This New Battery is a Game Changer

Lighter Cheaper More Powerful Battery Changes Renewable Economics

Guest essay by Roger E. Sowell, Esq. Marina del Rey, California

It is not often on SLB that I use the phrase “game-changer.”  Most things progress, if they progress at all, in small increments.  This time, though, is one of those that deserves the phrase game-changer.

The innovation is the low-cost, light-weight but powerful battery developed by Nobel prize-winner Alan Heeger, PhD of the University of California at Santa Barbara (UCSB).  The company is Biosolar .  see link to www.biosolar.com

The battery is suitable for mobile and stationary applications such as cars, trucks, grid stabilization, home power storage, and others.   The innovation is the use of the Nobel prize-winning plastic-that-acts-like-a-metal, haologenated polyacetylene.

The Nobel Prize in Chemistry, 2000: Conductive Polymers (see link) is lengthy but has this to say about the discovery:

” In 1977, however, Shirakawa, MacDiarmid and Heeger discovered that oxidation with chlorine, bromine or iodine vapour made polyacetylene films 10^9 times more conductive than they were originally.  Treatment with halogen was called “doping” by analogy with the doping of semiconductors. The “doped” form of polyacetylene had a conductivity of 10^5  Siemens per meter, which was higher than that of any previously known polymer. As a comparison, teflon has a conductivity of 10^–16 S m–1 and silver and copper 10^8  S m–1.”

The battery, which is now patent-pending at the US and other patent offices, is expected to cost less than $100 per kWh (about one-fourth that of the best batteries today), to weigh less and therefore provide longer range to cars, to have a greater power density (power to weight ratio), have a faster charging time and much longer life.    Another substantial positive is the material itself, made from common acetylene.  There are no rare earths to mine and extract, no toxic residues.  The halogen dopants are also common, cheap, and abundant.

This battery, which continues the use of lithium for the anode, is likely a primary contribution to the Tesla company’s announcement this week of a new mid-price all-electric car.

The renewable energy field, especially those technologies that have variable output due to changes in the wind or sunshine, will benefit greatly from a low-cost high-density battery.   A wind energy project would not be limited to selling power at low prices, currently 3 cents per kWh, but instead selling the power as would a gas-fired power plant, on demand and reliably at the market price.


 

Added by Anthony:

From the Bisosolar website:

Breaking the $100/kWh Cost Barrier to Mass Market Adoption

Materials account for more than 70% of the cost of a battery. In particular, the cathode material makes up 20-35% of the total materials costs. Therefore, lowering the cost of the cathode is an effective way to lowering the total battery cost. The estimated raw materials cost of our cathode is similar to that of inexpensive plastics, with a very high possible energy density of 1,000 Wh/kg.

Our Super Cathode can be used to manufacture a super battery that is 2 times higher capacity than the batteries currently used in a Tesla Model S, at 4 times less cost.

Processing materials and time are additional cost drivers. Our cathode can be processed from water and eco-friendly solvents, which (i) eliminates the use of costly and toxic solvents, (ii) eliminates high temperature drying processes, and (iii) speeds up the production throughput.

Many analysts in the electric vehicle and solar industry consider $100 per kilowatt-hour (kWh) to be the “holy grail” price threshold. In the case of electric vehicles, $100/kWh will make them undeniably cost-competitive with gas-powered vehicles. And in the case of solar, it will finally be cost effective to store daytime solar electricity for nighttime use and be less reliant on, or completely independent of, the power grid.

Our current estimate of the cost of a full battery using our Super Cathode with a conventional graphite anode is approximately $54/kWh.

Compared to Existing Batteries Based on internal experimental data, other published data, and a calculation model adopted from the Energy Laboratory of Samsung Electronics, we have estimated the energy density and energy costs of a complete super battery that uses our Super Cathode technology.

The BioSolar Super Cathode can be combined with conventional anodes to create different battery configurations to meet specific application or market requirements. Due to the overall low cost, high energy, long life and rapid charge features of our cathode, the resulting battery will be inherently lower cost, higher energy, longer life and faster charging.

chart-biosolar-battey

 

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

327 Comments
Inline Feedbacks
View all comments
jsuther2013
April 8, 2016 10:08 am

One quarter the cost.

