Guest Post by Willis Eschenbach
After my recent post on the futility of the US cutting down on CO2 emissions, I got to thinking about what is called the “social cost of carbon”. (In passing, even the name is a lie. It’s actually the supposed cost of carbon DIOXIDE, not carbon … salesmanship and “framing” applied to what should be science. But I digress …)
According to the Environmental Defense Fund the “social cost of carbon” is:
… the dollar value of the total damages from emitting one ton of carbon dioxide into the atmosphere. The current central estimate of the social cost of carbon is roughly $40 per ton.
Now, for me, discussing the “social cost of carbon” is a dereliction of scientific duty because it is only half of an analysis.
A real analysis is where you draw a vertical line down the middle of a sheet of paper. At the top of one side of the paper you write “Costs”, and under that heading, you list the costs of whatever you are analyzing … and at the top of the other side of the paper you write “Benefits” and beneath, you list those benefits. This is what is called a “cost/benefit analysis”, and only considering only the “Costs” column and ignoring the “Benefits” column constitutes scientific malfeasance.
Instead of just looking at the “social cost of carbon”, we also need to look at the “social benefit of carbon”, which if I follow the logic of the previous definition would be the dollar value of the total benefits from emitting one ton of carbon dioxide into the atmosphere.
Now, the carbon emissions are coming from the use of fossil fuels. This set me to wondering about the historical changes in the mix of different fuels that power our planetary economy. So as is my wont, I got the data and I graphed it up. Figure 1 shows the changes in the mix of the fuels that the world uses to give us our amazing standard of living.

Figure 1: Global Total Primary Energy Consumption, 1965-2017.
First a word about units used to measure energy. The units of energy in Figure 1 are “million tonnes of oil equivalent”, abbreviated Mtoe. (“Tonnes” means metric tons of 1,000 kilograms, which are about 2200 pounds.).
An “Mtoe” is the amount of a given energy source, be it coal, natural gas, solar, or hydroelectric, that has the same amount of energy as a million tonnes of oil. There are other variants of this measure, such as billion tonnes of oil equivalent (Btoe), thousand or “kilo” tonnes of oil equivalent (Ktoe), and barrels of oil equivalent (BOE). One BOE is equivalent to 1,682 kilowatt-hours of energy. For these types of conversions from one unit to another I use the wonderful UnitJuggler.
Now that we understand the units, see that red thread up at the top of Figure 1 above? That’s solar energy.
Plus wind energy.
Plus biofuels energy from ethanol and biodiesel.
Plus geothermal energy.
Plus tidal energy.
Plus biomass energy.
Plus wave energy.
In short, that red line is the sum of every kind of renewable energy we use commercially, and after years of subsidies, it’s grown all the way up to being two and a half percent of the total energy we use.
Be still, my beating heart …
And sadly, this has been at a huge cost to the taxpayer. Not only does the renewable energy itself cost more than either fossil fuels or nuclear energy, but the subsidies are also horrendous. Figure 2 shows a part of what the US taxpayer has been shelling out for the privilege of using unreliable, weak, intermittent renewable energy …

Figure 2. Average US subsidies on various fuel sources.
Figure 2 shows the subsidy per barrel of oil equivalent energy (BOE). For energy from oil and coal, the subsidy is trivially small. For nuclear, it’s larger, but still reasonable, since nuclear energy is dispatchable reliable baseline power.
But the subsidy for intermittent, unreliable renewable energy is huge. For comparison with the renewable subsidy, today’s price for a barrel of West Texas Intermediate (WTI) crude oil is $51.15. Plus the $0.26 per barrel subsidy on oil, we’re paying $51.41 per barrel … which means that the subsidy alone on renewable energy is over half of the cost of an equivalent amount of oil!
And that’s just the Federal subsidies. In addition, states like California have costly “Cap And Trade” programs, “carbon taxes”, and “renewable mandates” that are all extra costs tacked on to the price of renewable energy.
