Analysis shows tidal forcing is a major factor in ENSO forcing

Enso-soi
Enso-soi (Photo credit: Wikipedia)

ENSO forecast based on tidal forcing with an Artificial Neural Network

Investigation submitted by Per Strandberg

Here on this page, you are going to find evidence that tidal forcing is one of the most important, if not the most important driver for ENSO variations. That tidal forcing could be the main explanation for ENSO variations was something I stumbled upon when I examined possible ENSO drivers.

After the previous results which I got when I was using an Artificial Neural Network ANN and where I did an analysis of the correlations between the global mean temperature and possible forcing drivers, which can be viewed here, I turned my attention to the ENSO index by looking into the Multivariate ENSO Index (MEI).

One thing I found when I analyzed the result from correlations to ENSO was that there is a strong correlation between variations in Earth’s rotations both to the global mean temperature and to the ENSO index. What we are talking about here are small variations in Earth’s rotations, which are in the order of milliseconds.

One other factor with correlation to the ENSO is of course SOI, but I also found correlations to SST, PDO, and the Kp and Ap indexes. 

From this, I concluded that either it is ENSO which is driving changes in Earth’s rotation or it changes in Earth’s rotation, which is causing variations in ENSO or more likely it is some combination of both.

Proof that ENSO and variations of Earth’s rotation are proportionally correlated to each other has been known for some time. This can be seen here.

The mechanisms which tie ENSO and variations in Earth’s rotation together are caused by sea current changes, changes in trade winds or by displacements of water between the equator and slightly higher latitudes. This all makes sense.

The water currents in the northern hemisphere follow a clockwise pattern, and in the Southern hemisphere they follow a counterclockwise pattern because of the Coriolis effect. The trade wind and the currents near the equator are moving to the west. However the Current closest to the equator called the equatorial counter current move to the east. Still deeper at depth down to 200 meters at the equator an ever stronger current is moving to the east.

The behavior of this current of the Equatorial Pacific is shown on this page by Bob Tisdale.

The only mechanism by which ENSO can be driven by changes in Earth’s rotation is by variations in the tidal force.

My next step was to try to include tidal forcing in my ANN.

I then got three problems, which I had to overcome.

Firstly: I had to find data over the position and distance to the Moon and to the Sun. Eventually, I found software from which I could get this data, although it gave limited information and I was only able to print out time and position when the Sun and the Moon were closest and farthest from the Earth and with the Moon I could also calculate the time and position of the new moon, the full moon and the moon nodes. The Moon nodes are the location where the Moon cross over the ecliptic plane.

Secondly: I had to find the formula for the tidal force vector and implement this into my software.

Thirdly: I had to figure out what features in the tidal forcing which could affect ENSO. I had to experiment with different configurations based in my limited and rather crude data. To do this, I had to make complicated trigonometrically calculations in order to get the right value of the tidal force. Eventually, I got good correlations between ENSO and the tidal forcing. By this time, I had figured out which features in the tidal forcing that were causing this correlation. However it was not a direct correlation with ENSO, rather it was a correlation with the derivate signal of ENSO, i.e. it was affecting the rate of change of ENSO. The correlation to the change of rate in Earth’s rotation, on the other hand, is direct. This means that tidal forcing is causing the rate of Earth’s rotation to either speed up or speed down. The rate of rotation is then responsible for changes of the ENSO index. One reason was that it was difficult to identify, which features, which cause correlations. This was because each tidal forcing point I use the sum of monthly calculations. The size of the tidal forcing changes each and every day and how to summarize this data the right way into useful functions, which can be used to construct values that could create good correlations were difficult.

Of course, the tidal force is not the only factor which drives ENSO, but it is the most influential factor.

To test if that would be the case I ran my network with the right tidal forcing data. I also included feedback loops back in the network from the output ENSO values to some of the input nodes. After some testing and individual adjustments of the internal components in the artificial network, I got good results. Following on my earlier experiment of the ANN on the mean global temperature I trained the ANN from late 1978 up to the end of 2004. I used the time from 2005 up to the late 2011 for test the calculations, in order to find the minimal error function.