Richard Cain
Reply to  jsuther2013
April 8, 2016 10:20 am

Agreed!

george e. smith
Reply to  Richard Cain
April 8, 2016 3:39 pm

The new battery is a game changer. But !
The battery is NOT new, and the game has not changed.
Fracking IS a game changer..
G

Andrew
Reply to  jsuther2013
April 8, 2016 10:22 am

Yes! “4 times less” grates my sensibilities too.

jorgekafkazar
Reply to  Andrew
April 8, 2016 1:19 pm

It raises a flag. Let’s say a conventional battery costs 100 quatloos. Materials, they say, are >70% of battery cost. Say 75%, which should be on the safe side. So materials are 75 quatloos, manufacturing 25 quatloos. They further say the cathode is 20–35% of the total battery material cost. Let’s say we save the larger number, 35%. Thirty five % of 75 = 26 quatloos saved at most by cutting cathode costs. Seventy five quatloos material minus the 26 saved is 49 quatloos for materials, plus the manufacturing cost of 25 quatloos = 74 quatloos total cost. That’s a reduction of 26%, not a reduction of “four times.” It’s barely a reduction by one fourth.

Reply to  Andrew
April 8, 2016 1:51 pm

I think this stupidity is universal for germanic languages. I am a Swedish speaking retired journalist and I have always flipped my lid when somebody turned in a text with the words “fyra gånger mindre” which means as you can guess “four times less”. Or someting like that. Worst is I think is “dubbelt mindre” which in English would be “double less” but I have not seen that in English. But in Swedish it is used in parallell with “hälften mindre” (half less) making it equal to “double less”.
But perhaps it´s not only speakers of germanic languages who are afflicted with this nonsense because the same thing is going on in Finnish wich is a Fenno-Ugric language with an otherwise very logic structure.

Reply to  Andrew
April 8, 2016 2:17 pm

jorgekafkazar
As I understand the statement, that is only for the materials that go into the battery itself. They also say that processing (manufacturing) costs would be lower. Water instead of expensive toxic materials. So, initial cost saving in purchasing processing materials and, if you’ve ever had to deal with handling, storage and disposal of hazardous materials, you will appreciate the cost savings in using water instead. Their estimate of cost reduction has to include those elements as well.

Rob JM
Reply to  Andrew
April 8, 2016 3:57 pm

Thats compared to the tesla battery, of which the “tesla tax” make up half of the cost! 🙂

Reply to  Andrew
April 9, 2016 3:22 am

Jorgekafkazar: The cost comparison they quote are per watt hour. Your calculations were just for initial costs. To duplicate their math you’d have to average those costs out over the life of the battery and the amount of energy storage provided by the battery across that lifespan.
Personally i think they’re way of calculating costs is a bit disingenuous and overstates the savings. A consumer isn’t concerned with costs per Watt/hour, they are concerned with how much money is going to come out of their pockets. If the initial costs of the vehicle are only reduced by a quarter, there will be much less interest than if they are reduced by a factor of 4.
Most people only keep cars for 3 to 5 years. So the battery lasts 7 years now instead of 5…so what? I’m probably not going to have the car any more by then anyway. Has no bearing on my costs.
Yes, if the batter is more efficient and takes less time to charge, that may make it more practical for everyday use than the cars available now, and that will certainly entice a few people to invest in them that have been reluctant due to range and recharge time issues, but that still isn’t a cost thing.
This may very well be a huge breakthrough and may make the electric car industry actually viable, but calculating the cost savings in the way they do in this article is misleading at best.
The bottom line is going to be when customers look at the sticker price. Will this make EVs initial costs low enough that they can compete against traditional gasoline powered vehicles WITHOUT heavy government subsidies? I have my doubts.

Reply to  Andrew
April 9, 2016 3:24 am

Sorry about the crappy grammar and spelling. I didn’t sleep much last night.

Santa Baby
Reply to  jsuther2013
April 8, 2016 11:07 am

News have turned into Money machines?

Santa Baby
Reply to  Santa Baby
April 8, 2016 11:07 am

…making….

Santa Baby
Reply to  Santa Baby
April 8, 2016 11:14 am

And offtopic when did science and enlightenment put People in prison or burn them on poles publicy? What is happening now is not science or the enlightenment. Its ideology or religion?

Reply to  jsuther2013
April 8, 2016 11:18 am

I pretty much had to stop reading for a moment at that point. One of my pet peeves is describing a fraction as a multiple. Hyperbole defined.

