Guest Post by Willis Eschenbach
A couple of apparently related theories have been making the rounds lately. One is by Nikolov and Zeller (N&Z), expounded here and replied to here on WUWT. The other is by Hans Jelbring, discussed at Tallblokes Talkshop. As I understand their theories, they say that the combination of gravity plus an atmosphere without greenhouse gases (GHGs) is capable of doing what the greenhouse effect does—raise the earth at least 30°C above what we might call the “theoretical Stefan-Boltzmann (S-B) temperature.”
So what is the S-B temperature, theoretical or otherwise?
A curious fact is that almost everything around us is continually radiating energy in the infrared frequencies. You, me, the trees, the ocean, clouds, ice, all the common stuff gives off infrared radiation. That’s how night-vision goggles work, they let you see in the infrared. Here’s another oddity. Ice, despite being brilliant white because it reflects slmost all visible light, absorbs infrared very well (absorptivity > 0.90). It turns out that most things absorb (and thus emit) infrared quite well, including the ocean, and plants (see Note 3 below). Because of this, the planet is often treated as a “blackbody” for IR, a perfect absorber and a perfect emitter of infrared radiation. The error introduced in that way is small for first-cut calculations.
The Stefan-Boltzmann equation specifies how much radiation is emitted at a given temperature. It states that the radiation increases much faster than the temperature. It turns out that radiation is proportional to absolute temperature to the fourth power. The equation, for those math inclined, is
Radiation = Emissivity times SBconstant times Temperature^4
where the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8). For a blackbody, emissivity = 1.
This “fourth-power” dependence means that if you double the absolute temperature (measured in kelvins), you get sixteen (2^4) times the radiation (measured in watts per square metre, “W/m2”). We can also look at it the other way, that temperature varies as the fourth root of radiation. That means if we double the radiation, the temperature only goes up by about 20% (2^0.25)
Let me call the “theoretical S-B temperature” the temperature that an evenly heated stationary blackbody planet in outer space would have for a given level of incoming radiation in W/m2. It is “theoretical”, because a real, revolving airless planet getting heated by a sun with the same average radiation will be cooler than that theoretical S-B temperature. We might imagine that there are thousands of mini-suns in a sphere around the planet, so the surface heating is perfectly even.
Figure 1. Planet lit by multiple suns. Image Source.
On average day and night over the planetary surface, the Earth receives about 240 W/m2 of energy from the sun. The theoretical S-B temperature for this amount of radiation (if it were evenly distributed) is about -18°C, well below freezing. But instead of being frozen, the planet is at about +14°C or so. That’s about thirty degrees above the theoretical S-B temperature. So why isn’t the planet a block of ice?
Let me take a short detour on the way to answering that question in order to introduce the concept of the “elevator speech” to those unfamiliar with the idea.
The “elevator speech” is simply a distillation of an idea down to its very basics. It is how I would explain my idea to you if I only had the length of an elevator ride to explain it. As such it has two extremely important functions:
1. It forces me to clarify my own ideas on whatever I’m discussing. I can’t get into handwaving and hyperbole, I can’t be unclear about what I’m claiming, if I only have a few sentences to work with.
2. It allows me to clearly communicate those ideas to others.
In recent discussions on the subject, I have been asking for that kind of “elevator speech” distillation of Jelbring’s or Nikolov’s ideas, so that a) I can see if whoever is explaining the theory really understands what they are saying and, if so, then b) so that I can gain an understanding of the ideas of Jelbring or Nikolov to see if I am missing something important.
Let me give you an example to show what I mean. Here’s an elevator speech about the greenhouse effect:
The poorly-named “greenhouse effect” works as follows:
• The surface of the earth emits energy in the form of thermal longwave radiation.
• Some of that energy is absorbed by greenhouse gases (GHGs) in the atmosphere.
• In turn, some of that absorbed energy is radiated by the atmosphere back to the surface.
• As a result of absorbing that energy from the atmosphere, the surface is warmer than it would be in the absence of the GHGs.
OK, that’s my elevator speech about why the Earth is not a block of ice. Note that it is not just saying what is happening. It is saying how it is happening as well.