This is the result I got. The exciting thing with this result is that it is possible to make forecasts for much longer times into the future. Today’s predictions use computer models and are only able to make credible predictions 4 to 5 months into the future. While in my case, using my ANN calculations based on tidal forcing can be made for forecasts for an almost unlimited time because the Moon and Sun’s positions into the future are known in advance. Although, I have to stress that with the predication so far it is not possible to get the last figure right. Currently, it is only possible to make an estimate with a relative high likelihood at any date if ENSO are going to be positive, negative or neutral. However, as can be seen here the predictions are not always correct. The main large El Niño events of 1982 and 1998 can clearly be seen, but the large magnitude of these events can not be predicted.

I later made a ENSO forecast from late 2011 up to 2020. I cannot show the result here because of proprietary reasons. This picture shows the test period and some of the forecast which ends in early 2013.

Note, however that the calculations from this graph, the ENSO index uses ENSO feedback values which all are from estimated ones. Those are not the real ENSO values.

Now Look at: the previous graph with the whole time span from 1979 up to 2011! On this graph, look at the beginning at the 3 first years from the start of 1979. These 3 first years have all exceptional good correlation to the real ENSO values. The difference with the start values in this case is that I use real ENSO values for the feedback values in the network calculations which are going into the calculations with values before the graph begins. This is because in my ANN, I use for every calculation point values which goes 3 years back in time and I must use real input values for values before my first calculated value.

If I would make a forecast for the next years using current real ENSO values from 3 years back and up to the current date, my forecast would be greatly improved and would be much better than forecast made with current computer models. There were 2 important events that happened the years just after 1979. The first was the eruption of El Chichon in 1982 in Mexico. The second was the unusually strong el Niño event between 1982-1983.

My calculated values after 1982 of ENSO tend to come out of phase after and around 1982, and the ANN seems not to be able to handle strong El Niño’s very well. After some years, the estimated ENSO value deteriorate somewhat mainly because of errors in the feedback caused by the inertia in Earth’s rotation. In contrast to computer model forecasts, I don’t use data from the Tropical Atmosphere Ocean TAO network which is a NOAA measurement network of buoys in the tropical Pacific that deliver real time data which feeds these ENSO models with real time data.

Here is a result from the same program, but as input it uses variations in the Earth’s rotation instead of tidal forcing. As you can see, the correlation to the Earth’s rotation makes the result much better. However in contrast to tidal forcing, future changes in Earth’s rotation is unknown.

Here is another graph from the same program with feedback but this time the input signal is only from SOI Southern Oscillation Index. As expected SOI is closely related to ENSO.

Here is a repeat with the same program, but this time with a combination of tidal forcing, changes in Earth’s rotation, SOI, Kp and the Ap indexes. As you can see, this result is similar to that of the previous with only SOI.

The next step I plan to take is to use the ANN with real time data and make more accurate ENSO predictions for the next 3 to 4 years in to the future. I also want to test with real ENSO input data for several time periods in order to evaluate statistically how the good predictions can be based on real time ENSO feedback input data for the beginning.

After that, I want to improve on my result by using more precise and accurate tidal calculations. I have found a program from which I can make precise calculations of the Moon and the Sun on a daily basis. Other factors I plan to look into are the mechanism of the Kelvin wave, Walker circulation and MJO which all should influence ENSO to some degree.

So far I have only looked at ENSO. I can easily switch to SOI, NOI and changes in Earth’s rotation and use that as an output for predicting ENSO with the ANN.

Conclusion from my result is that tidal forcing is as a major factor in ENSO forcing. I now have gotten new questions. Compared with other causes how important is the effect from tidal forcing? Is it possible to find an increasing effect from tidal forcing by improving the tidal data I use? Is it, for example, possible to identify tidal forcing as the cause for the strong El Niño of 1982 and 1998?

It may be possible to get better ENSO results by using predictions based on SOI, NOI, Earth’s rotations or by starting from tidal forcing only. I’ll test and see. Also, ENSO and SOI are parameters for which there exists long historical data records. By, using a longer time span for training and testing, the accuracy of predictions based on ANN should be improved.

I acknowledge that it is not easy to find correlations between tidal forcing without testing out the right feature and by using am ANN. However I do find it very strange that no scientist to my knowledge has been looking into a possible connection between tidal forcing and ENSO in any depth.

As can be seen from what the IPCC writes about ENSO predictions, they do not have a clue. The current data models that are in use can only predict with any accuracy 4 to 5 months into the future. When it comes to the ENSO drivers, these researchers think chaos theory and random noise are the mechanisms which explains the causes of ENSO changes.

However Cerveny, R. S. and J. A. Shaffer (2001) et al. in the report, The Moon and El Niño, Geophys. Res., writes about the Moon cycles and ENSO, where they find correlations between the solar cycles and ENSO.

