Elevated CO2 Reduces Temperature Stress in Plants

From MasterResource

By Craig D. Idso — July 20, 2022

“So when the next summer heat wave arrives along with all the negative spin stories demonizing CO2 as its cause, I hope you will remember this post and the numerous scientific studies proving rising CO2 levels helps plants better withstand and recover from temperature-induced stresses. And when you do remember this, please share it with others!”

It’s summer time once again in the Northern Hemisphere. And like every summer, expect the occasional heat wave to set off a fury of news stories hyping the claim that today’s heat waves are caused or made worse by anthropogenic global warming.

Of course there is no clear evidence to support such assertions (sorry, climate model projections are not evidence!). Yet, the warmer temperatures that have finally reached the cold part of the country in which I live got me thinking about my next post exploring the many biological benefits of rising atmospheric CO2. So read on if you want to learn about how higher levels of CO2 help alleviate many of the stresses plants experience during heat waves.

Heat stress can cause a multitude of challenges to plant growth and survival, including dehydration and oxidative damage to biomembranes from elevated reactive oxygen species (ROS). Yet elevated levels of CO2 have been shown to lessen the severity of this stress. Thus, there is interest in determining the interactive effects of heat stress and atmospheric CO2 on plants given predictions of future elevated temperatures and CO2 concentrations.

Pan et al. (2018), in particular, studied the interactive effects of elevated CO2 and heat stress on a range of photosynthetic and chlorophyll fluorescence parameters, as well the cellular redox state, of tomato plants. The work was conducted in environmentally controlled growth chambers, where tomato seedlings (Solanum lycopersicum cv. Hezuo 903) were exposed to CO2 concentrations of either 380 ppm or 800 ppm.

Then, following an acclimation period of 48 hours, half of the seedlings in each CO2 treatment were subjected to 24 hours of heat stress (42°C, compared to unstressed day/night temperatures of 26/22°C in control plants), followed by a 24 hour recovery period. After 24 hours of heat stress and again after the 24 hour recovery period to control temperatures, a range of measurements were taken to evaluate the ability of elevated CO2 to mitigate temperature stress. The results are depicted in the two figures below.

Figure 1. Effects of elevated CO2 and heat stress on the net photosynthetic rate (Pn) of tomato plants. The red text shows the change in Pn due to elevated CO2 during the control, heat and recovery stage. Source: Pan et al. (2018).

Figure 1 presents the CO2-induced response of the tomato plants on net photosynthesis during the control, heat and recovery period. At normal temperatures, elevated CO2 increased net photosynthesis by 45%. Not surprisingly, regardless of CO2 concentration, heat stress reduced net photosynthesis, which parameter increased during the recovery period but not quite back to its pre-stressed condition. Nevertheless, elevated CO2 caused a relative increase in net photosynthesis of 116% and 96% during heat stress and recovery, which values were not significantly different than that observed in the control treatment under normal CO2. Thus, elevated CO2 was able to fully ameliorate the negative effects of heat stress on net photosynthesis of the tomato plants.

Figure 2. Effects of elevated CO2 and heat stress on the photosynthetic apparatus of tomato. The left panel displays the maximum photochemical efficiency of photosystem II (Fv/Fm) shown in pseudo color images, the false color code depicted in the image ranges from 0 (black) to 1 (purple). The right panel shows the actual Fv/Fm values, with the percentages in red text indicating the change in Fv/Fm values due to elevated CO2 during the heat and recovery period. Source: Pan et al. (2018).

A similar finding is noted in Figure 2, which presents the effects of elevated CO2 and heat stress on the maximum photochemical efficiency of photosystem II (Fv/Fm). Although elevated CO2 had no effect on Fv/Fm under normal temperature conditions, it increased this parameter by 60% and 14% in response to heat stress and at recovery, respectively, compared with that observed in the ambient CO2 treatments.

In commenting on these and other of their findings, Pan et al. noted “heat-induced excessive production of ROS caused damage to photosynthetic apparatus as evidenced by decreased Fv/Fm, low electron transport rate and altered oxidized and reduced states of PSII and PSI. On the other hand, elevated CO2 remarkably attenuated heat-induced damage to photosynthetic apparatus and promoted electron transport in PSII and PSI by maintaining proper redox balance.”

Turning to one other example of this incredible benefit, Chavan et al. (2019) examined the interactive effects of elevated CO2 and heat stress on the photosynthesis, biomass and grain yield of wheat. The CO2 concentrations examined in their study included ambient (419 ppm) and elevated (654 ppm). Temperatures were maintained at 22/15 °C (day/night) in the control treatment. Then, thirteen weeks after planting heat stress was enacted on half the plants in each CO2 treatment by raising the day/night temperatures to 40/24 °C for five days. Thereafter, the heat-stressed plants were returned to the control temperatures. Adequate water was supplied to all treatments throughout the experiment so as to avoid confounding effects of water stress.