I have asked, over and over, on various threads, for people who understand either the N&Z theory or the Jelbring theory, to give me the equivalent elevator speech regarding either or both of those theories. I have gotten nothing scientific so far. Oh, there’s the usual handwaving, vague claims of things like ‘the extra heat at the surface, is just borrowed by the work due to gravity, from the higher up regions of the atmosphere‘ with no mechanism for the “borrowing”, that kind of empty statement. But nothing with any meat, nothing with any substance, nothing with any explanatory value or scientific content.
So to begin with, let me renew my call for the elevator speech on either theory. Both of them make my head hurt, I can’t really follow their vague descriptions. So … is anyone who understands either theory willing to step forward and explain it in four or five sentences?
But that’s not really why I’m writing this. I’m writing this because of the claims of the promoters of the two theories. They say that somehow a combination of gravity and a transparent, GHG-free atmosphere can conspire to push the temperature of a planet well above the theoretical S-B temperature, to a condition similar to that of the Earth.
I hold that with a transparent GHG-free atmosphere, neither the hypothetical “N&Z effect” nor the “Jelbring effect” can possibly raise the planetary temperature above the theoretical S-B temperature. But I also make a much more general claim. I hold it can be proven that there is no possible mechanism involving gravity and the atmosphere that can raise the temperature of a planet with a transparent GHG-free atmosphere above the theoretical S-B temperature.
The proof is by contradiction. This is a proof where you assume that the theorem is right, and then show that if it is right it leads to an impossible situation, so it cannot possibly be right.
So let us assume that we have the airless perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns. The temperature of this theoretical planet is, of course, the theoretical S-B temperature.
Now suppose we add an atmosphere to the planet, a transparent GHG-free atmosphere. If the theories of N&K and Jelbring are correct, the temperature of the planet will rise.
But when the temperature of a perfect blackbody planet rises … the surface radiation of that planet must rise as well.
And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. This is an obvious violation of conservation of energy, so any theories proposing such a warming must be incorrect.
Q.E.D.
Now, I’m happy for folks to comment on this proof, or to give us their elevator speech about the Jelbring or the N&Z hypothesis. I’m not happy to be abused for my supposed stupidity, nor attacked for my views, nor pilloried for claimed errors of commission and omission. People are already way too passionate about this stuff. Roger Tattersall, the author of the blog “Tallbloke’s Talkshop”, has banned Joel Shore for saying that the N&Z hypothesis violates conservation of energy. Roger’s exact words to Joel were:
… you’re not posting here unless and until you apologise to Nikolov and Zeller for spreading misinformation about conservation of energy in their theory all over the blogosphere and failing to correct it.
Now, I have done the very same thing that Joel did. I’ve said around the web that the N&Z theory violates conservation of energy. So I went to the Talkshop and asked, even implored, Roger not to do such a foolish and anti-scientific thing as banning someone for their scientific views. Since I hold the same views and I committed the same thought-crimes, it was more than theoretical to me. Roger has remained obdurate, however, so I am no longer able to post there in good conscience. Roger Tallbloke has been a gentleman throughout, as is his style, and I hated to leave. But I did what Joel did, I too said N&Z violated conservation of energy, so in solidarity and fairness I’m not posting at the Talkshop anymore.
And more to the point, even if I hadn’t done what Joel did, my practice is to never post at or even visit sites like RealClimate, Tamino’s, and now Tallbloke’s Talkshop, places that ban and censor scientific views. I don’t want to be responsible for their page views counter to go up by even one. Banning and censorship are anathema to me, and I protest them in the only way I can. I leave them behind to discuss their ideas in their now cleansed, peaceful, sanitized, and intellectually sterile echo chamber, free from those pesky contrary views … and I invite others to vote with their feet as well.
But I digress, my point is that passions are running high on this topic, so let’s see if we can keep the discussion at least relatively chill …
TO CONCLUDE: I’m interested in people who can either show that my proof is wrong, or who will give us your elevator speech about the science underlying either N&K or Jelbring’s theory. No new theories need apply, we have enough for this post. And no long complicated explanations, please. I have boiled the greenhouse effect down to four sentences. See if you can match that regarding the N&K or the Jelbring effect.
w.