Reply to  TomB
April 8, 2016 2:22 pm

When a statement is made for general public consumption, it is written for the average citizen and, if you have ever taught school, you understand that the average student is a dolt when it comes to appreciating fractional notation. Multiples are clearly understood, but fractions, for most, are not. When dealing with the average person — KISS.

John Harmsworth
Reply to  TomB
April 9, 2016 7:12 pm

I agree with you 4 times as much

Paul
Reply to  TomB
April 11, 2016 10:04 am

Just one of many “pet peeves”. Consider: “one of the only”; or beginning a statement with “so”.

Editor
Reply to  jsuther2013
April 8, 2016 12:32 pm

One thing that retailers always get right is how they advertise sale prices. They’ll say 75% off, they won’t say 4X less.
When something is available for 4X less, I’m never quite sure what they really mean. For price P, P – 4P is -3P. Of course, they don’t mean a negative price, so do they mean 1/3 P? Probably not. In this case I guess it’s 1/4P. So I guess “4X less” must mean that is a reciprocal operator. Whereas “4X more” means P + 4P, i.e. 5 times the price, 4X less must mean – oh dear – 1/5 the price.

Hugs
Reply to  Ric Werme
April 8, 2016 2:12 pm

When something is available for 4X less, I’m never quite sure what they really mean.

Oh come on! Of course 4x less is the same as 25% left. Nobody ever (except when explaining their pet peeve) gets that wrong.

Reply to  Ric Werme
April 8, 2016 2:25 pm

I know what you mean in trying to understand such things — the other day I ran into Penney’s department store expecting to see something exciting when I saw a sign outside that said, “Ladies underwear — half off”.

Editor
Reply to  Ric Werme
April 8, 2016 9:19 pm

> Of course 4x less is the same as 25% left.
Can you write that as an equation, please?
> Nobody ever (except when explaining their pet peeve) gets that wrong.
Of course. It’s just that this is the best post for this rant in years. I’m proud to see so many others agree!

Reply to  Ric Werme
April 9, 2016 8:29 pm

A local code standard for property line adjustment says “The adjustment will result in less than a 200% change in the size of a lot or parcel”.
What they want that to mean that the parcel that gets bigger can, at most, double in size; and the one that gets smaller can’t reduce to less than half of the original size.
What I get to do is triple the size of parcel that gets bigger, and the parcel that gets smaller can be reduced as far as the owner wants.
After the first couple of times they (the planners) quit arguing intent and accepted true meaning. Language counts; math is a language.

Reply to  Ric Werme
April 9, 2016 8:58 pm

By defining 4X less as “Buy it next week and it will be 4 times the price of Today’s sale”;
($Next week)/($Today’s) = 4;
By defining 25% Left as “Buy it today and it will be 25% of what will you will would pay next week”;
(%Today’s)/($Next week) = 25% = 0.25 = 1/4 => 4 = ($Next week)/($Today)

Reply to  Ric Werme
April 9, 2016 8:59 pm

Ric,
the above is the (half ass) equation that you you asked for.

Editor
Reply to  Ric Werme
April 11, 2016 5:08 am

DonM wrote:
> the above is the (half ass) equation that you you asked for.
Thanks, I hope everyone sees that “4X less” (more generally, xX less?) is more idiom than than math.

Hoplite
Reply to  Ric Werme
April 11, 2016 7:30 am

@Ric Werme – ‘Can you write that as an equation, please?’
Here’s a go:
4 x (new_price) = (old_price)
therefore:
(old_price)/(new_price) = 4 x
QED 😉

Duster
Reply to  jsuther2013
April 8, 2016 1:41 pm

+1
Indeed. But to someone writing marketing tripe “four-times” sounds better than “one-quarter.”

Don
Reply to  Duster
April 8, 2016 2:34 pm

Why not 400% lower cost ?

Duster
Reply to  Duster
April 8, 2016 2:57 pm

Same reasoning. In fact, there was an argument about that use on WUWT some years ago. It is more marketing hype than semantically accurate and requires extra mental gymnastics to convert to an objective meaning – for instance does “4 X less” leave one quarter or one fifth behind? The common understanding is that really if you added 300% TO the remainder of “400%” less you would once again have the original amount. But popular usage “evolves” and these days comes out of the marketing media more than ever. So, despite it sounding like incipient formation of a black hole, you see it used anyway.