And even with that huge Federal subsidy, plus all of the other coercive measures used to push the renewable dream year after year, after immense amounts of money spent decade after decade, after all of that, renewable energy is STILL less than three percent of the global energy usage.
And as we’ve seen in France, folks are getting fed up with paying this exorbitant subsidy for an economically uncompetitive form of energy …
One thing that these figures make abundantly clear is that renewable energy ain’t gonna save us. For the foreseeable future, the world will continue to be powered mostly by fossil fuels, and all the subsidies, and all the carbon taxes, and all the “renewable mandates”, and all the US Resolutions and the wishful thinking won’t change that.
While looking at the graphs above, I fell to considering how energy is inextricably linked to economic development. Energy is what drives the great economic engine of the planet, the engine that has lifted us out of the ugly, short, brutal lives of our predecessors and has insulated us from the vagaries of the weather.
So … how well does historical energy use correlate with the global Gross Domestic Product, which is the global sum of all of the goods and services produced annually? Figure 3 shows that relationship.

Figure 3. Scatterplot, global energy use versus global gross domestic product. Energy use source as in Figure 1. As noted on the vertical axis, all prices are in constant (inflation-adjusted) current US$.
As you can see, the global Gross Domestic Product (GDP) is a simple linear function of how much energy we use. You could think of the economy as a giant machine that turns energy into goods and services. We harvest energy in one of a hundred forms, including human labor, and we use that energy to make steel and build houses and create medicines and catch fish and grow food and manufacture automobiles and engage in all forms of creation of wealth. The relationship is clear—how wealthy we are is simply a function of how much energy we can command.
Now, every year the world is needing to feed and house and clothe and transport an increasing number of people. It’s not optional. The population is going up. Not only that, but poor people want to have reasonably comfortable lives like those of us in the industrialized world. There are only two ways that we will be able to take care of all of their needs.
The two ways are first, to use more energy … and second, to use it all more efficiently. Regarding efficiency, Figure 4 shows the increase over time in the GDP per barrel of oil equivalent energy used.

Figure 4. Change over time in the amount of goods and services (constant 2016 dollars) that we get from using energy. As noted on the vertical axis, all prices are in constant (inflation-adjusted) current US$.
Now, this is interesting. Back in 1965, for every barrel of oil equivalent energy that we used, we got about fifty dollars worth of goods and services.
And today, about fifty years later, we’re getting about five hundred dollars worth of goods and services out of the exact same amount of energy. This is good news—we’re getting more and more goods and services out of each unit of energy that we use. Thanks to the joys of competition and the fact that energy costs money, we’re constantly finding new and inventive ways to produce more with less energy.
With that relationship between energy and GDP as prologue, let me follow another train of thought. Fossil fuels are hydrocarbons, so-called because they are compounds of hydrogen and carbon. When they are burned, you get energy from two sources—the hydrogen and the carbon. When you burn hydrogen, you get water plus energy. When you burn carbon, you get carbon dioxide plus energy.
This means that the amount of carbon dioxide produced is a direct and simple function of the amount of energy used. Given the same mix of energy sources, more CO2 produced means more energy used, and vice versa. Figure 5 shows that relationship

Figure 5. Tonnes of CO2 emitted per tonnes of oil equivalent energy used.
(Yes, I know that it’s strange that we get more than one tonne of CO2 from burning one tonne of oil. The reason is that the oxygen in the carbon dioxide comes from the air. Before burning, the molecular weight of the carbon is 12 … after burning, the molecular weight of the CO2 is 44. Because of that, we get more than a tonne of CO2 out of burning a tonne of oil. We now return you to your previously scheduled programming …)
And this brings us to the final relationship. We know that both GDP and CO2 emissions are functions of the amount of energy used. This, of course, means that we can take a look at the relationship between GDP and CO2. To make the relationship clear and understandable, I’ve added CO2 to Figure 3, which showed GDP versus Energy Use.