NOTE 1: Here’s the thing about a planet with a transparent atmosphere. There is only one object that can radiate to space, the surface. As a result, it is constrained to emit the exact amount of radiation it absorbs. So there are no gravity/atmospheric phenomena that can change that. It cannot emit more or less than what it absorbs while staying at the same temperature, conservation of energy ensures that. This means that while the temperature can be lower than the theoretical S-B temperature, as is the case with the moon, it cannot be more than the theoretical S-B temperature. To do that it would have to radiate more than it is receiving, and that breaks the conservation of energy.
Once you have GHGs in the atmosphere, of course, some of the surface radiation can get absorbed in the atmosphere. In that case, the surface radiation is no longer constrained, and the surface is free to take up a higher temperature while the system as a whole emits the same amount of radiation to space that it absorbs.
NOTE 2: An atmosphere, even a GHG-free atmosphere, can reduce the cooling due to uneven insolation. The hottest possible average temperature for a given average level of radiation (W/m2) occurs when the heating is uniform in both time and space. If the total surface radiation remains the same (as it must with a transparent atmosphere), any variations in temperature from that uniform state will lower the average temperature. Variations include day/night temperature differences, and equator/polar differences. Since any atmosphere can reduce the size of e.g. day/night temperature swings, even a transparent GHG-free atmosphere will reduce the amount of cooling caused by the temperature swings. See here for further discussion.
But what such an atmosphere cannot do is raise the temperature beyond the theoretical maximum average temperature for that given level of incoming radiation. That’s against the law … of conservation of energy.
NOTE 3: My bible for many things climatish, including the emissivity (which is equal to the absorptivity) of common substances, is Geiger’s The Climate Near The Ground, first published sometime around the fifties when people still measured things instead of modeling them. He gives the following figures for IR emissivity at 9 to 12 microns:
Water, 0.96 Fresh snow, 0.99 Dry sand, 0.95 Wet sand, 0.96 Forest, deciduous, 0.95 Forest, conifer, 0.97 Leaves Corn, Beans, 0.94
and so on down to things like:
Mouse fur, 0.94 Glass, 0.94
You can see why the error from considering the earth as a blackbody in the IR is quite small.
I must admit, though, that I do greatly enjoy the idea of some boffin at midnight in his laboratory measuring the emissivity of common substances when he hears the snap of the mousetrap he set earlier, and he thinks, hmmm …
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
Willis, I agree with amonst everything you said with one exception. I question the emissivity of fresh snow. Yes cetainly water and ice have IR emissivities very close to 1 but fresh snow is a mixture of ice and air with each “layer” or crystal a few to a few 10’s of microns thick. each transition of refractive index gives rise to reflections and the repeated and rapid change of refractive index results in a highly reflective surface. That is also what makes crazed paint surfaces appear whitish. It means absorptivity and hence also emissivity should be low – well below 1. I know how at least some of these absorptivity measurements are made (using an integrating sphere) and integrating spheres give the wrong answer for translucent materials – they suggest a reflectivity lower than it actually is (I know I design them). Consider how the interior of an igloo could be at +18C with minimal heating if the interior walls had an absorptivity of about 1. A high absorptivity would make an igloo more or less the equivalent of a sub zero cool store. Much more significantly, consider how the temperature in the antarctic as measured from satellites is around 180K when the coldest point even on the high plateau is more like 220K. The only way that I know for a low temperature to be recorded spectroscopically is if the surface emissivity is low.
Its an important issue because of the claim that snow gives rise to positive feedback. Supposedly the snow reflects incoming energy whilst radiating outgoing energy so it signifiucantly cools the surface yet the ground underneath would absorb incoming energy and thus would be more warming. If the emissivity of snow is far less than 1 then that theory is disproven.
“Now, I’m happy for folks to comment on this proof”
Seems to me to be sound.
The notion of emissivity for S-B as usually expressed is a surface emissivity. For a partly transparent medium like a gas, it’s a bit more complicated.
I’ll take a shot at this task though I’m a bit fuzzy still about it. I’ll give my current wimpy understanding.