To me at least, it seems that the solution to long range ENSO prediction has for a long time been right in front of the eyes of these researchers, but nobody has taken up the challenge to figure it out.

I see the same reason why the climate community at large has not studied tidal forcing as an explanation for ENSO variations and why none TSI solar forcing as an additional cause for climate forcing ignored. The primary reason is that they have had their education in meteorology, atmospheric physics, thermodynamics or in computer science. Most of them are specialists in a few narrow disciplines, and as such they prefer only to apply knowledge from the fields they know. They are not generalists and display strong resistance for applying knowledge from other area from which they lack knowledge. Then add to that group thinking, peer pressure and lack of funding for research in alternative causes of climate change and this explains the current one-sided situation. This is one of reason that predictions made with computer simulations are failing.

ANN are seldom used in climate science. There are some exceptions. One is research done by Dr William Hsieh from the University of British Columbia who uses this technique for ENSO predictions, but to my knowledge without using any tidal forcing. To learn more about how ANN works and how I have implemented this technique in climate investigation, Click here

Get notified when a new post is published.
Subscribe today!
0 0 votes
Article Rating
136 Comments
Inline Feedbacks
View all comments
Nerd
January 20, 2013 7:49 am

“The primary reason is that they have had their education in meteorology, atmospheric physics, thermodynamics or in computer science. Most of them are specialists in a few narrow disciplines, and as such they prefer only to apply knowledge from the fields they know. They are not generalists and display strong resistance for applying knowledge from other area from which they lack knowledge. Then add to that group thinking, peer pressure and lack of funding for research in alternative causes of climate change and this explains the current one-sided situation. This is one of reason that predictions made with computer simulations are failing.”
No kidding. Trained in something else tend to notice that there’s something not right in other things not trained for. You try to point that out to them but they just ignore you and call you ignorant, etc. Try telling Dermatologists that sun is good for you…

Robert Thomson
January 20, 2013 7:58 am

I just love it when some thoughtful science develops correlations that make perfect sense in the real world that we can all relate to – small sea level changes around the world making changes to the angular momentum and driving current variations makes good sense. And the work can be checked ………. brilliant!

milodonharlani
January 20, 2013 7:58 am

Research & analysis on this blog & Climate Audit are infinitely superior to the vast majority of climate anti-science on even the most prestigious pal-reviewed journals like Science & Nature.

Gary Meyers in Ridgecrest
January 20, 2013 8:17 am

Oh no Mr. Bill! More pieces to the puzzle.

Olavi
January 20, 2013 8:24 am

As Pascal said, itst’s better to know something from everything, than everyting from something. If you think you know everything from something, you really dont know anything. Theese doctors has studied so far that theyll know everything from nothing. Thanks for intresting post. 🙂

Joe Crawford
January 20, 2013 8:40 am

“Climate Science” isn’t the only area of science that suffers from too much specialization, but it may suffers the most. It does appear to be the only one where even knowledge of the scientific method is considered outside the specialty by most.

rgbatduke
January 20, 2013 8:58 am

The only mechanism by which ENSO can be driven by changes in Earth’s rotation is by variations in the tidal force.
Only mechanism? Driven by changes in Earth’s rotation? Neither of these is either proven nor (IMO) provable, certainly not from observing a correlation.
For example, it could be the other way around. The most plausible mechanism I can think of offhand for variations in diurnal rotation (given essentially constant angular momentum) is variation of the Earth’s moment of inertia. The moment of inertia, in turn, is modulated by tidal deformation (but in a nearly uniform/consistent way) AND by thermal expansion of oceanic waters. At times that equatorial waters are unusually warm, then, they would increase the moment of inertia of the planet and very slightly slow its rotational velocity. When unusually cold, they would decrease the moment of inertia and increase it. So ENSO could be causing the variation of the
Note, back of the envelope-wise I wouldn’t expect this effect to be terribly great. The baseline moment of inertia of the Earth itself is enormous compared to the minor fluctuations associated with either tidal deformation or thermal deformation anomalies in what is (at most) less than a meter of the the 6.4 \times 10^6 meter radius ball. Even throwing in atmospheric expansion seems more likely to at most create a coriolis deflection and alter the jet stream or deflect oceanic currents more than vary the actual rotational period of the Earth itself, but then, you’re talking about tiny variations of the latter.
With that said, the harmonically driven system is highly nonlinear, chaotic, and lagged, so there is always the possibility of resonance phenomena and quasiperiodic phenomena. But by the same token, it is quite possible for there to be correlations that are either accidental or both driven by a third (unknown) cause. Post hoc ergo propter hoc is a fallacy, which is why just building neural networks or other sorts of nonlinear statistical models (even when they work quite well) doesn’t allow one to make any strong conclusions about what causes what.
rgb

