Unexplored Ocean Depths Bustling with Life, Despite Extreme Conditions

Schmidt Ocean Institute’s new underwater vehicle SuBastian completes its first expedition discovering new hydrothermal vent sites and possible new species in the Mariana Back-Arc, an extreme deep-ocean environment.

fk161129alice-springs-low-temperature-vent20161206ss01

APRA HARBOR, GUAM – A team of leading geologists, chemists, and biologists aboard research vessel Falkor have just finished surveying the largely unexplored Mariana Back-Arc for life at depths greater than 13,000 feet. Dr. David Butterfield, JISAO, University of Washington, and Dr. William Chadwick, NOAA-PMEL and Oregon State University, led the group to the Back-Arc; returning for the second phase of a two-part exploration of the region. In 2015, the team of scientists located new hydrothermal vents in the Back-Arc region, including evidence of recent lava flows.

This year, the team returned to these vent systems with the new remotely operated vehicle (ROV), SuBastian, to characterize their water chemistry and biodiversity. The new results fill a gap in knowledge about the biogeography of these unique deep-sea ecosystems and has implications for how tectonic setting influences the composition of chemosynthetic animal communities worldwide. The new vent sites have spectacular chimneys made of sulfide minerals, some up to 30 meters (100 feet) tall. The chimneys were belching smoky vent fluid at temperatures up to 365°C (690°F) and were covered with vent animals including “hairy snails”, shrimp, crabs, mussels, limpets, squat lobsters, anemones, and polychaete worms.

Scientists on board Falkor suspect that some new species have been discovered at the new sites, but confirmation will have to await further study back on shore. The new observations show that the newly discovered vent sites have an ecosystem that is characteristic of the Mariana Back-Arc, with some animal species found nowhere else on Earth. This, despite the fact that each vent site is relatively small and isolated, being separated from the others by up to 100 miles.

The new observations suggest that the Back-Arc vent sites are relatively long-lived and that each site has biological “connectivity” with the others despite the long distances. The study also confirmed that the Back-Arc ecosystems are distinct and different from the nearby Volcanic Arc hydrothermal ecosystems, supporting the idea that geological and chemical environment play a key role in selecting animal community composition at hydrothermal vents. This is the first series of scientific dives for ROV SuBastian.

Equipped with numerous cameras, including a high-definition 4K video camera, the dives were live streamed onto YouTube and watched by millions. The multidisciplinary team will continue to analyze the data and samples collected during this expedition to advance research on how life thrives on these extreme deep-sea hydrothermal vents. This research was supported by the NOAA Ocean Exploration and Research Program, the NOAA Pacific Islands Regional Office, and the Schmidt Ocean Institute.

###

Advertisements

77 thoughts on “Unexplored Ocean Depths Bustling with Life, Despite Extreme Conditions

  1. With any luck none of that will taste like Alaskan King Crab and so will not become exotic Asian culinary delicacies.

    • Mars is for Liberals and Loons.
      The oceans are for realists who understand the unique beauty of this blue ball.

      • I’m a little conflicted. I spent the first 5 years of my adulthood working in the stratosphere and I very much wanted to go into space. I actually made it onto the “long list” for the shuttle. I have one of those royal blue suits with all the patches on it.

        But later (about ten years later) I discovered the ocean and fell in love. For twenty years I spent all the time I could underwater. From a PADI rec diver all the way through technical closed circuit mixed gas (I’m trained on a BioMarine MK-16).

        But if I had to make a choice, I think I’d pick the ocean. It makes a lot more sense than Mars. It took me almost a lifetime to figure that out.

      • Bart,
        In our oceans you will find the clues and secrets to all original life on this blue ball.
        On Mars all you would discover is death by radiation while suffocating from arid sand, and more fine sand, and then finer red sand, until your lungs seized up vomiting blood in your space suit helmet.

      • Astronauts that spend extended time in space come back to earth with weakened bones, spinal fluid problems, eye problems and muscle weakness. We would have to learn how to produce artificial gravity and shielding to protect them from free radicals. Even if we could get someone to Mars, chances are they would be too weakened to do anything but die pitifully. I too would pick the Oceans for exploration and colonization first. As for space, lets start out with figuring out how to live in space close to Earth until we can work out the basics.

      • pkatt,
        And those are the effects of zero g in low Earth orbit where they still receive substantial geomagnetic shielding from solar and galactic-origin high energy protons.