Reply to  Duster
April 9, 2016 8:36 pm

Don, you would be missing 2 important characteristics of the equation: 400% of what parameter? & Lower than what initial state?

george e. smith
Reply to  jsuther2013
April 8, 2016 2:15 pm

You can’t know the cost until you have actually developed (built) the product at some level of manufactured volume.
G

Unmentionable
Reply to  george e. smith
April 8, 2016 6:15 pm

While selling them into a market against competitors.
OK, their price claim is unproven and most probably nonsense.
But if the battery can do what they say in operational service life (i.e. more unproven claims) they’d have a winner, and enable viable and possibly even economic renewable supply, of electrons day and night. As you say, we won’t know until its in service, in installations, and doing so for years, with high capacity and low material attrition compared to all competitors.
The most important thing is that such technologies stand on their own feet and on their own technical and market demand and merits, and not get a cent of public support or subsidy, as then they have the incentive to innovate to get it right, and scale efficiently, and to get rich and prosper because it works economically, competitively, rather than attempting to lever and rort money from the public wallet with untruth and deception.

Reply to  george e. smith
April 8, 2016 10:08 pm

Bingo… exactly what I was thinking!

Reply to  george e. smith
April 10, 2016 8:47 am

+1
I’ve watched quite a number of “magic new” battery techs come and go. The LiFePxx were particularly ugly.

george e. smith
Reply to  jsuther2013
April 8, 2016 3:29 pm

My browser keeps telling me that WUWT has a programming error.
I have had six would be posts discombobulated so far this morning and fail to post.
G

ECB
Reply to  george e. smith
April 9, 2016 2:40 am

Works fine with my Firefox browser.

myNym
Reply to  george e. smith
April 9, 2016 9:57 am

Seems to depend on the adverts. Some are very traffic heavy.
I’m using Chrome, and have Java script turned off. Seems to be a much cleaner experience. YMMV.

Reply to  george e. smith
April 9, 2016 4:35 pm

AdBlock Plus, FFox. No problems.

Bill Hunter
Reply to  jsuther2013
April 9, 2016 2:31 am

One fourth the price seems supportable.
The $200 per kwh battery has less than half the energy capacity as I read it. The cost for the lithium cathode is say on the high side $140 (70%) times 35% or $49.
So first because of the energy density alone the saving is $102 because you are getting more than twice the energy out of a kilogram of materials.
Then lithium costs in bulk about $95 per kilogram and plastic a couple bucks a kilogram. If the cathode is a half kilogram then the kilogram battery would have about $47.50 in lithium which would be replaced by about a dollars worth of plastic. Thus the lowest price for the new battery would be about $50.50. Perhaps the other $3.50 is in processing the plastic or different proportions of material or both.
If true does sound like a game changer. You can probably put a battery in a car of an established weight and get twice the distance and have it cost half as much in total giving you 4 times the performance per dollar. Or you could put a battery in that weighed half as much that cost one 4th the price and have the same range.

Reply to  Bill Hunter
April 10, 2016 6:02 am

On the math. While it is nice to see equations on the order of Cathodecost=.7*Batterycost and all form of careful consideration, the presentation is already normed to kWH so there is no $102 savings as you imagine. If you need X kWH to run a Tesla the relative cost could be calculated as 54/200=.27 which could be expressed as 27%.
So all this parsing of proportions of battery cost is not related to the language of the article and charts which state that the “energy cost”, NOT the “cathode cost”, is 27% of existing technology. Of course the whole thing could be an optimistic fib (or stock pumping). And it is confusing that they join energy density and the cost per energy unit in a single phrase. But assuming for the sake of mathematical argument that this isn’t grandstanding, what double the energy density really means is that the battery that would cost 27% of current state of the art technology and would weigh half as much — perhaps giving an unspecified performance enhancement in terms of miles/kWH that could be calculated in energy savings to further diminish the 27% figure, or could allow the same car to carry twice the kWH and thus extend range. (albeit the cost savings per car would not be as much – i don’t know that there is a unit of measure that would could describe the value of additional range – perhaps the opportunity cost of stopping to charge).
one caveat is that the measurement of energy density, as far as i can tell, makes no reference to the traditional density measurment of specific gravity, so i’m unclear what the actual physical size of the battery would permit the inclusion of the greater kWH capacity in a largely similiar body configuration.
So I think this is interesting, maybe exciting, but it is a question of bringing the technology to market and showing that it works and it lasts. Fracking of course has passed that test so it can be called a game changer in the real world. It gave us the 2nd Obama presidency, I reckon, so I could perhaps wish it hadn’t been quite so effective . . .
I would celebrate a battery techology that was the equivalent of fracking but this has a long way to go. Fracking was adopted in the face of skepticism without subsidy I don’t mind X-prizes for milestones but god forbid we subsidize widespread adoption, which would indicate just the opposite.No game changer, just a shell game.