Chavan et al. found elevated CO2 enhanced net photosynthesis by 36% in non-heat stressed plants, whereas high temperature stress reduced this parameter by 42%. In the combined elevated CO2 and heat stress treatment, net photosynthesis was not reduced because, in the words of the authors, “elevated CO2 protected photosynthesis by increasing ribulose biphosphate regeneration capacity and reducing photochemical damage [caused by] heat stress.”

Figure 3. Total biomass (a) and grain yield (b) of wheat plants at harvest in response to elevated CO2 and heat stress (HS). Values represent means ± SE using two-way ANOVA. Means sharing the same letter in the individual panels are not significantly different according to Tukey’s HSD test at the 5% level. Statistical significance levels (t-test) for eCO2 effect are shown as follows: ** P < 0.01: *** P < 0.001. The percentages in red text indicate the change in biomass or grain yield due to elevated CO2 under control or heat stress conditions. Source: Chavan et al. (2019).

With respect to biomass and yield, as shown in Figure 3, elevated CO2 stimulated these two parameters by 36% and 31%, respectively, in the control treatment. Heat stress alone, in contrast, induced a small non-significant reduction in total biomass and a 44% reduction in grain yield. When elevated CO2 and heat stress were combined, total biomass increased by 46% over the control treatment (ambient CO2 and non-heat stress) and by 58% relative to the heat stress treatment under ambient CO2. Grain yield, on the other hand, experienced a 23% decline in the combined elevated CO2 and heat stress treatment relative to control conditions, but a positive 37% increase relative to heat stress alone at ambient CO2. Thus, in the future, elevated CO2 may well be able to ameliorate a large portion of the negative impact of high temperature stress on grain yield for the particular wheat variety examined in this study.

Commenting on the important benefits of CO2 observed in their study, Chavan et al. state “heat stress caused irreversible photosynthetic damage at ambient CO2, while growth at elevated CO2 mitigated the negative impact of heat stress on photosynthesis.” Additionally, they found “plant biomass completely recovered from heat stress under both CO2 treatments due to the development of additional late tillers and ears; yet these did not fully develop and fill grains,” which explains the drop in grain yield observed under heat stress.

Consequently, they advocate for more research and breeding programs designed to improve grain filling and translocation of plant resources to the grain at high temperatures and elevated CO2 to protect future food production.

Many more studies have investigated the interactive effects of elevated CO2 and heat stress (see, for example, a list of articles reviewed on my CO2 Science website on this topic under the headings Temperature x CO2 Interaction (Plant Growth Response: Agricultural Crops)Temperature x CO2 Interaction (Plant Growth Response: Grassland Species), and Temperature x CO2 Interaction (Plant Growth Response: Trees).

In nearly every instance these studies demonstrate the air’s rising CO2 content is helping plants better cope with and endure high temperature stresses. And these benefits are being realized now, courtesy of the approximate 50% increase in atmospheric CO2 that the world has experienced since the Industrial Revolution began, which benefits will only continue to accrue in the future as the air’s CO2 content continues to rise.

So when the next summer heat wave arrives along with all the negative spin stories demonizing CO2 as its cause, I hope you will remember this post and the numerous scientific studies proving rising CO2 levels helps plants better withstand and recover from temperature-induced stresses. And when you do remember this, please share it with others!

Dr. Craig D. Idso

References

Chavan, S.G., Duursma, R.A., Tausz, M. and Channoum, O. 2019. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of Experimental Botany 70: 6447-6459.

Pan, C., Ahammed, G.J., Li, X. and Shi, K. 2018. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Frontiers in Plant Science 9: Article 1739, doi: 10.3389/fpls.2018.01739.

5 12 votes
Article Rating
22 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
2hotel9
July 22, 2022 6:06 am

CO2 good. Leftist ideology bad. Savy?

Michael in Dublin
July 22, 2022 6:07 am

This is what we need a lot more of – spelling out the benefits of CO2.

Notice how those who push for carbon zero never consider how beneficial CO2 is to life.
They have to demonize CO2 in order to reject fossil fuels.
If CO2 is plant food and good their case collapses.

Last edited 10 months ago by Michael in Dublin
Reply to  Michael in Dublin
July 22, 2022 6:21 am

there have been over 3,000 studies of plant growth with elevated CO2 along with decades of positive experiences by greenhouse owners. The mass media do not want you to know.
For reports on these studies, Craig Ipso is the go to guy.
I miss his regular one-page summaries at CO2 Science

Reply to  Richard Greene
July 22, 2022 10:34 am

The best source for a summary of plant studies is over 1000 pages.
I have been reading it since 2014 and may never finish.
I’ve also read about 200 individual plant-CO2 studies since 1997. They can be tedious reading — maybe one every month or two.

