of the big picture which is that this flat line temperature data does not in any way match up with the IPCC temperature predictions/projections for the first two decades as published with fanfare in their 5 year reports.
Thus their AGW conjecture fails once again.
========
Ummmm. Likewise ahhhhhhhhhhh –
Thus their AGW BLOVIATING fails once again. A suggestion, merely.
Sunsettommy –
Your analysis looks spot-on. Magic.
Your choice of phraseology – meiosis, deliberately chosen, perchance?
After all, they’re a bunch of [Self-snip – can y o u guess which Anglo-Saxon expletive was snipped??] stalinists, who wish to drive the ‘West’ back to the medieval period [at least].
Life expectancy in the thirties or forties, unlikely to know grandchildren, living in squalor. Etc.
Auto.
Even many climate scientists agree that there is a surface temperature standstill. Dr. Hansen is among them.
Greg says:
August 25, 2013 at 10:16 am
I am limited to what I can do with WFT. As for the offset, that is to fill the page nicely. Of course we cannot have units for two things so the CO2 has no units. But the important thing that I wanted to illustrate was that CO2 was steadily climbing while temperatures were not.
Jimbo says: Even many climate scientists agree that there is a surface temperature standstill. Dr. Hansen is among them.
Yeah, let’s examine this from their point of view.
1. They predicted catastrophic warming.
2. The warming stopped, for around 20 years. This they refer to as a “pause” or “standstill”.
3. They have absolutely no explanation for the “pause”.
4. They continue to predict catastrophic warming to a 95% certainty, blah, blah, blah.
My seven year old comes up with more plausible and credible reasoning than this!
rgbatduke says:
August 25, 2013 at 10:22 am
I will make the adjustment in the next report. I agree that if one wants to compare apples to oranges, one cannot be too quantitative in this case. I should have been more qualitative in my description and said that while the oranges (CO2) were rising, the apples (temperature anomalies) were not rising. Thank you very much for the correction!
“Well. I tell you what, these graphs need some dicen and splicin and that’s all there is to it by gum dad burn it. You all are in need of more scientificity in order to properly demonstrate the AGW scienceyness hidden behind the curtain over there that you are to ignore. Dr. Mann is the most sciencific person we know and we are sending him right over to lecture you on knob control. See, you forgot to turn the knob up. You gotsta turn the knob thingy up in order to calculate the thing that CO2 does to your graphs. And then you halfta tilt it a bit but not too much soes it won’t tip over. And then you gotsta send your manuscript stuff to the following pal of Dr. Mann cuz he is up to speed on the talking points about all this tilting, and massages, and hotspots, and really really really big hurricanes…and all that there.”
This email will self-destruct in 5…4…3…2…1……….(damn…it’s still on the server. Maybe if I call up Dr. Mann he can make it go away. Mann! Make the email go away!)
Genghis says:
August 25, 2013 at 10:38 am
I just have two unimportant, trivial questions. What is the absolute Global average temperature today and what was it fifty years ago?
You may find the following interesting which shows how the temperatures vary by about 3.8 C during the year:
http://theinconvenientskeptic.com/2013/03/misunderstanding-of-the-global-temperature-anomaly/
As for how much temperatures went up over the last 50 years, according to Hadcrut3, I would say about 0.6 C.
Its very simple. Ramanathan in 1989 used ERBE data to show that the net effect of global cloud cover is cooling (a forcing of -11 watts/m2) – 4 times larger than that for a doubling of CO2. Clouds are not a feedback to climate change – they are the main driver of climate change! Global cloud cover fell from 1983 to 1998 coinciding with warming. Since then cloud cover has remained constant coinciding with flat temperatures thereafter. AGW (CO2) is a smaller effect than clouds. If cloud cover were now to increase then the earth would cool despite CO2 levels.
mpcraig says:
August 25, 2013 at 10:14 am
> Sorry for going OT here but I have a question.
Ask in an Open Thread or a two day old post and I’ll give you my reply. It’s rude to redirect the comments of a new post right away.
rgbatduke says:
August 25, 2013 at 10:22 am
“For so very many reasons . . .”
Agreed.
Also, it is worth mentioning that Ben Santer’s “17 years” is not a natural constant such as gravity or light speed. If someone does another 100K Monte Carlo runs likely they can claim the number of years without warming in a model has gone to 18, 19, 20, . . . n. This is an easily moved ‘goal post’.
Still, the perception of GW or lack thereof is important. The ongoing “lack of” is what makes the current USA administration seem clueless, wasteful, and ideological driven.
The details are below and are based on the SkS Temperature Trend Calculator:
Why are skeptics using this SkS product? Who has vetted it for accuracy, besides SkS?
Given the fine examples of their l33t h4x0r 5k1||z, how can you trust it without verification?
I could possibly believe that product alone accounts for half of SkS’ normal site traffic. Why haven’t skeptics tried to replicate it? Isn’t replication something skeptics regularly demand as part of the scientific process, when they demand data and code to attempt replication as part of verification?
Where have all the real skeptics gone?
Greg says:
August 25, 2013 at 10:39 am
A change from +ve to -ve slope is also called a deceleration.
You are of course correct. However I think it is important that we differentiate between climate getting warmer, but at a slower rate, and actual cooling taking place. The slight cooling taking place over the last decade is certainly not statistically significant, but at the same time, no one can look at the data and say warming is accelerating.
Jurgen says:
August 25, 2013 at 11:49 am
Well, sorry if I am wrong, but I don’t see an explanation of the meaning of RSS at the start of the post.
So what is the exact meaning of RSS in this post?
I apologize for not defining it. RSS is a satellite data set. I see that others have sent links to RSS.
In addition, the data set comes from here.
ftp://ftp.ssmi.com/msu/monthly_time_series/rss_monthly_msu_amsu_channel_tlt_anomalies_land_and_ocean_v03_3.txt
My plots for RSS come from WFT such as:
http://www.woodfortrees.org/plot/rss
WFT (Wood for Trees) allows you to plot any period you want and to get the slope of any period you want. It shows all data sets that are plotted in my graphs.
Karl W. Braun says:
August 25, 2013 at 12:11 pm
I noticed that the CO2 concentration graph appears to show a trend that is very linear.
Since 1958, it is actually very slightly exponential, but it is so slight that from 1996 to the present, it looks linear. No smoothing has been applied. There are just seasonal variations. See
http://www.woodfortrees.org/plot/esrl-co2/from:1958
lsvalgaard says:
August 25, 2013 at 10:06 am
RSS Flat For 200 Months (Now Includes July Data)
Thus no global cooling…
————————————————————
For a scientist this post is very poorly worded. It seems to say more about your ideology than anything else.
But then you are almost rabid in shouting down anyone who has the temerity to suggest the sun might be playing a significant role in recent changes to our planets climate.
IMHO ideology poisons true science.
The influence of CO2 is separated from natural influence at http://climatechange90.blogspot.com/2013/05/natural-climate-change-has-been.html
A link to RSS average global temperature data is provided at http://endofgw.blogspot.com/
kadaka (KD Knoebel) says:
August 25, 2013 at 2:17 pm
Why are skeptics using this SkS product? Who has vetted it for accuracy, besides SkS?
When we did the Crowdsourcing about 6 months ago, we asked about other sources for this information but found none. However one person who commented said the numbers are correct and were derived from a very straight forward calculation. I also compared this to WFT and found them the same. For example with RSS since 1990, SkS says the slope is 0.120 +/- 0.129/decade. WFT says 0.0120364/year. So no problem here. As for the statistical significance part, since the site shows that RSS has almost 24 years of no statistically significant warming, which must be very embarrassing for them, I see no reason to question their site.