1. Planet with mass and GHG free atmosphere.
2. Planets gravity pulls down on the gas compressing it causing heat near the surface.
3. Convection sets in and gas rises. cools then back to step 2.
It’s just to simple to be believable.
great article.
….my tomatoes still die when the temperature goes below freezing.
Willis, if i may call you that, you have in my view made the same fundamental ,mistake as most ‘climate scientists’, and it comes from not understanding heat transfer.
First a correction to the IPCC thought experiment: if you remove the atmosphere you have no water precipitation so no clouds or ice, but you still have the seas [which by magic can’t evaporate!]. Emissivity falls from 0.3 to 0.07 so equilibrium radiative temperature falls to ~0°C meaning maximum GHG warming is 15 K.
However, if you the put back the atmosphere sans H2O and CO2, you still have aerosols and convection. Real present GHG warming is ~9 K.
The key is that you must always have lapse rate warming and it’s controlled by convection. The real radiative temperature with an atmosphere is always less by that convective temperature drop.
The only problem I see with your proof is the assumptions. A “GHG Free” atmosphere. On the one hand you say everything on the surface emits in the IR and give a long list of emissivities near one. On the other you say “except the air”…. It just causes me to think that you are defining the air as the functional equivalent of a vacuum… If it can absorb surface heat and convect, but NEVER emit, how can it ever then cool to return to the surface? Does not the assumption force another paradox? High altitude hot air that reaches equilibrium at the highest possible temperature that ever rises from any spot?
It just seems to me like it is a bit of a tautology with all the reality squeezed out of it…
Or, as one wag once said of ‘how an economist stranded on an island would use his strongest skills to open a food tin without a can opener: ‘First, assume the can is open…’..”
Hi Willis,
I assume when you say the earth receives 240 W/m2, that’s a typo for 340?
If not, I’m going to have to go back to school 🙂
“And because the atmosphere is transparent, this means that the planet is radiating to space more energy than it receives. ”
I fail to see how this is a given with an IR transparent atmosphere. It would behave like a black body and radiate like one, except for one thing: the atmosphere would be heated by conduction and distribute heat by convection. As the nonGHG atmosphere cannot radiate IR, it would have to heat up and that’s the source of elevated temperature. Once heated, the atmosphere would go to equilibrium with the surface and would distribute heat back to the surface where IR would carry it away.
I would say that CO2 and water vapor are energy leaks, or rather small holes in the glass of the greenhouse, allowing heat to move both in and out during the day and out only at night.
I think I see the problem you have with conservation of energy, but let’s do a little story.
You have a black body that is emitting exactly as much as it absorbs, but when the Sun first hit it, this was not the case. There was a period when more heat was going in than out. Once it had warmed, then the surface went to equilibrium with the input and output.
The same would be true when the IR-clear atmosphere is added. There would be a time during which the surface/atmosphere would be getting up to temperature and then go to equilibrium as above. Thus, the planet is warmer than a gasless black body.
That’s my read—it just appears that you ignore conduction between the surface and the atmosphere.
OMG.
Did not expect, Eschenbach has such grave problems with physics.
He writes
“the Stefan-Boltzmann constant is a tiny number, 0.0000000567 (5.67E-8).”
Sorry, the the Stefan-Boltzmann constant is a DIMENSIONAL constant.
You never can say a dimensional constant is “tiny”, because its numerical value depends on the units,
For example
σ = 5.6704)×10−8 W m−2 K−4 in SI
or
σ = 5.6704×10−5 erg s-1 cm−2 K−4 in CGS
or you can also write it
σ = 0.56704 erg s-1 m−2 K−4
and it looks already not that tiny!
.
.
I’ve been reading a lot, but saying very little, ever since first becoming acquainted with Nikolov and Zeller’s theory.
FWIW, my “elevator speech” can be summed up thus :
On a planet with no atmosphere, radiation is king, no other processes occur and it can explain surface temperatures almost perfectly (witness the Moon).
Introduce an atmosphere, regardless of composition, and things start to get complicated, because you introduce the additional processes of convection and conduction.
Gravity is a key, (but unchanging) element because, along with the mass, it defines the vertical structure of any atmosphere, and hence the surface pressure.