        Extended GCR exposure on any manned inter-planetary voyage makes it a death sentence by ionizing radiation. Weak bones would be your least of worries.

      • IMO, colonizing oceanic depths won’t be necessary. Billions of people could live on the surface of oceans and seas.

    • Colonizing the sea floor is probably much cheaper than Mars. I can’t see that anyone has offered up remotely credible cost estimates for a Mars colony. Given that the more or less pointless ISS has sponged up 150B so far, I’m thinking trillions of USD for a small Mars colony. There’s no breathable air either place and the sea floor is warmer than Mars and a much shorter journey. I’m thinking that a few small research stations on Mars might be feasible in 50-200 years, but for now robots, look a lot more practical. Lots to be learned from well planned rovers costing a couple of Billion USD each.

      • I’ve never understood the idea of colonizing the sea floor, except to do scientific research, or to show it could be done. Who would want to live surrounded by a dark cold environment, under terrific pressure?

      • Ronald: “to live surrounded by a dark cold environment, under terrific pressure . . .”
        That is precisely the reason that I divorced my first husband . . .

      • Well, in this area I have some expertise in that I have designed and built both spacecraft and submarines.
        I can tell you without a blink that a submarine is far more difficult to design, build and maintain than any spacecraft. Spacecraft can be costly to initially build for because weight is king and much effort is made to extract the maximum effort out of flimsy structures that cannot even support their own weight on earth. Weight is less an issue for watercraft and so not much cost is associated with maximizing weight performance. The biggest differences stem from the fact that the ocean is a highly corrosive environment, and water is pretty massive so it can create huge hydrostatic pressures. Space is pretty benign with corrosion, radiation ablation is about all it can muster as it fades the paint, and the largest pressure differential (other than tanks or thrusters) is 14.7 psi, 1 measly atmosphere. Add on top of these the huge forces and stresses required to maneuver through viscous fluid versus…vacuum. Thermal stresses can be a huge factor on spacecraft as the temperature extremes are about as extreme as possible (can’t get much colder than absolute zero) but they can be readily managed.
        What makes spacecraft so very expensive is the initial cost that must have its entire lifecycle of maintenance factored in up front with reliability testing and material certifications that MUST be designed in as nobody is going out to fix these things once they get launched. There is no shake-down cruise for spacecraft..

      • Don K
        Much of what you say is technically correct but misleading. Yes, Mars is colder but the heat transfer rate of Martian atmosphere is far less than icy seawater so therefore less heat is lost in the same amount of time. You’ll need a good heat generator.
        True, the bottom of the sea is a shorter journey and far easier to reach. We have been sending ships there since…. we’ve had ships.
        One major difference you seem to have overlooked are the extreme pressures involved and their effects on human physiology. In space we can reduce the atmospheric pressure in the spacecraft and still maintain comfort without needing to alter the gas mixtures all that much. If you plan on staying a mere 100 ft below the sea surface for more than 2 hours you had better have specialized gas mixtures or you will suffer extreme issues including death. And, that short distance back to the surface, while enticingly close, will kill you just a sure as if it were across the cosmos. Without significant lengthy (days long) procedures for decompression at specific rates you might as well be on Mars.
        Humans have evolved to fit a particular niche and environmental conditions. It is only through our ability to alter our immediate surroundings with technology that we have expanded our limited capabilities. Absent even good clothes many humans would surely perish.

      • Whaaaa…? Just why must you equalize pressure in a submerged habitat? I’m pretty sure submarine sailors routinely undergo excursions of several hundred meters with no ill effects.

  2. My old Geology Professor at Strathclyde, a brilliant bloke called Mike Russell, with a coworker, discovered a fossilised black smoker system in in Ireland in the Navan lead/zinc deposit there. There were even fossilised worms. He postulates that life actually evolved in these systems.

  3. The NASA alarmists at GISS need to be defunded and their money given to real science research like these studying deep oceans biology to understand possible exobiology extremes.

    Gavin Schmidt and his co-conspirators in the bread line would be a step toward science truth.

      • indeed, the name says it all. they are skeptical of science. they are interested in belief and denial, which are matters of faith.

        i’m always amazed with the TV Press these days. The news stories are endlessly concerned with what people believe, rather than what people know. Every day we hear about “unnamed sources”, and then the story goes on to applaud or criticize, based on whether of not you believe the “unnamed sources”.

        And yet, nowhere in the story is presented any concrete evidence, and heaven forbid is there any discussion of how “unnamed sources” might actually be “unreliable sources”.

