What we don’t know about Earth’s energy flow

Roger Tattersall (aka Tallbloke) writes on his blog of a WUWT comment. Unfortunately WUWT gets so many comments a day that I can’t read them all (thank you moderators for the help). Since he elevated Dr. Robert Brown’s comment to a post it seems only fair that I do the same.

I saw this comment on WUWT and was so impressed by it that I’m making a separate post of it here. Dr Brown (who is a physicist at Duke University) quotes another commenter and then gives us all an erudite lesson. If Nikolov and Zeller feel they need to take any of the complaints on WUWT about the way  they handle heat distribution from day to night side Earth seriously, they probably need to study this post carefully. this is also highly relevant to the reasons why Hans Jelbring used a simplified model for his paper, please see the new PREFACE added to his post for further elucidation.

 

———————————————————————————-

 

I can’t speak for your program, but I will stand by mine for correctly computing the ‘mean effective radiative temperature’ of a massless gray body as a perfect radiator. Remember, there is no real temperature in such of an example for there is no mass. It takes mass to even define temperature. (but most climate scientist have no problem with it and therefore they are all wrong, sorry)

I’d like to chime in and support this statement, without necessarily endorsing the results of the computation (since I’d have to look at code and results directly to do that:-). Let’s just think about scaling for a moment. There are several equations involved here:

P = (4\pi R^2)\epsilon\sigma T^4

is the total power radiated from a sphere of radius R at uniform temperature T. \sigma is the Stefan-Boltzmann constant and can be ignored for the moment in a scaling discussion. \epsilon describes the emissivity of the body and is a constant of order unity (unity for a black body, less for a “grey” body, more generally still a function of wavelength and not a constant at all). Again, for scaling we will ignore \epsilon.

Now let’s assume that the temperature is not uniform. To make life simple, we will model a non-uniform temperature as a sphere with a uniform “hot side” at temperature T + dT and a “cold side” at uniform temperature T – dT. Half of the sphere will be hot, half cold. The spatial mean temperature, note well, is still T. Then:

P’ = (4 \pi R^2) epsilon sigma ( 0.5*(T + dT)^4 + 0.5(T – dT)^4)

is the power radiated away now. We only care how this scales, so we: a) Do a binomial expansion of P’ to second order (the first order terms in dT cancel); and b) form the ratio P’/P to get:

P’/P = 1 + 6 (dT/T)^2

This lets us make one observation and perform an estimate. The observation is that P’ is strictly larger than P — a non-uniform distribution of temperature on the sphere radiates energy away strictly faster than it is radiated away by a uniform sphere of the same radius with the same mean temperature. This is perfectly understandable — the fourth power of the hot side goes up much faster than the fourth power of the cold side goes down, never even mind that the cold side temperature is bounded from below at T_c = 0.

The estimate: dT/T \approx 0.03 for the Earth. This isn’t too important — it is an order of magnitude estimate, with T \approx 300K and dT \approx 10K. (0.03^2 = 0.0009 \approx 0.001 so that 6(0.03)^2 \approx 0.006. Of course, if you use latitude instead of day/night side stratification for dT, it is much larger. Really, one should use both and integrate the real temperature distribution (snapshot) — or work even harder — but we’re just trying to get a feel for how things vary here, not produce a credible quantitative computation.

For the Earth to be in equilibrium, S/4 must equal P’ — as much heat as is incident must be radiated away. I’m not concerned with the model, only with the magnitude of the scaling ratio — 1375 * 0.006 = 8.25 W/m^2, divided by four suggests that the fact that the temperature of the earth is not uniform increases the rate at which heat is lost (overall) by roughly 2 W/m^2. This is not a negligible amount in this game. It is even less negligible when one considers the difference not between mean daytime and mean nighttime temperatures but between equatorial and polar latitudes! There dT is more like 0.2, and the effect is far more pronounced!