John Silver
Reply to  jsuther2013
April 9, 2016 3:02 am

Polyacetylene battery tech is from 1980:s, so they have had plenty of time to streamline the production. (Note: that was sarcasm)
http://www.nature.com/nature/journal/v311/n5984/abs/311362a0.html

lzp
Reply to  John Silver
April 9, 2016 8:11 am

Absolutely correct; they just forgot to mix in some buckyballs and a room-temperature superconducting powder, all mixed in polywater under cold-fusion conditions to compactify the excess low-density polyacetylene into a six-dimensional Calabi-Yau manifold…

Reply to  John Silver
April 10, 2016 6:35 am

and maybe i have to temper the notion of exciting expressed in reply only a post above. if i read this 1984 syllabus from nature correctly, the anticipated energy density at the time was 250 Wh / per hectogram (don’t ask me why they chose that unit) which equates to 2500 Wh or 2.5 kWh per kilogram. The achievement cited here is about a fifth of the theoretical energy density cited in 1984 (should i be suspicious that it was 1984, but i digress). . .
so its taken 30 years to get to one fifth of that theoretical limit. on the other hand being double the energy density of the current best technology at 27% of the cost with more readily available material might still look like something. if this is a feat they can reliably repeated in widescale manufacturing, maybe that was 30 years well spent. Although it certainly is not a technology that yielded quickly and easily to crossing the theory practice divide, especially given that the period has been characterized by an intense focus on battery technology.
I’ll believe it when I see it in production without subsidy (can you say A123?!).

Steve in Seattle
Reply to  John Silver
April 12, 2016 3:19 pm

That was good Izp, thanks ….. : )

jaffa
Reply to  jsuther2013
April 10, 2016 1:56 am

Who says “4 times less”? It’s idiotic.

Brian R
April 8, 2016 10:09 am

My first thought is, what’s the catch. There is always a catch when it comes to batteries.
[Until the catch breaks, and the lid to the battery falls off. 8<) .mod]

Bryan A
Reply to  Brian R
April 8, 2016 10:24 am

Catch is it costs 4 time less to produce but because the tech is new will cost 4 time as much to purchase

climatereason
Editor
Reply to  Bryan A
April 8, 2016 11:56 am

Let’s hope it’s not as illusory as fusion of various types.
If this is a genuine innovation it’s to be welcomed as the Achilles heel of reneable energy is its intermittency hence the need to store its energy in times of plenty in some sort of battery
We will have to see how costs work out. Like most things, as technology develops it will become cheaper.
Tonyb

Reply to  Brian R
April 8, 2016 10:27 am

I agree with you Brian what else is going on? Why have an attorney announce a ‘game changer’ technology and reference a 1977 Nobel Prize as authority for the breakthrough? Hope it is so…. but do there remain issues? It won’t do to have Teslas blazing down the highway like a Christmas gift hoverboard.

Reply to  fossilsage
April 8, 2016 10:57 am

Biosolar did not “have an attorney announce a game changer”. I have zero connection to Biosolar, and zero connection with any of the parties involved.
I am merely a bystander, who happens to be a science and technology attorney and chemical engineer. I also make speeches and write on energy matters.

Bryan A
Reply to  fossilsage
April 8, 2016 12:30 pm

Hopefully they have something tangible and aren’t just another Steorn
or what it is fast becoming apparent that LENR might be

Neo
Reply to  Brian R
April 8, 2016 10:30 am

The battery still get 48% of it’s power from coal plants

Mike in CT
Reply to  Neo
April 8, 2016 11:47 am

The US is well below 48% now, around 30% for 2015 for coal in our electric mix down from 48% 10 years ago.

ferd berple
Reply to  Brian R
April 8, 2016 10:35 am

what’s the catch
=============
“We believe that by integrating our Super Cathode with conventional anodes, a complete lithium-ion battery can be built that is lower cost, higher capacity, faster charging and longer life.”
the catch appears to be “We believe”. Why not “We have shown”?