    • why? The report has nothing to do with climate? It is extremely interesting science but it has nothing
      to do with weather or climate.

  4. ‘Unexplored Ocean Depths Bustling with Life, Despite Extreme Conditions’

    Nicheism. Just coined the word. The environment is not extreme to the creatures who live there, only to us. Each of our environments would surely be fatal to the creatures of the other. I.e., our environment is just as extreme.

    • Indeed, if they were capable, they would probably look at the extreme conditions at which humans exist and marvel at how such creatures can exist and thrive in such a hostile environment. The high altitude existence above the ocean’s surface is far too cold and prone to environmental variability, low humidity, low pressures radiation, scarcity of food supply……..

  5. Fascinating stuff. Those crabs and shrimps live in an environment that would be instantly fatal to the crabs and shrimps that we see in the littoral zone, but they look as if they are fairly close relatives. Natural selection never ceases to amaze us with the diversity it leads to, and with the short times it takes to evolve radically new variants.

  6. The fact is that all life evolves in crap. Think about it, the vegetation that we eat gains nutrients from crap.

    Ever stick your hand into an uncured compost heap? Wait a few months, stick your hand into that same slimy heap, and the stuff is now brittle, sweet-smelling, and perfect for fertilizing your veggies. Oh, and don’t forget that crappy CO2 went into your veggies too. We humans are carbon-pollution-based life forms.

  7. I’ve read theories (sorry, long ago and no links) that life started out in a CO2 type environment and that O2 was the toxic by product and that development of cell walls, etc., was an adaptation to protect the organism from O2.

    • Lipid bilayers naturally form micelles.
      https://en.m.wikipedia.org/wiki/Micelle

      Closed compartments are necessarry to concentrate reactants and catalysts to produce biochemical products, i.e. Life.

      Physical Cell size must remain microscopic in order for diffussion processes to work while allowing for rapid molecular kinetics of substrate to product turn-over.

    • “I’ve read theories (sorry, long ago and no links) that life started out in a CO2 type environment and that O2 was the toxic by product and that development of cell walls, etc., was an adaptation to protect the organism from O2.”

      When last I looked, it was quite unclear when life evolved and how. But the O2 part is probably correct. Oxygen is the byproduct of photosynthesis. It appears that for many hundreds of millions of years, marine plants produced Oxygen and it reacted more or less immediately with iron in the oceans to form insoluble iron oxides. Finally, the oceans ran out of dissolved iron and the oceans and atmosphere became oxygenated whereupon modern lifeforms started to evolve. (And yes, it’s really more complicated than that if you want to get into details).

    • it’s called “The Great Oxygenation Event (GOE, also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Holocaust, Oxygen Revolution, or Great Oxidation” The Great Oxygenation Event happened about 2.3 Ga (2.3 billion years) ago and was the first and greatest extinction. Before that there was little or no free oxygen in the atmosphere which was dinitrogen, CO2 and methane. The loss of the greenhouse gas methane lead to the Huronian glaciation, the longest glaciation in the planets history.

      • @ Paul Jackson
        December 21, 2016 at 1:08 pm: Cannot see, in Physics, any reason for gas change eg CH4 loss/chemical alteration; to cause freezing. Except by massive reduction in air pressure….. ?

    • The earth was initially pretty and free from O2. It wasn’t until evil cyanobacteria first began to synthesize O2 and pollute the pristine atmosphere. This enabled all sorts of critters to crawl out onto the land and begin further destroying the environment.
      [sarc]

  8. Just did a little research. The key words in the report are chemosynthetic ecosystem. Deep sea ‘smoker’ vent systems are biologically fueled by hydrogen sulfide. The metals precipitate out to form the vent. Bacteria ‘eat’ the H2S and form the bottom of the vent food chain, which visibly rises through intermediates like polycheate worms to top predators like crabs. Many of these systems have completely different species despite a similar ecosystem. Lots of wonderful science to be done.

  9. This proves that life can adapt to extremely harsh conditions. It does not prove life can begin in such conditions.

  10. Ronald P Ginzler

    December 21, 2016 at 7:09 am

    “Who would want to live surrounded by a dark cold environment, under terrific pressure?”

    Much like a conservative in a modern city?

  11. It all looks disgusting. I’m glad it is hidden deep under the sea. The things we have on land are bad enough. The sooner we wipe them all out the better.

Comments are closed.