The greater the surface pressure on a planet, the more influence conduction and convection have on surface temperatures, and the less influence radiation has (witness the unchanging temperatures on the surface of Venus).
Higher surface pressures elevate surface temperatures by suppressing convection because the greater the weight of the overlying atmosphere, the more energy (heat) is required to enable the process to get under way.
Nobody is ever going to disprove N + Z by obsessing about the details of all the complex processes that occur in the atmosphere, you have to look at the bigger picture.
If N+Z are correct (reserving judgement on that one) what they are is essentially saying is that the average surface temperature of any planetary body is pre-determined by insolation, surface pressure and albedo, and that all the processes that occur in any atmosphere – regardless of structure or composition will adjust, and act in such a way essentially by definition, as to preserve the average surface temperature of that body. Holy moley!!!
Ultimately, there will be only one way to settle this argument. There are literally billions of planetary bodies out there waiting to be discovered. One day (which maybe sooner than anyone anticipates) we will develop the technology to acquire the relevant data from a large enough number of those bodies that the theory will be proved, or disproved, once and for all. Until then, there’s going to be one heck of an argument. Try and Enjoy it! (:-
We aren’t talking about heat. We are talking about temperature. In a perfectly transparent atmosphere all of the heat being radiated would radiate out. But radiation would be the smallest of available heat transfer mechanisms. There would also be conduction because the atmosphere touches the planet. So the actual physical surface interface of the planet would be slightly cooler and the atmosphere will be slightly warmer. We would have a warmer temperature at 5 feet above the ground (but a cooler temperature AT the ground). The problem is all this talk about radiative heat loss at the surface. The main loss of heat from the surface of the planet isn’t radiation, it is and the loss from evaporation of surface water which absorbs a huge amount of heat when simply changing state from liquid to vapor without any change in temperature. [SNIP– way off topic. I’m talking about a GHG free atmosphere, as are Jelbring and N&K. Sorry, w.]
Just a small correction. Night vision uses a silicon detector and amplifies the available ambient light. Silicon is not responsive in the MW or LWIR, 3-5um and 8-12um, the naturally occuring atmospheric IR windows where us radiometric guys make our measurments. A FLIR or Forward Looking Infrared “see’s” thermal differentials without visible light. I believe you are referring to a FLIR, not night vision.
@Willis Eschenbach
Not being familiar with the N&Z or Jelbrick theorems, you do ignore the far reduced but still present conduction and subsequent convection present in the system. This would cause a drop in the energy available to be radiated due to loss to kinetic energy. I don’t know how much of an effect this would have on allowing increased warming above and beyond the S-B calculations because I don’t want to do the math right now but it is a place for energy to go since you added a liquid to the system.
How would Earth’s surface temperature change if atmospheric pressure were doubled, that is, increased to 2 atm by adding more N₂ (and nothing else)?
In other words, on a planet without an atmosphere surrounded by a sphere of tiny suns, the surface is some temperature and all photons of LWIR radiate from the surface. Add an atmosphere and the temperature of the SURFACE drops because that atmosphere conducts some of the heat away, the temperature of the atmosphere rises and where each photon radiates from is variable due to convection. Some will radiate from the surface, some will radiate from 1 foot above the surface, some will radiate from 1000 feet above the surface. Even if the air is completely transparent to IR it will still be warmed by conduction by contact with the surface of the planet, cool the surface, warm the atmosphere. The atmospheric temperature will still vary by the adiabatic lapse rate.
You seem to have been assuming a warming atmosphere without any associated cooling of the surface. Don’t confuse surface temperature with “surface temperature”. What we call surface temperature in most cases is the temperature of the atmosphere some distance above the surface. To my knowledge, nobody actually records the surface temperature of the planet itself except possibly the oceans. [NOT SO. Repeat after me, “GHG-free atmosphere”. The surface is the only thing that can radiate. w.]
Anteros says:
January 13, 2012 at 10:22 pm
Apologies for the lack of clarity, Anteros, that’s the amount after albedo reflection of 30% of the incoming.
w.
alex says:
January 13, 2012 at 10:36 pm
That’s it? That’s my crime? You are busting me because I called ten to the minus eighth tiny? You are a waste of bandwidth, sir. I specifically requested that people not bother me with this kind of petty nit-picking, and yet here you are.