Figure 6. Scatterplot, global energy use and concomitant CO2 emissions versus global gross domestic product. Energy use source as in Figure 1. As noted on the vertical axis, all prices are in constant (inflation-adjusted) current US$.
As in Figure 3, Figure 6 again shows that for each additional tonne of oil equivalent energy use, we get $5,740 in additional goods and services.
It also shows that for each additional tonne of CO2 produced from that energy use, we get $4,380 in additional goods and services.
And this brings me back to the question of cost/benefit analyses and the idea of the “social benefit of carbon”. As noted above, people put the “social cost of carbon” (actually carbon dioxide) at “roughly $40 per ton”.
Now, remember that corresponding to the “social cost of carbon”, the “social benefit of carbon” is:
… the dollar value of the total benefits from emitting one ton of carbon dioxide into the atmosphere.
As Figure 6 shows, the benefit that we get from emitting that additional tonne of carbon dioxide into the atmosphere is an increase in goods and services of $4,380 … which dwarfs the assumed social cost of carbon of $40. When we do an actual cost/benefit analysis, the result is almost all benefit.
FOOTNOTE: Let me add one other much smaller aspect of the question of the social benefit of carbon. This involves the “greening” of the planet due to the increased atmospheric carbon dioxide. Greenhouse owners routinely release CO2 inside their greenhouses to improve plant growth. Figure 7 shows plant growth at ambient (AMB) CO2 levels, as well as at the current level plus 150, 300, and 450 ppmv.

Figure 7. Plant growth under differing levels of CO2.
Now, the best estimate is that to date, the increasing levels of atmospheric CO2 have increased global plant growth by about 10%.
To see how much difference that 10% makes to the human agricultural production, I turn to that marvelous site, the Food and Agricultural Organization (FAO) dataset, available here. It says that the total of all commercially-raised fruit, vegetable, and fiber production in 2016 was about US$4.6 trillion. If we assume that it increased by 7% due to the increased plant growth from CO2, that is a benefit of about US$322 billion dollars.
And dividing that by the 33.5 billion tonnes of CO2 emitted in 2016 gives us a net benefit of about $9 per tonne of CO2 … and I note that this does NOT include the value of the 10% growth in things like forest production of timber, or the increase in oceanic production of plankton and associated marine growth, or the increase in meat and dairy production due to increased pasture growth, or the increase in home-garden vegetables (which make up a surprising amount of world food production).
It also doesn’t include the benefits of the decreased cost of water used to produce fruits, fibers, and vegetables. Plants have pores in their skin through which they take in CO2. The less CO2 the air contains, the wider those pores must open. The problem is that water escapes through the pores, and the wider the pores open, the more water the plant uses, and thus the more water the plant needs to stay healthy. So when CO2 levels go up, water use goes down … another social benefit of CO2.
My conclusion? The reason that alarmists talk about the “social cost of carbon” and never talk about the “social benefits of carbon” is that the assumed possible costs of engaging in activities that emit CO2 are in measured in tens of dollars per tonne of CO2. Not only that, but those are predicted future costs, which will be valid only if the “CO2 Roolz The Temperature” theory is correct.
But the social benefits of engaging in activities that emit carbon dioxide, as we’ve seen above, are measured in thousands of dollars per tonne of CO2 … and those are real measurable benefits that don’t depend on alarmist doomcasts of future claimed catastrophes.
Here, a bit of rain again, a good day for writing. The cat just came in, he’s not happy about the rain, but the forest plants are loving it.
My wish for all of you is for days of rain when you need water, days of sun when you need to recharge your mental batteries, and the wisdom to know that the weather doesn’t give a damn which one you might want on any given day …
w.
PS—Misunderstandings are the bane of the intarwebs. In the interest of clarity, when you comment please quote the exact words that you are discussing, so we can all be clear about both your subject and who you are addressing.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Willis
https://www.eia.gov/analysis/requests/subsidy/pdf/subsidy.pdf
“Figure 2. Average US subsidies on various fuel sources.