Janice Moore
Reply to  ferd berple
April 8, 2016 10:53 am

+1>

Reply to  ferd berple
April 8, 2016 12:23 pm

Yup. See below. I researched before commenting.

Janice Moore
Reply to  ferd berple
April 8, 2016 1:04 pm

Here is the link to ristvan’s well-informed comment below: https://wattsupwiththat.com/2016/04/08/this-new-battery-is-a-game-changer/comment-page-1/#comment-2185315
Good for you, Mr. Istvan, not to cut-in-line with a fairly long comment. Hard to resist doing that when you have something which you very much want people to read.

Nigel in Santa Barbara
Reply to  Brian R
April 8, 2016 1:41 pm

The new battery uses plastics, which needs fossil fuels…
Oh, the irony!

expat
Reply to  Brian R
April 8, 2016 1:48 pm

The catch is they don’t exist yet and you can’t buy them. This article should have been in Popular Mechanics along side the flying car.

myNym
Reply to  expat
April 9, 2016 10:05 am

The vast majority of airplanes today are “flying cars”. (For the most part, they are equipped with wheels.)
The exceptions are “flying boats”. (See: Seaplanes.)

Duster
Reply to  Brian R
April 8, 2016 2:40 pm

Flammability I would guess. Lots of energy, low mass, increased potential for loud sounds and fire. Lithium batteries are notorious for the magnitude of problems when they fail. These carry more energy, so if it is released instantaneously it would be interesting.

Rob JM
Reply to  Duster
April 8, 2016 4:01 pm

Not a problem for cars when you consider the petrol/gas alternative. Additional fire risk in houses isn’t so cool though.

Tom Yoke
Reply to  Duster
April 8, 2016 4:55 pm

Rob JM, batteries are a different beast than petrol. It the case of batteries, the reductant and the oxidant are of necessity in very close proximity. All that is needed to cause havoc is an internal electrical short.
In fact, it could be argued that the chemical fuel equivalent of a high capacity battery is closer to gunpowder than to gasoline, since a tank of gasoline is essentially inert unless substantial oxygen is also present.

Evan Jones
Editor
Reply to  Brian R
April 8, 2016 3:43 pm

Catch as catch can. Sounds plausible. Hope for a good die roll. Hope everyone makes their saving throw. So we wait and see.

Shanghai Dan
Reply to  Brian R
April 8, 2016 7:39 pm

Note they talk about energy density as kW/kg? What about kW/liter? It’s not just the weight that matters, it’s the size as well. If you’re half the weight for the same capacity, but 10X the size, then you’re not really a usable battery for vehicles – too much space occupied for the energy storage.

climanrecon
April 8, 2016 10:09 am

Great news, hopefully an inexpensive way for us to prepare for the upcoming power outages, but lets not forget that batteries are not energy, they have to be filled with it from somewhere, which will still be mainly fossil fuels.

Mark from the Midwest
Reply to  climanrecon
April 8, 2016 10:49 am

The battery part has always been the weak link for small-scale wind. I have a home close to Lake Michigan with sufficient wind to be useful. If you could cut the cost of storage in half it starts to get interesting.

AZ1971
Reply to  Mark from the Midwest
April 8, 2016 11:36 am

“If you cut the cost of storage” is one thing; energy density of that storage is key to practical deployment on a large scale. I live in sunny Phoenix and there would be a great benefit to a technology like this if also paired to cars when in parking lots. Either the lots could have solar panels covering them and keeping cars parked underneath fully charged, or flexible solar panels embedded onto future car hoods could power a separate A/C unit so that you don’t burn your butt when getting into your car.
I’ve always said that renewable energy is a novelty unless and until cheap, high-capacity, large-scale storage of their energy generated can be made available.

Bryan A
Reply to  Mark from the Midwest
April 8, 2016 12:27 pm

I have summered in Phoenix my self and know, first hand, just how hot the Steering Wheel (Searing Wheel) can get I the afternoons. Most of the indigenous Phoenix inhabitants tend to have their windows highly tinted just to combat the relentless sun.