My Short Summary — Plants love CO2 — 750ppm to 1500ppm for S3 photosynthesis plants — and over 95% of the studies I’ve read, selected at random, had statistically significant results to prove that plants love CO2.
Even C4 plants benefit at least a little from CO2, but they are not often studied. With elevated CO2, plants generally prefer a higher temperature and require less water. I suppose you could just ask a greenhouse owner and not read any studies. More CO2 in the atmosphere will improve plant growth, which will support more human and animal life.

The fastest way to get up to speed on CO2 enrichment and plants is a 20-page executive summary of that 1000+ page report:

Microsoft Word – _03-26-14_ CCR-IIb SPM.doc (heartland.org)

The 1000+ page document is here:

Climate Change Reconsidered II: Biological Impacts – Climate Change Reconsidered

MarkW
Reply to  Michael in Dublin
July 22, 2022 9:00 am

Pointing out that there are positive impacts from CO2 will get you banned on most social media sites.

July 22, 2022 6:35 am

My plants seem to enjoy soothing background music too.

MarkW
Reply to  Antigriff
July 22, 2022 9:02 am

For years people have been claiming that talking to plants makes them grow better. I believe it was all the CO2 that was being breathed on them while talking, that made the difference.

Reply to  MarkW
July 22, 2022 10:13 am

Some plants are just constant nags with water me…water me….water me

Olen
July 22, 2022 8:10 am

They will have to get a darker shade of red for their weather maps to prove their case.

MarkW
July 22, 2022 8:54 am

Does the author have a brother, Ipso, Facto?

Rich Davis
Reply to  MarkW
July 22, 2022 1:43 pm

Everybody keeps beating me to the punchline.

Ipso
Idso in the Upside Down

Stranger Things I reckon.

MarkW
July 22, 2022 8:59 am

hyping the claim that today’s heat waves are caused or made worse by anthropogenic global warming.

I guess there is a chance that the current heat wave is 0.1 to 0.2C warmer than it might have been had CO2 levels still been at 280ppm.
On the flip side every cold wave would also be the same 0.1 to 0.2C less cold.

And that’s without considering the many documented benefits from more CO2 in the atmosphere.

Long and the short of it, there is no downside to having more CO2 in the atmosphere.

S.K.
July 22, 2022 9:15 am

If you want more proof please visit:
http://co2science.org/

chadb
July 22, 2022 10:49 am

So elevated CO2

  • Improves growth rate
  • Improves drought tolerance
  • Improves heat tolerance

So the vegetation in the Sahel is likely to continue growing and pushing back the Sahara.

Phil.
Reply to  chadb
July 24, 2022 6:00 pm

Only when the plants have no reduction in their water supply, also there they’re most likely to be C4 plants so the tomato data doesn’t apply.

Tim Gorman
July 22, 2022 12:41 pm

Has anyone emailed this to Biden yet?

Peta of Newark
July 22, 2022 12:57 pm

Which planet are we on here…

  • Why bother with tomatoes, they are Nightshades and thus toxic (leave an unblemished one on your kitchen window and see how, for months, nothing dares go near it)
  • 800ppm and 42°C – hello hello, exactly when or where is that going to happen, what is the relevance to Planet Earth?
  • What sort of soil/compost were those test plants growing in. As it was probably carefully formulated ultra high nutrient Greenhouse Compost and almost all tomatoes these days are grown in greenhouses. what was the point of this experiment?
  • …that fact alone precludes this from having any relevance to ordinary plants growing out-of-doors in ordinary soil.
  • Is it beyond the bounds that the test plants were responding to how the bacteria in the compost responded to either or both the experiment – how was the response of the bacteria separated from that of the plants themselves?
  • What was used as a light source for the tests, was it carefully calibrated artificial light or did the experiment depend on the weather?
  • Why do the words ‘not surprisingly‘ appear in the text?

Here’s a sure fire surprise for the experimenters = ‘Confirmation Bias

I’m feeling generous, here’s 3 more:
Magical thinking
Junk science
Irrelevance

T Hill
Reply to  Peta of Newark
July 22, 2022 1:50 pm

Tell in to the greenhouse owners, I’m sure they wasting money on CO2 for the hell of it.

TonyG
Reply to  Peta of Newark
July 22, 2022 2:02 pm

they are Nightshades and thus toxic

So are potatoes, eggplant, and peppers. I guess you just don’t eat?

Bob
July 22, 2022 1:50 pm

This is good information but likely meaningless to green devils.

Philip Mulholland
July 22, 2022 2:30 pm

“heat stress caused irreversible photosynthetic damage at ambient CO2, while growth at elevated CO2 mitigated the negative impact of heat stress on photosynthesis.”

So, well fed plants are healthy resilient plants.
What a truly astonishing discovery.

Last edited 10 months ago by Philip Mulholland
Colin
July 22, 2022 4:43 pm

Don’t confuse the alarmists with facts. Its hurts their heads and their narrative

%d bloggers like this:
Verified by MonsterInsights