Major advance in solar cells made from cheap, easy-to-use perovskite
Physicists boost efficiency of material that holds promise as base for next-generation solar cells
UNIVERSITY OF CALIFORNIA – BERKELEY
Solar cells made from an inexpensive and increasingly popular material called perovskite can more efficiently turn sunlight into electricity using a new technique to sandwich two types of perovskite into a single photovoltaic cell.

Perovskite solar cells are made of a mix of organic molecules and inorganic elements that together capture light and convert it into electricity, just like today’s more common silicon-based solar cells. Perovskite photovoltaic devices, however, can be made more easily and cheaply than silicon and on a flexible rather than rigid substrate. The first perovskite solar cells could go on the market next year, and some have been reported to capture 20 percent of the sun’s energy.
In a paper appearing online today in advance of publication in the journal Nature Materials, University of California, Berkeley, and Lawrence Berkeley National Laboratory scientists report a new design that already achieves an average steady-state efficiency of 18.4 percent, with a high of 21.7 percent and a peak efficiency of 26 percent.
“We have set the record now for different parameters of perovskite solar cells, including the efficiency,” said senior author Alex Zettl, a UC Berkeley professor of physics, senior faculty member at Berkeley Lab and member of the Kavli Energy Nanosciences Institute. “The efficiency is higher than any other perovskite cell – 21.7 percent – which is a phenomenal number, considering we are at the beginning of optimizing this.”
“This has a great potential to be the cheapest photovoltaic on the market, plugging into any home solar system,” said Onur Ergen, the lead author of the paper and a UC Berkeley physics graduate student.
The efficiency is also better than the 10-20 percent efficiency of polycrystalline silicon solar cells used to power most electronic devices and homes. Even the purest silicon solar cells, which are extremely expensive to produce, topped out at about 25 percent efficiency more than a decade ago.
The achievement comes thanks to a new way to combine two perovskite solar cell materials – each tuned to absorb a different wavelength or color of sunlight – into one “graded bandgap” solar cell that absorbs nearly the entire spectrum of visible light. Previous attempts to merge two perovskite materials have failed because the materials degrade one another’s electronic performance.
“This is realizing a graded bandgap solar cell in a relatively easy-to-control and easy-to-manipulate system,” Zettl said. “The nice thing about this is that it combines two very valuable features – the graded bandgap, a known approach, with perovskite, a relatively new but known material with surprisingly high efficiencies – to get the best of both worlds.”
Full-spectrum solar cells
Materials like silicon and perovskite are semiconductors, which means they conduct electricity only if the electrons can absorb enough energy – from a photon of light, for example – to kick them over a forbidden energy gap or bandgap. These materials preferentially absorb light at specific energies or wavelengths – the bandgap energy – but inefficiently at other wavelengths.
“In this case, we are swiping the entire solar spectrum from infrared through the entire visible spectrum,” Ergen said. “Our theoretical efficiency calculations should be much, much higher and easier to reach than for single-bandgap solar cells because we can maximize coverage of the solar spectrum.”
The key to mating the two materials into a tandem solar cell is a single-atom thick layer of hexagonal boron nitride, which looks like a layer of chicken wire separating the perovskite layers from one other. In this case, the perovskite materials are made of the organic molecules methyl and ammonia, but one contains the metals tin and iodine, while the other contains lead and iodine doped with bromine. The former is tuned to preferentially absorb light with an energy of 1 electron volt (eV) – infrared, or heat energy – while the latter absorbs photons of energy 2 eV, or an amber color.
The monolayer of boron nitride allows the two perovskite materials to work together and make electricity from light across the whole range of colors between 1 and 2 eV.
The perovskite/boron nitride sandwich is placed atop a lightweight aerogel of graphene that promotes the growth of finer-grained perovskite crystals, serves as a moisture barrier and helps stabilize charge transport though the solar cell, Zettl said. Moisture makes perovskite fall apart.
The whole thing is capped at the bottom with a gold electrode and at the top by a gallium nitride layer that collects the electrons that are generated within the cell. The active layer of the thin-film solar cell is about 400 nanometers thick.
“Our architecture is a bit like building a quality automobile roadway,” Zettl said. “The graphene aerogel acts like the firm, crushed rock bottom layer or foundation, the two perovskite layers are like finer gravel and sand layers deposited on top of that, with the hexagonal boron nitride layer acting like a thin-sheet membrane between the gravel and sand that keeps the sand from diffusing into or mixing too much with the finer gravel. The gallium nitride layer serves as the top asphalt layer.”
It is possible to add even more layers of perovskite separated by hexagonal boron nitride, though this may not be necessary, given the broad-spectrum efficiency they’ve already obtained, the researchers said.