Bill Illis
January 20, 2013 9:00 am

You might want to look at global atmospheric angular momentum data as well which is also quite correlated with the ENSO.
http://www.esrl.noaa.gov/psd/map/clim/aam.rean.shtml
Charted back to 1958. Lower atmospheric levels only.
http://www.esrl.noaa.gov/psd/map/images/reanalysis/aam.sig1-21.58-curr.reanal.gif
There is a bunch more info here.
http://www.aer.com/science-research/earth/earth-mass-and-rotation/special-bureau-atmosphere
http://www.iers.org/IERS/EN/IERSHome/home.html?__nnn=true

Caz in BOS
January 20, 2013 9:05 am

Nice analysis, but you know very well that accurate prediction is the ultimate test.

Luther Wu
January 20, 2013 9:06 am

Just a reminder (although the trolls will remind us) that the reason that Russia and parts of Eurasia are experiencing record breaking snowfall- http://rt.com/news/winter-snow-russia-weather-275/ -is because warmer air holds more moisture (and it’s our fault). That’s the meme, isn’t it?

markx
January 20, 2013 9:17 am

Perhaps useful?
Physics of the Earth’s rotation instabilities N. S. SIDORENKOV
Astronomical and Astrophysical Transactions Vol. 24, No. 5, October 2005, 425–439
http://dx.doi.org/10.1080/10556790600593506

navytech
January 20, 2013 9:25 am

tidal forcing is as a major factor in ENSO forcing
I’ll bet Scafetta agrees.
http://wattsupwiththat.com/reference-pages/research-pages/scafettas-solar-lunar-cycle-forecast-vs-global-temperature/

Duke C.
January 20, 2013 9:37 am

Awaiting Bob Tisdale’s comment…

January 20, 2013 9:39 am

It appears to be a link between the AMO and the extreme tides:
http://www.vukcevic.talktalk.net/AMO-T.htm
Both the ENSO and AMO frequencies correlate to the Earth’s core differential rotation as determined from the changes in the Earth’s magnetic field
http://www.vukcevic.talktalk.net/EarthNV.htm
Further more the ENSO can be directly correlated to the tectonics of the subequatorial Pacific.
http://www.vukcevic.talktalk.net/ENSO.htm

lemiere jacques
January 20, 2013 9:40 am

well, really interesting, but it is hard to prove anything, but length of the day is a good global parameter to inestigate climate much better than global temperature…

eco-geek
January 20, 2013 9:41 am

This looks like it is very significant. Well done.

January 20, 2013 9:41 am

Thank you for the beautiful demonstration of causes and consequences. It is a wonderful departure from unsubstantiated speculations about trends in climate predictions. It is confidence-inspiring to see someone build on Bob Tisdale’s work and to take that into new directions. The findings by Per Strandberg ought to be very interesting for Nils Axel Mörner.
With an important article like this one it is important to get the title absolutely right. There is a typo. The phrase “is as a major factor” should read “is a major factor”.

January 20, 2013 9:50 am

Are you sure that the Mass differentials of the Bulges of warm and cool water during ENSO cycles across the surface of the pacific could not be the cause of the orbital differences detected.

John West
January 20, 2013 10:09 am

“I now have gotten new questions.”
Now that’s science!
Reviewing your analysis on climate drivers I’m not convinced there’s a low correlation between SSN (sunspot #) and temperature considering my own neural network definitely detects a correlation albeit over a much longer time span than you seem to be looking at: “I’m talking about weather related pulses which is entering into to the Earth climate system as this result is a match against the derivate (short time variations) in the global temperature signal.” If I were to graph the insolation every hour for some point (especially if a good distance from the equator) for an entire year I’d have 1) a really long graph and 2) a series of bumps that go from zero to max every day with these bumps increasing/decreasing in size and increasing/decreasing in density (length of zero in between bumps) as the year progresses. Obviously, insolation is a major driver of local temperature. Note the temperature max lag from insolation max (the hottest time of the year is well after the summer solstice when the bumps would be the largest and most closely packed). My neural network detects this same pattern in the SSN-GAT (global average temperature) albeit incomplete (not a full cycle) unlike our hypothetical annual hourly insolation graph. Just something to mull over.
I applaud your efforts, sir. Keep going; it’s very interesting stuff.