The point is that as temperatures increase, the rate at which the Earth loses heat goes strictly up, all things being equal. Hot bodies lose heat (to radiation) much faster than cold bodies due to Stefan-Boltzmann’s T^4 straight up; then anything that increases the inhomogeneity of the temperature distribution around the (increased) mean tends to increase it further still. Note well that the former scales like:

P’/P = 1 + 4 dT/T + …

straight up! (This assumes T’ = T + dT, with dT << T the warming.) At the high end of the IPCC doom scale, a temperature increase of 5.6C is 5.6/280 \approx 0.02. That increases the rate of Stefan-Boltzmann radiative power loss by a factor of 0.08 or nearly 10%. I would argue that this is absurd — there is basically no way in hell doubling CO_2 (to a concentration that is still < 0.1%) is going to alter the radiative energy balance of the Earth by 10%.

The beauty of considering P’/P in all of these discussions is that it loses all of the annoying (and often unknown!) factors such as \epsilon. All that they require is that \epsilon itself not vary in first order, faster than the relevant term in the scaling relation. They also give one a number of “sanity checks”. The sanity checks suggest that one simply cannot assume that the Earth is a ball at some uniform temperature without making important errors, They also suggest that changes of more than 1-2C around some geological-time mean temperature are nearly absurdly unlikely, given the fundamental T^4 in the Stefan-Boltzmann equation. Basically, given T = 288, every 1K increase in T corresponds to a 1.4% increase in total radiated power. If one wants a “smoking gun” to explain global temperature variation, it needs to be smoking at a level where net power is modulated at the same scale as the temperature in degrees Kelvin.

Are there candidates for this sort of a gun? Sure. Albedo, for one. 1% changes in (absolute) albedo can modulate temperature by roughly 1K. An even better one is modulation of temperature distribution. If we learn anything from the decadal oscillations, it is that altering the way temperature is distributed on the surface of the planet has a profound and sometimes immediate effect on the net heating or cooling. This is especially true at the top of the troposphere. Alteration of greenhouse gas concentrations — especially water — have the right order of magnitude. Oceanic trapping and release and redistribution of heat is important — Europe isn’t cold not just because of CO_2 but because the Gulf Stream transports equatorial heat to warm it up! Interrupt the “global conveyor belt” and watch Europe freeze (and then North Asia freeze, and then North America freeze, and then…).

But best of all is a complex, nonlinear mix of all of the above! Albedo, global circulation (convection), Oceanic transport of heat, atmospheric water content, all change the way temperature is distributed (and hence lost to radiation) and all contribute, I’m quite certain, in nontrivial ways to the average global temperature. When heat is concentrated in the tropics, T_h is higher (and T_c is lower) compared to T and the world cools faster. When heat is distributed (convected) to the poles, T_h is closer to T_c and the world cools overall more slowly, closer to a baseline blackbody. When daytime temperatures are much higher than nighttime tempratures, the world cools relatively quickly; when they are more the same it is closer to baseline black/grey body. When dayside albedo is high less power is absorbed in the first place, and net cooling occurs; when nightside albedo is high there is less night cooling, less temperature differential, and so on.

The point is that this is a complex problem, not a simple one. When anyone claims that it is simple, they are probably trying to sell you something. It isn’t a simple physics problem, and it is nearly certain that we don’t yet know how all of the physics is laid out. The really annoying thing about the entire climate debate is the presumption by everyone that the science is settled. It is not. It is not even close to being settled. We will still be learning important things about the climate a decade from now. Until all of the physics is known, and there are no more watt/m^2 scale surprises, we won’t be able to build an accurate model, and until we can build an accurate model on a geological time scale, we won’t be able to answer the one simple question that must be answered before we can even estimate AGW:

What is the temperature that it would be outside right now, if CO_2 were still at its pre-industrial level?

