Battery Pack Prices Plunge!!! Down to $200/kWh

Guest post by David Middleton

So-called renewable energy sources face many economic and thermodynamic hurdles; all of which are routinely ignored by the government officials who spend our tax dollars.  One of the biggest hurdles is storage.  The only way wind and solar could ever reliably provide base-load  is through the deployment of economically sustainable storage systems.  Battery packs are one of the favored “solutions.”  Li-ion battery prices have “plunged”since 2010 from $1,000/kWh to just over $200/kWh.  Bloomberg New Energy Finance is ecstatic about this.

bnef_batteries

750x-1

Words fail me.   Well, maybe not totally fail me.  We currently pay about 10¢ per kWh for electricity.  Our electric utility can afford to sell us electricity for 10¢/kWh largely due to the fact that natural gas-fired power plants generate electricity for about 6¢/kWh.  The Energy Information Agency forecasts that solar PV power plants entering service in 2022 will be able to generate electricity for 8.5¢/kWh.  This would make solar PV competitive with natural gas… Right?  Nooooo.  Natural gas combined cycle has an average capacity factor of 87%.  Solar PV’s average capacity factor is 25%.  So, you would have to deploy at least 3 MW of solar PV to offset 1 MW of natural gas.  Then you would have to deploy a storage system to deliver electricity when “the Sun don’t shine.”  At $200/kWh, solar PV with storage would run about $58/kWh to fully offset natural gas at $0.06/kWh…

lcoe_2022
Solar PV with storage: $57.56/kWh Natural Gas CC: $0.058/kWh   Source: EIA Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2016

Of course, the battery pack is rechargeable.  However, even if the battery back survived 1,500 discharge cycles at full capacity, the lifetime storage cost would still be $0.13/kWh… A total cost of about $0.22/kWh.  Since heat degrades Li-ion battery life, they aren’t likely to maintain full capacity very long in places where solar PV works best (deserts), particularly with the newly discovered Photovoltaic Heat Island (PVHI) effect.

BNEF’s celebration of $200/kWh battery packs was so ridiculous, that the editors of Real Clear Energy lampooned it.

 

 

It’s All About the Battery

 

By Editors

October 12, 2016

The general public (defined as those who don’t read energy news because they think electricity lives somewhere inside their apartment wall) doesn’t know it yet, and probably never will, but batteries are one hot (no pun intended, Samsung) topic.

It should be no secret by now (even to the notoriously sluggish general public) that Samsung has been forced to completely kill its entire Galaxy 7 cell phone line because the built-in lithium-ion batteries kept exploding.

[…]

The wind and solar energy industries, for example, are essentially in a kind of holding mode until a battery is developed that can store their energy to be used in the fallow periods when the sun isn’t shining and the wind isn’t blowing.  Until then they kind of limp along letting natural gas fill in for them at night, during storms and when they’re just feeling to weak to get to work.

The electric car industry is also waiting for better batteries. The problem with range (the number of miles one can drive without recharging) has hinged on the fact that EV car batteries are very heavy to begin with and putting in an even bigger battery to get greater range sort of defeats the environment-saving purpose.

None of this seems to phase Bloomberg’s notoriously aggressively environmentalist New Energy Finance think tank. (BNEF generates studies and articles which then get top billing in Bloomberg’s news publications.) BNEF is in a Hosana! Hosana! mood today because they’ve noticed that lithium-ion costs are going down.

[…]

Cheap li-ion batteries will spawn more electric cars which will spawn more self-driving cars which will be paired with more Uber type softwares which will take us to….the green ideal, the self-driving taxi.

Taxis, geddit?  Emphatically not individually-owned cars.  The family car is just so inefficient and wasteful and space-hogging and just plain selfish.

Don’t worry: A self-driving taxi will never deposit you in a shipping container instead of at your home.

Real Clear Energy

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

251 Comments
Inline Feedbacks
View all comments
alegenoa
October 19, 2016 11:43 pm

I don’t know if someone already put it in the following terms in the comments, but the problem with this article is that a “lifetime cost for a prudent grid backup battery system installed KWh, based on installed solar KW” is being used as if it were an “annual cost per consumed KWh”. Putting a total battery capacity in KWh corresponding to the total installed solar in KW could be a decent ballpark estimate, but many factors are involved. Ok.
Future deployment cost can’t be evaluated by using just the current price estimate, when we are witnessing a huge decrease in price: the trajectory can’t be ignored.
The real problem is advertising a cost based on the idea that you need to replace the batteries every year.
You can’t go with that, putting emphasis on the ginormous figure, and then immediately address the lifespan of the batteries, getting to a more realistic figure, as if it were an afterthought.

ozspeaksup
October 20, 2016 3:11 am

China has a present the majority by 80+% of known RE minerals
today i got this info in one of my subs mails -investment news
China Puts Annual Limit on Rare Earth Production
October 18, 2016 at 4:30 pm
China puts out the largest global production of rare earth, but is expected to limit that by 2020.
Read More →
sooo?
while Aus has some and so do usa and africa
the Aussie producers are being hamstrung BY the greentards causing hell for the processing plants which are O/S
curious the greens all want the lekky cars n doodads but then try n ban mining n processing of the MOST important part of their stated aims for battery power
you really couldnt make stupid like this up;-)

WBrowning
October 20, 2016 3:12 am

How about figuring in the construction costs and power losses of the Inverter Station needed to turn all that DC power into AC power? All that wonderful DC power needs to be inverted to AC so it can be transported the great distances to where it’s needed. These wondrous solar farms and their batteries are not going to be in our backyards. What about the power losses and heat generated when the inverting from DC to AC, what are they 85% efficient maybe?