Figure 2 shows the subsidy per barrel of oil equivalent energy (BOE). For energy from oil and coal, the subsidy is trivially small. For nuclear, it’s larger, but still reasonable, since nuclear energy is dispatchable reliable baseline power.”
You obviously did some serious sums on the data referenced in fig 2. Would you care to say how these subsidies were calculated? What subsidies were included – loans, tax breaks, etc?
Did you for example use the thermal to electricity conversion equivalent – around 30%
Thanks
Good question, Ford. I used an average of the three “Total” figures from each of the first four columns of table 3 from your link, and divided them by the average energy usages per fuel type in BOE for the relevant years from the BP spreadsheet.
w.
Willis your fig 2 gives a reference to a pdf. The data in the form you use is not present in that doc. Can you please confirm the methods used to compile your fig 2?
E.g. is the efficiency of conversion to electricity -30%- taken into account for thermal generators? What benefits are taken into account in your workings – taxes, special loans, etc.?
See above.
w.
Willis your fig 2 gives a reference to a pdf. The data in the form you use is not present in that doc. Can you please confirm the methods used to compile your fig 2?
E.g. is the efficiency of conversion to electricity -30%- taken into account for thermal generators? What benefits are taken into account in your workings – taxes, special loans, etc.?
This is really going to get some commentators worked up but it is on the theme of divestment from fossil fuel companies. This article seems to be making the assumption that the benefits outweigh the costs of CO2 emissions. However, I vehemently disagree – as do many large investment concerns like the Norwegian Sovereign Fund that have now decided to divest their holdings in fossil fuel companies, citing the evidence that they see increasing CO2 emissions as being detrimental to the long-term sustainability of the planet: https://mankindsdegradationofplanetearth.com/2018/12/17/at-last-divestment-is-hitting-the-fossil-fuel-industry-where-it-hurts/
On another point, I want to address the so-called “greening” of the planet that the author cites as a positive, using the must-used example of plants growing in a greenhouse. This is a complete fallacy that has to be shot down here and now: https://mankindsdegradationofplanetearth.com/2018/12/14/what-is-the-so-called-c02-greening-effect-and-is-it-beneficial-in-the-long-run/
What exactly do you suppose is the source of the Norwegian fund? Deep sea oil of course. This is a pure diversificatiin play mixed in with a little pr for the plebs who buy doublespeak at face value.
Ivan, when the time comes that you stop using fossil fuels in all of their forms, including food grown by fertilizers and most kinds of plastics, I’ll take you seriously.
Until then you are just engaged in meaningless virtue signaling.
As to Norway, they are utilizing a huge hydroelectric resource, so they can afford to pretend to be virtuous.
w.
Golly Ivan, greenhouse effect alarmists seem to have a lot of problems with greenhouses. Why do you think that is?
Read the link Bill about the flaws in the theory of the “greening effect”. To quote the example of plants thriving in a greenhouse as replicating that of planetary vegetation thriving with increased man-made CO2 emissions is absurd. Just another sceptic fallacy – and you know it 🙂
There is no question that more CO2 both accelerates growth and increases drought resistance. That is established by empirical science and its not going to be overturned by a computer model.
Ivan Kinsman December 16, 2018 at 11:59 pm
“So-called greening”? Ivan, you neet to get out more. Here’s NASA on the question.
In geological times CO2 was much higher … and life flourished.
Go figure.
Regards,
w.
Great post.
Were the Idsos work the source for Fig 7?
Also, source of: “Now, the best estimate is that to date, the increasing levels of atmospheric CO2 have increased global plant growth by about 10%.” (?)
Outstanding post, Willis. One question: what are the subsidies for fossil fuels? I’m not aware of any, but you are a data hound who could find any that exist. Also, the only nuclear “subsidies” of which I’m aware are indemnification for casualties and property destruction due to a nuclear accident. Experience in the United States is showing more and more that there will never be a claim, so that the contingent liability this indemnification represents is far from the usual concept of a subsidy.