I don’t think we can begin to answer this question based on what we know right now. We can’t explain why the MWP happened (without CO_2 modulation). We can’t explain why the LIA happened (without CO_2 modulation). We can’t explain all of the other significant climate changes all the way back to the Holocene Optimum (much warmer than today) or the Younger Dryas (much colder than today) even in just the Holocene. We can’t explain why there are ice ages 90,000 years out of every 100,000, why it was much warmer 15 million years ago, why geological time hot and cold periods come along and last for millions to hundreds of millions of years. We don’t know when the Holocene will end, or why it will end when it ends, or how long it will take to go from warm to cold conditions. We are pretty sure the Sun has a lot to do with all of this but we don’t know how, or whether or not it involves more than just the Sun. We cannot predict solar state decades in advance, let alone centuries, and don’t do that well predicting it on a timescale of merely years in advance. We cannot predict when or how strong the decadal oscillations will occur. We don’t know when continental drift will alter e.g. oceanic or atmospheric circulation patterns “enough” for new modes to emerge (modes which could lead to abrupt and violent changes in climate all over the world).

Finally, we don’t know how to build a faithful global climate model, in part because we need answers to many of these questions before we can do so! Until we can, we’re just building nonlinear function fitters that do OK at interpolation, and are lousy at extrapolation.

rgb

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

236 Comments
Inline Feedbacks
View all comments
long pig
January 6, 2012 8:53 am

Excellent – a true reality check. A much-needed antidote to back-of-envelope AGW Arrhenius complacency. Yes it is a complex system and no it is not understood or in any way settled. Thank-you Dr Brown!

highflight56433
January 6, 2012 8:58 am

Amen to some common sense.

January 6, 2012 8:59 am

I agree with Roger 100%
I know of him from the early Beowulf days and we used his code for monitoring nodes.

P.F.
January 6, 2012 9:02 am

Is there any doubt that WUWT is the hands-down best science blog on the Internet? One simply does not see this kind of insight and reason on any of the AGW/climate change sites.

FijiDave
January 6, 2012 9:02 am

Excellent!

TerryS
January 6, 2012 9:02 am

In the text.
\pi = π
\approx = &approx;
\epsilon = ε
\sigma = σ

January 6, 2012 9:12 am

Wow. That was a very good piece. Thanks!

Bloke down the pub
January 6, 2012 9:17 am

Nice piece of work. I can’t pick fault with it, though of course that doesn’t say a lot.

January 6, 2012 9:23 am

Talking about complexity and issues that we do NOT know, the greatest uncertainty appears to be in the impact of clouds. There is an excellent lecture on clouds by:
Graeme L. Stephens, JPL Climate Change – A Very Cloudy Picture (or link via: A21G Charney Lecture, Moscone West Rooms 2022-2024, AGU FALL Meeting 2011
I found particularly interesting his observations that climate models strongly differ even on the sign of the feedback. e.g. See:
Cloud feedback versus total feedback

“Conclusion: Differences in cloud feedback are again the largest single source of uncertainty of all feedbacks (range from -0.5 W/m^2/K to + 0.7 W/m^2/K)” – Andrews et al. 2012 (at 18’20”-19’00”)

Stephens commented that cloud effects are so varied and complex and have so many variables (at least three major ones) that they will always remain the greatest uncertainty in modeling.
I also found it interesting how clouds very strongly change the climate response to water:

“The ‘thermal absorbent’ character of water is greatly enhanced when in condensed phase. On a molecule by molecule basis, water in either solid or liquid form in the atmosphere absorbs more than 1000 times more strongly – a relative small amount of liquid or solid water disproportionally influences the flow of radiant energy through the Earth system.” (24’55” – 26’12”)

Willis Eschenbach has been exploring the diurnal impact of clouds, from night to day, and their feedbacks etc.
From Greame Stephens comments, I would not at all be surprised if Willis’ findings on day/night cloud variations have a similar order of magnitude impact as the day/night calculations in the above post.

John West
January 6, 2012 9:25 am
January 6, 2012 9:26 am

Lot’s of letters and symbols. I guess it’s good from the comments. Guess i shoudln’t have skipped math afterall.
[Or grammmar and punctuation.☺ ~dbs]