Come back when you have something of substance to say, and my advice for your optics would be to leave off the “OMG”, it makes you sound like a Valley Girl.
w.
Having made only a superficial reading of N&Z, can someone explain the difference between that and Harry Huffman’s explanation? They seem largely the same although Huffman argues N&Z are not quite correct. As for Willis’ wish for a clear explanation, Huffmans several posts on his blog appear to do so quite well. For me as a layperson looking from the outside, Huffmans explanation makes sense but more usefully meets the test of Occam’s razor…
beaker says:
January 13, 2012 at 10:42 pm
Thanks, beaker, but that’s not true. There are two kinds of what are usually called night vision devices, image enhancement and thermal imaging. I’m speaking of the second of these. See here for details.
w.
1. The non greenhouse gas atmosphere is a perfect conduction insulator to space, it can’t radiate its heat out.
2. The radiation transparent atmosphere is heated from the surface via conduction/convection until the atmospheric average temperature is at the S-B average. (Almost exactly the same way GHG’s heat the atmosphere, except that it is the planets surface molecules directly heating the atmosphere.)
3. According to the ideal gas law the average temperature will be at the midpoint of the atmosphere with the upper half lower than the S-B average temperature and the lower half higher than the S-B average temperature. I think with our earth the temp at 5k altitude is something like -18˚.
4. The thicker and denser the atmosphere, the higher the near surface atmospheric temperature will be.
5. Once the atmosphere is heated, the net radiation from the surface will be exactly the same as if there is no atmosphere, but the near surface atmosphere temperature will be warmer than the S-B average.
I can give a more detailed explanation tomorrow, but I just wanted to get this in tonight.
Michael Bergeron (@zerg539) says:
January 13, 2012 at 10:50 pm
Michael, the energy radiated by the surface is fixed. It must emit what it recieves, no more and no less. Energy will go into and out of the transparent GHG-free atmosphere, but that is net zero, no loss or gain.
The main point is that for the surface to be warmer, it must radiate more … but then it’s violating conservation of energy. So speculations about possible mechanisms are futile, because the surface cannot be warmer than it it.
w.
One tiny nit, Willis.
That’s how night-vision goggles work, they let you see in the infrared.
Night vision goggles amplify visible and near-visible photons reflecting off objects and impinging on the device, such as are produced by starlight. You’re probably thinking of infrared sensors (e.g. FLIR) that rely on the emissivity of the observed scene in LWIR, MWIR, or SWIR bands – which “curiously” happen to align with gaps in CO2 and H2O absorption of infrared radiation.
In military applications, night-vision goggles are typically helmet-mounted devices used by everyone from infantry to pilots. IR sensors are usually larger devices with relatively massive optics and cooling systems, and are found mounted on airborne platforms and connected to MFDs in the cockpit.
I have used light amplification night vision devices that also had IR capability along with an IR search lamp built into the device for use in completely dark conditions (inside of something where there is no ambient light to amplify).
It’s late, so I’ll just maunder. Hopefully, I’ll maunder minimally.
☻Wouldn’t a planet lit by thousands of suns eventually achieve solar temperature, say, 5000°?
☻The problem with Stephen Singer’s comment is that the compressed atmosphere would heat over its entire depth, not merely at the surface.
☻Meinhundthatkeinenase is looking at a more complicated model. Convection heating would occur, but the transparent atmosphere would not radiate the extra heat.
☻But is there really such a thing as a transparent atmosphere?
☻How were the absorption spectra of gases determined? Did they shine light down a tube 100 miles long? Or did they use a shorter tube? How long? Did they control the temperature of the tube foot by foot? Is that short a tube accurate enough for the levels of energy and accuracy we’re dealing with?
☻What about diurnal atmospheric thermal tides? Wouldn’t the daily increase and decrease in atmospheric thickness translate to work? Wouldn’t work heat the imaginary column of air? Wouldn’t it heat more at the bottom than at the top, creating a “lapse rate”?
☻Could it be that other factors will cancel out, leaving the apparent lapse rate as an artifact dependent only on atmospheric mass or density?
☻Night, all.