MarkW
Reply to  WBrowning
October 20, 2016 7:21 am

More like 95%.

paqyfelyc
October 20, 2016 6:42 am

When will this scam about storage be killed ?
A storage facility is nothing more as a production facility (A) that doesn’t produce by itself, but as to rely on some other facility (B) to “charge” it up, meaning “A” works in production mode only half of the time, while “B” stay idle instead of producing. So, do the math : at the very best, with no loss and hypothesis that the charging capability of A is free etc., you need two facilities (A+B) to do the job that could be done by one (B alone), meaning stored electricity is “only” TWICE AS COSTLY than non stored electricity.
In real life the ratio is 4:1
Every system do need some kind of smoothing storage, such like the flywheel every engine has. It does make sense to have things like “Raccoon Mountain Pumped-Storage Plant” in the grid (hydropower ; nothing can beat hydropower : much dirt piled up — very cheap — , some pipes — not expensive –, and a few turbo-alternators — expensive, but any other productive system would need them anyway –).
But it DOES NOT make sense to say that mass electricity storage is holy grail that changes every thing. It isn’t, it doesn’t, and never will, because it already exist in the best form you can dream of (Pumped-storage hydroelectricity : only 4x more expensive than regular hydropower, that is, ~12¢/kWh ; quite good).
Bottom line : renewable will work fine without storage, or they wont work at all, but no sort of miracle storage is going to turn them from crap to bonanza.

Tenn
October 20, 2016 9:53 am

Perhaps someone already addressed this in the comments, but I have an interesting question that has been troubling me.
One of the main problems is that there are periods of higher and lower demand, requiring utilities to perform load following. The total generating capacity of the system must be sufficient to meet the highest demand for the entire day. So couldn’t large storage batteries be better used to allow for load shifting? That is to say the power plant is operated at a reduced, efficient load, charging the batteries when the load is low and discharging when the load is high? This would allow for a smaller, more efficient power plant to cover the load. A classic example is a baseload coal fired power plant that generates for $0.03/kwh. This power plant must be supplemented with a gas fired power plant to meet peak load, and that power plant, due to its intermittent usage, costs $0.20kwh. Using a battery, the coal plant could “bank” the cheap baseload power and release that power during peak demand. This could entirely eliminate the need for peaker plants, and reduce overall system costs significantly.
I guess I am saying there may be a very good economic case for utility scale batteries that has nothing to do with renewable power. In fact they may greatly reduce emissions by allowing a smaller and more efficient power plant to cover a greater load.

catweazle666
Reply to  Tenn
October 21, 2016 8:58 am

” The total generating capacity of the system must be sufficient to meet the highest demand for the entire day.”
In fact, in Europe a winter blocking high can sit over the north Atlantic for weeks at a stretch, so wind production over the whole of Europe will be negligible, and at 50 degrees of latitude, even with clear skies solar will produce at a reduced efficiency for 6 hours or less per day.
Good luck producing enough storage to back that up (apart from stacks of coal of course, strange how few people seem to recognise that fossil fuels are actually stored energy in their own right – and the most dense available to boot)!

Tenn
October 20, 2016 10:15 am

I should add, I don’t think that battery is a lithium ion based – better a flow cell battery or even flywheel battery that works for thousands of cycles would make a lot more sense. Lion batteries only make sense for mobile generation, like electric cars.

catweazle666
October 21, 2016 8:03 am

It is a source of astonishment to me that no-one seems to take account of a rechargeable battery type with a long history of successful operation, built from cheap, readily available, very safe materials, that doesn’t object to standing flat, doesn’t lose power over prolonged periods of lack of use, can have its electrodes taken out and rebuilt and is tolerant of assorted abuse that would kill – often catastrophically – a lithium battery stone dead in seconds.
That is the Nickel-Iron-Alkali battery. Its size and weight would be of no consequence for static backup, and I’m sure that if a fraction of the funds that have been spent on the Li cells had been devoted to its development its very few drawbacks could have been fixed long ago.
I have had experience of NiFe, lead-acid and Li cells over the years, give me the NiFe every time.

Andyj
October 23, 2016 6:21 pm

Catweazle666, I know Citreon Berlingo owners who converted their vans to Li cells after the old, heavy and lower capacity NiFe cells have died.
======================================================================
There is no “if” the battery pack will last 1,500 cycles. Nobody cycles at 100% and if they did, that number is for a 30% capacity loss. The loss rate is an ever decreasing number. it’s virtually impossible to get below 65%.
Li car batteries generally have an 8 year g’tee. One guy has covered over 200,000 miles in his Tesla in short order. The notable thing is no discernible battery degradation.