R. Gates
January 6, 2012 9:28 am

This is an excellent post, and this quote in particular:
“Until all of the physics is known, and there are no more watt/m^2 scale surprises, we won’t be able to build an accurate model, and until we can build an accurate model on a geological time scale, we won’t be able to answer the one simple question that must be answered before we can even estimate AGW:
What is the temperature that it would be outside right now, if CO_2 were still at its pre-industrial level?”
_____
Is quite outstanding, and right on target, but misses the point of climate models. Of course, we’ll never be able to tell you exactly what the temperature would be outside “right now” from a model of the climate. Everyone in the business, from Trenberth on down will tell you that models will never be right, are never “right”, and will never tell every little detail, especially daily temperatures for you’re dealing with two vastly different scales. But this isn’t the point of models, nor the reason for constructing them or studying them. Models don’t have to be 100% accurate to be useful. The power of a model is if it is useful enough to tell us things that we couldn’t have known without them. Models are essentially maps– albeit dynamic maps. Maps won’t tell you every little detail of the actual territory, every little side street or crack in the side walk, but they can be useful enough, giving you enough of the major features of a territory to allow you to know something useful about that territory.
Could a climate model ever tell you exactly how much colder (or warmer) it might be outside right now if CO2, N20, CH4, and water vapor were at such and such a level? Never. Could a model tell you the probability that it would be colder (or warmer) outside on a given day when comparing two different sets of greenhouse gas concentrations and holding all other variables constant? Absolutely…and that is precisely what they are meant to do.

January 6, 2012 9:38 am

The processes of evaporation/condensation and freezing/thawing are the factors that are controlling the rate of energy loss to space. Radiative energy transfer is essentialy “fast as light and line of sight”. The rates of these controlling processes are much slower. For example, In the arctic in winter,conductivity thru the sea ice is the rate controller. The “greenhouse effect” is insignificant by comparison. At the South Pole in winter, it is the rate of energy being delivered through the atmosphere and snow rate that are controlling. Of course, clouds are a barrier blocking the line of sight. Also, they transport energy.

Russell Seitz
January 6, 2012 9:42 am

And in conclusion, when physicists find they have gotten nowhere by writing down Boltzmanns equation while setting thermal mass to a non-physical value , they put down the chalk, and begin to think about breaking the problem down into its component parts , which may be iteratively arranged to produce a computational scheme capable of incorporating the mass elements of the system, and the optical depth integrals of the components of the atmosphere
This is known as a model.
Absent one , the algebra cannot save you from talking nonsense,* or generating something you wouldn’t dare scribble as a comment in a physics blog.
[snip. Try to have a little more class. ~dbs, mod.]
* paraphrase in memoriam John McCarthy

January 6, 2012 9:50 am

An excellent post. The alarmists who confine themselves to the simple physics are lacking in the ability to comprehend the far more complex logistics. Places like SkS can’t see the forest for the trees, cherrypicking the logistics to support the very basic physics rather than using the physics to support the mind blowing logistics.
The pro AGW crowd may well make faithful postmen, able to deliver a single previously sorted letter from their local post office to the correct street address, but it takes the sceptics to appreciate the logistics involved that enables all deliveries to happen on a global scale under all conditions.

J. Snow
January 6, 2012 9:59 am

R. Gates says:
“Could a climate model ever tell you exactly how much colder (or warmer) it might be outside right now if CO2, N20, CH4, and water vapor were at such and such a level? Never. Could a model tell you the probability that it would be colder (or warmer) outside on a given day when comparing two different sets of greenhouse gas concentrations and holding all other variables constant? Absolutely…and that is precisely what they are meant to do.”
OK… but… if the model is not calibrated with reality then what’s the point. If you create a model that relates GHG concentration to temperature and the correlation is always positive then the model will show that increasing CO2 concentration increases temperature, i.e. AGW. Models that don’t or can’t account for all the physical variables are worthless unless you are trying to force a specific answer.
The physical universe is the ultimate guru.

Tom G(ologist)
January 6, 2012 9:59 am

A.W. What do you mean we don’t know when the Holocene WILL end. It WILL end a couple hunderd years AGO (see http://suspectterrane.blogspot.com/)
And we thereby see that pure science types must continue to propose preposterous ideas to keep the gravy train rolling.