Is it the more fossil fuels we consume, the wealthier we are, or the wealthier we are, the more fossil fuels we consume? Probably a combination. And the cheaper the fuel, the more liable we are to waste it.
The gain in efficiency Willis assumes from GDP and fossil fuel use doesn’t take into account that the U.S. has been moving toward a service economy.
Subsidies for renewable energy are an investment. It’s analogous to subsidizing the construction of power plants and a grid where they don’t exist. The benefits accrue over time, with low-cost, pollution-free energy. Renewables have also provided hundreds of thousands of jobs. Of course, solar energy installation has become more expensive due to Trump’s tariffs – perhaps the stupidest tariff he enacted unless seen from the perspective of helping the fossil fuel industry. (I don’t advocate abandoning fossil fuels, I advocate diversifying our energy sources, improving efficiency, and practicing conservation.)
Much of the subsidies for renewables were part of the Recovery Act, and in 2016 had decreased to less than half what they were in 2010 and 2013. “. In FY 2016, tax expenditures alone accounted for 80% of total renewable energy subsidies. Direct expenditures decreased 90% from FY 2013 to FY 2016, largely as a result of the expiration of the Section 1603 grant program. ”
Renewables in 2016 provided about half the electricity of coal, and a little less than that of oil. The annual growth rate since 2000 was 3.3%. This kind of change necessitates investment in infrastructure. In the long run it’s to our advantage to diversify our energy sources. Taxes will pay into the public coffers over time, long after the initial investment.
Biofuels accounted for 42% of the subsidies from 2010-2016. In 2016 the tax credit to biodiesel producers was more than twice that of any other kind of renewal subsidy.
“The Energy Investment Tax Credit (26 U.S.C. 48). The ITC, also referred to as the Section 48
credit, is the sole federal tax credit currently available to commercial solar facilities.” It’s been around since the 1970s at 10%, was temporarily set in 2005 at 30% until 2019, then is set to go back down the 10%. ” The credit for residential energy efficient property, also worth 30% of investment costs, was subsequently established for individual (residential) owners of solar and other end-use equipment. This latter credit reverted to zero at the end of 2016″ It’s TEMPORARY. An INVESTMENT.
I don’t see where Willis got his BOE figures from his source. I’ve gone through the document. Did I miss it?
If fossil fuels are so cheap, why should they be subsidized at all? Why should Americans pay for oil exploration that doesn’t yield any oil? Isn’t that part of the overhead of oil production?
This is a disjointed post. Sorry.
Kristi – I see that you take the position on fossil fuels: “I don’t advocate abandoning fossil fuels, I advocate diversifying our energy sources, improving efficiency, and practicing conservation.”
My stance exactly. Many US sceptic commentators on this site automatically assume that anyone who criticises current fossil fuel consumption wants to see them banned completely – seeing any opposer as a radical green leftie environmentalist who would like to see 100% energy coming from renewables.
With the current population of 7 billion forecast to rise to 10 billion this is an impossible goal and fossil fuels will always remain in the energy mix for many countries. However, diversification of energy sources is the key here and, as such, the more renewable energy can replace fossil fuels the better. Poland, for example, where I live is heavily dependent on coal – which makes up an very large proportion of its energy mix – but is investing heavily in renewables and so the percentage of coal burning will decline over time http://delano.lu/d/detail/news/can-poland-wean-itself-coal/198638
It’s also worthwhile to consider that, depending on the discount rate that you use, the $40/ton SCC can become a social benefit of carbon. The Obama admin’s Interagency Working Group refused to model SCC using a 7% discount rate, which is one of the discount rates recommended by the OMB. Look at the work of Kevin Dayaratna at Heritage for more on this – https://docs.house.gov/meetings/SY/SY18/20170228/105632/HHRG-115-SY18-Wstate-DayaratnaK-20170228.pdf
Notable quote: “Under a variety of assumptions, including those made by the IWG itself, one of its three predictive models shows that the SCC has a non-trivial probability of being negative. This would suggest that there are actually benefits of CO2 emissions.”