January 20, 2013 10:12 am

Too many correlations that could causally go either way, and too much fitting to get the right results for me to think this is conclusive.

john robertson
January 20, 2013 10:55 am

Beautiful piece of speculation, I reason thus, using this data, show me my error.
Science is moving away from the secretive journals and paywalls, and back into open discussion here on the web.
Very interesting argument and pleased to see some one following up on Bob Tisdale’s work.

A C Osborn
January 20, 2013 11:10 am

Tallbloke will be interested in this.

Editor
January 20, 2013 11:13 am

Color me unimpressed … the claims made in this paper are waaaay stretched.
First, he makes the claim that the only way that ENSO can be driven by changes in the earth’s rotation is through tidal forces, viz:

The only mechanism by which ENSO can be driven by changes in Earth’s rotation is by variations in the tidal force.

The problems with this statement abound:
1. He has not demonstrated, cited, or established in any way the claim that ENSO is “driven” by changes in earth’s rotation.
2. He has not demonstrated, cited, or established in any way that “variations in the tidal force” are related to ENSO.
3. He has manufactured the calculations for the “tidal force” out of whole cloth, viz:

Firstly: I had to find data over the position and distance to the Moon and to the Sun. Eventually, I found software from which I could get this data, although it gave limited information and I was only able to print out time and position when the Sun and the Moon were closest and farthest from the Earth and with the Moon I could also calculate the time and position of the new moon, the full moon and the moon nodes. The Moon nodes are the location where the Moon cross over the ecliptic plane.
Secondly: I had to find the formula for the tidal force vector and implement this into my software.
Thirdly: I had to figure out what features in the tidal forcing which could affect ENSO. I had to experiment with different configurations based in my limited and rather crude data. To do this, I had to make complicated trigonometrically calculations in order to get the right value of the tidal force. Eventually, I got good correlations between ENSO and the tidal forcing.

Say what? Am I reading that right? He “made complicated trigonometrically calculations” until he finally got a good correlation? A correlation with what, exactly?
4. His entire “evidence” seems to be a set of neural network runs. Happily, he has had the grace to train on one half the dataset and test on the other. Sadly, he hasn’t had the good grace to show the difference between the training on the two halves …
5. He seems to have not even considered the idea that correlation is not causation …
6. He keeps adding variables to the mix, which is a very, very bad idea.
7. He says:

The mechanisms which tie ENSO and variations in Earth’s rotation together are caused by sea current changes, changes in trade winds or by displacements of water between the equator and slightly higher latitudes. This all makes sense.

Where is the “tidal force” in that? You know, the tidal force he did all of the complex calculations for, the calculations that he didn’t show us? How is that missing from his list of the mechanisms tying the ENSO to variations in LOD?
8. If I were to look at ENSO and variations in earth’s rotation, I would never make the assumption that the causation is going from changes in rotation to the ENSO. Going the other way, it makes perfect sense that the ENSO changes would affect the length of day (LOD). The ENSO pump moves huge masses of water around the planet. It would be surprising if that didn’t change the LOD.
But assuming that the forcing goes the other way, that changes in rotation cause ENSO events? Possible, I suppose, but where is the data and the theory to support that? Perhaps vague handwaving about specially calculated trigonometric functions and results from some unknown neural network impress the author. Me, not so much. I’ve done a lot of work with neural networks, it’s very simple to get fooled by them, and it’s far too easy just to add variables until you get a good result …
Anyhow, that’s just a few of the big holes in this analysis. There’s more, but I can’t be bothered. I find it fragmentary, lacking in both logical and evidentiary support, and completely unconvincing.
w.

Bernie McCune
January 20, 2013 11:19 am

Some folks may immediately see what y axis values are or the values may be buried in the text. However I tend to skip directly to the graphs for a first look and in this case became confused by what is being shown.
There is rotation of the earth’s axis of rotation (like a mini precession) that occurs during a 14 month period and it is called the Chandler period. In those 14 months, the rotation axis can swing through a circle that is as small as 4 and as large as 10 meters in diameter. I wanted to see if there was any comparison of tidal forces to the Chandler wobble.
What are the units?
Bernie

1 2 3 6