“People have had this idea of easy-to-make, roll-to-roll photovoltaics, where you pull plastic off a roll, spray on the solar material, and roll it back up,” Zettl said. “With this new material, we are in the regime of roll-to-roll mass production; it’s really almost like spray painting.”
###
Co-authors are S. Matt Gilbert, Thang Pham, Sally Turner Mark and Tian Zhi Tan of UC Berkeley and Marcus Worsley of Lawrence Livermore National Laboratory, who produced the graphene aerogel.
The work was supported by the U.S. Department of Energy, the National Science Foundation (1542741) and the Office of Naval Research.

These solar cells use a synthetic form of Perovskite, not the mineral as shown above.
Perovskite solar cells hold an advantage over traditional silicon solar cells in the simplicity of their processing. Traditional silicon cells require expensive, multistep processes, conducted at high temperatures (>1000 °C) in a high vacuum in special clean room facilities. Meanwhile, the organic-inorganic perovskite material can be manufactured with simpler wet chemistry techniques in a traditional lab environment. Most notably, methylammonium and formamidinium lead trihalides have been created using a variety of solvent techniques and vapor deposition techniques, both of which have the potential to be scaled up with relative feasibility.
In one-step solution processing, a lead halide and a methylammonium halide can be dissolved in a solvent and spin coated onto a substrate. Subsequent evaporation and convective self-assembly during spinning results in dense layers of well crystallized perovskite material, due to the strong ionic interactions within the material (The organic component also contributes to a lower crystallization temperature). However, simple spin-coating does not yield homogenous layers, instead requiring the addition of other chemicals such as GBL, DMSO, and toluene drips. Simple solution processing results in the presence of voids, platelets, and other defects in the layer, which would hinder the efficiency of a solar cell. Recently, a new approach for forming the PbI2 nanostructure and the use of high CH3NH3I concentration which are adopted to form high quality (large crystal size and smooth) perovskite film with better photovoltaic performances. On one hand, self-assembled porous PbI2 is formed by incorporating small amount of rationally chosen additives into the PbI2 precursor solutions, which significantly facilitate the conversion of perovskite without any PbI2 residue. On the other hand, through employing a relatively high CH3NH3I concentration, a firmly crystallized and uniform CH3NH3PbI3 film is formed. Another technique using room temperature solvent-solvent extraction produces high-quality crystalline films with precise control over thickness down to 20 nanometers across areas several centimeters square without generating pinholes. In this method “perovskite precursors are dissolved in a solvent called NMP and coated onto a substrate. Then, instead of heating, the substrate is bathed in diethyl ether, a second solvent that selectively grabs the NMP solvent and whisks it away. What’s left is an ultra-smooth film of perovskite crystals.” In another solution processed method, the mixture of lead iodide and methylammonium halide dissolved in DMF is preheated. Then the mixture is spin coated on a substrate maintained at higher temperature. This method produces uniform films of up to 1 mm grain size.
In vapor assisted techniques, spin coated or exfoliated lead halide is annealed in the presence of methylammonium iodide vapor at a temperature of around 150 °C. This technique holds an advantage over solution processing, as it opens up the possibility for multi-stacked thin films over larger areas. This could be applicable for the production of multi-junction cells. Additionally, vapor deposited techniques result in less thickness variation than simple solution processed layers. However, both techniques can result in planar thin film layers or for use in mesoscopic designs, such as coatings on a metal oxide scaffold. Such a design is common for current perovskite or dye-sensitized solar cells.
Both processes hold promise in terms of scalability. Process cost and complexity is significantly less than that of silicon solar cells. Vapor deposition or vapor assisted techniques reduce the need for use of further solvents, which reduces the risk of solvent remnants. Solution processing is cheaper. Current issues with perovskite solar cells revolve around stability, as the material is observed to degrade in standard environmental conditions, suffering drops in efficiency. More here.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
One of the biggest issues with all the new compounds is the junction between the new material and the material that actually carries the bulk current: How well does it stick to copper? Seems trivial, but isn’t.
Here are some Perovskite crystals from AR.
http://www.mindat.org/locentry-652170.html
Which I why I would never install anything with a 20 year payback…
Perhaps there is something to this new technology… or perhaps this is just another example of a university PR department promoting an invention or process that will never amount to anything.
Every few months there are university press releases such as this… and they never seem to amount to anything
Cheaper solar cells – so what. Since solar panels represent typically about 15 % of the solar PV power plants installation cost to turnkey, it will lower the overall cost by a whole 1 %. Maybe.
You can make a primitive pv cell using somewhat similar chemistry based on titanium. The main ingredients are icing sugar and tea. link
“Promises”. Get back to us when it actually works. Real life works. Also, 20% seems a small amount of energy, especially since it only works when the sun shines.
They’re no better at taping something up than I am .