Frank K.
January 6, 2012 10:03 am

R. Gates says:
January 6, 2012 at 9:28 am
“Could a model tell you the probability that it would be colder (or warmer) outside on a given day when comparing two different sets of greenhouse gas concentrations and holding all other variables constant? Absolutely and that is precisely what they are meant to do.”
Yes, but will that predicted probability be correct? What if, instead of a predicted 50% chance of increased average temperatures over a given period of time given a certain initial condition, the real answer is 5%? Or 0.5%?
My personal opinion is that the climate models are not mature enough to provide any reliable predictions. While it’s of academic interest to do what-if scenarios with models, I would NOT base any important economic decisions on their output…
(Of course, we could also discuss how the climate models are constructed, the numerical methods, boundary/initial conditions, source terms and feedbacks, well-posedness etc. but no one ever wants to get into that, and it would distract from the current thread).

Elftone
January 6, 2012 10:06 am

R. Gates says:
January 6, 2012 at 9:28 am
Could a climate model ever tell you exactly how much colder (or warmer) it might be outside right now if CO2, N20, CH4, and water vapor were at such and such a level? Never. Could a model tell you the probability that it would be colder (or warmer) outside on a given day when comparing two different sets of greenhouse gas concentrations and holding all other variables constant? Absolutely…and that is precisely what they are meant to do.

Quite so – but as we don’t seem to even know what all the significant variables are, how they interact or what impact each actually has, models approach the usefulness of the Drake Equation. They appear to be too-simplistic approximations of complex systems… more like thought-experiments, with a bunch of so-far baseless (sorry) assumptions made to fill in the blanks.

D Snyder
January 6, 2012 10:10 am

Is it fair to sum this up as: The average temperature is a useless parameter? or only mostly useless?

Disko Troop
January 6, 2012 10:13 am

R. Gates:
“and holding all other variables constant”.
Variables? Constant?
Exactly……..Garbage in.

Editor
January 6, 2012 10:20 am

R. Gates says:
January 6, 2012 at 9:28 am

This is an excellent post, and this quote in particular:

“Until all of the physics is known, and there are no more watt/m^2 scale surprises, we won’t be able to build an accurate model, and until we can build an accurate model on a geological time scale, we won’t be able to answer the one simple question that must be answered before we can even estimate AGW:
What is the temperature that it would be outside right now, if CO_2 were still at its pre-industrial level?”

_____
Is quite outstanding, and right on target, but misses the point of climate models. Of course, we’ll never be able to tell you exactly what the temperature would be outside “right now” from a model of the climate. Everyone in the business, from Trenberth on down will tell you that models will never be right, are never “right”, and will never tell every little detail, especially daily temperatures for you’re dealing with two vastly different scales. But this isn’t the point of models, nor the reason for constructing them or studying them. Models don’t have to be 100% accurate to be useful. The power of a model is if it is useful enough to tell us things that we couldn’t have known without them. …

Thanks, R. Couldn’t agree more, and someday climate models may actually reach the point you mention, where they can tell us things we wouldn’t have known without them.
Don’t hold your breath while waiting for the climate models to come up with their first useful result, however …
w.

stevenlibby
January 6, 2012 10:20 am

Whenever I hear “it’s basic physics” mentioned by the CAGW crowd I growl to myself, “which of the dozens if not hundreds of ‘basic physics’ processes affecting climate are you referring to and how sure are you about their interactions, scales, sign or even if we know we’ve found them all yet?” The devil is rarely in any one ‘basic physics’ process but in how all of them work together in this amazing planet we live on to keep us alive and thriving!
Great article.
BTW – WUWT has single-handed changed my mind on the benefits of blogs. I would consider it to be one of very few blogs that has actually achieved what blogs were intended to do and it’s a delight to observe. Thanks to all who make this possible!

January 6, 2012 10:20 am

Reality checks about what we do and mostly do not know are always welcome.
Doing research in an ‘unsettled ‘ science subject is far more interesting to keen, young minds than having to follow a ‘settled’ science track where only tiny details are allowed to be looked at and where dissent is discouraged.

jim hogg
January 6, 2012 10:25 am

At last: honesty, high intelligence and appropriate knowledge that admits how little we know, and how much more we need to know if we’re to make sense of climate variation. Thank you Mr Watts for making space for this.

1 2 3 10