MarkW
Reply to  Mark from the Midwest
April 8, 2016 2:06 pm

Adding solar cells to your cars hood, would provide enough power to run the fan continuously, but not the AC. Even covering the entire car wouldn’t be enough for that.

higley7
Reply to  Mark from the Midwest
April 8, 2016 2:34 pm

They are saying that wind power companies will be able to store energy to be released later when the wind dies. That means two conversions, from wind-generated electricity to chemical battery and back to electricity before it goes to the consumer. I wonder what that does to the overall efficiency.
One should not forget that electric cars spend a lot of their charge on heating the passengers in the winter and cooling passengers in the summer.
Also, batteries tend not to like very hot weather and do not work well at very cold temperatures, in which case power needs to go to heat the battery in the winter. And the charging time will never match the time it takes to fuel a car with gasoline.

Unmentionable
Reply to  Mark from the Midwest
April 8, 2016 6:48 pm

MarkW April 8, 2016 at 2:06 pm
They can use DC if it’s just to turn a compressor and fans Mark, the fanbelt that mechanically drives compressors now in conventional power trains is not an alternating fan belt.
It also doesn’t have to operate continuously, if it operates on full blast for a minute prior to your getting into the car the requirement for a pre-cooled car is mostly met, the aircon in the hybrids I’ve driven is impressively chilly and fast operating.
Plus there’s this, which Toyota they bought in from 2011:
“Located on top of the rear roof portion, of properly equipped Toyota Prius vehicles, is actually a rear solar panel. This unique solar panel uses those countless hours of being parked outside and collects sun rays to power a ventilation system inside of the vehicle.”
http://www.allannott.com/blog/use-toyota-prius-solar-panel-roof/
It works, it may not make the interior like a fridge but it does make it much cooler than it otherwise would be when you get in and it keeps cooling fast from there.
Frankly if these sorts of hybrids had a higher capacity cheaper and longer-lasting in service battery tech (and the lithium system they also introduced in 2011 is brilliant, btw) they would be hands-down the car and power plant to buy. They’re already much cheaper to run than a standard car, they just aren’t cheaper to buy … yet.
But even that changed fast (i.e. already occurred), as other(much heavier and thus less fuel efficient conventional car models which have been converted to a hybrid power train, are in fact cheaper to run and cost about the same to buy as the conventional model and have the same acceleration power, or generally better power.
The technology is mature and price is competitive and will on;y get better from here, add better higher energy density lighter cheaper battery tech, and the whole thing becomes extremely attractive, and will out-compete conventional power train cars.

MarkW
Reply to  Mark from the Midwest
April 11, 2016 9:24 am

The price is only competitive because other people are picking up half to 3/4ths the cost.
As to your comment, all you did is prove my point. That the surface area of the car is only sufficient to run a fan, not the entire AC.

Bryan A
Reply to  Mark from the Midwest
April 11, 2016 10:38 am

BUT Unmentionable, the fact that you are driving a “Hybrid” indicates you are still driving a car that uses Fossil Fuel once the battery has been exhausted (currently averaging about 35 – 40 miles for most affordable EV’s).
The longest range EV’s are
Tesla S 208 – 265mi $91k
Toyota RAV4 103mi $60K (won’t commute from My house to San Francisco and back on a single charge) (Discontinued)
Fiat 500E 87mi $35K
Nissan Leaf 84mi $32K
Chevy Spark 82mi $28K
Honda Fit 82mi $38K
Ford Focus 76mi $36K
Smart (dumb) 68mi $26k
Mitsu MiEV 62mi $25K
Scion IQ EV 48mi (Unavailable to the public)
So far the only one that can truly travel without still needing Fossil Fuel in Tesla at $91,000
The affordable ones are unusable for commuting to and from work unless you live less than 15 miles from work and then go straight home after work.

Bryan A
Reply to  Mark from the Midwest
April 11, 2016 12:17 pm

If you WANT/NEED to travel more than 60 miles on a charge then Electric is truly uneconomical.
If you bought a Tesla for the 260 mile range you would spend $90,000
If you bought the average car and drove it for 100,000 miles
The car would cost $20,000
Your average mileage would be 20MPG
100,000mi /20MPG = 5000 gal
5000 gal X $4 per = $20,000
Car $20,000
Fuel $20,000
Total cost $40,000
vs
260 mile Tesla $90,000
Replacement Battery $44,000

Gregory White
April 8, 2016 10:11 am

At best these batteries will only increase the cost of renewables a little, if you keep the fossil fuel back-up generation. But if you attempt to replace the fossil fuel back-up with batteries, the cost of renewables skyrockets up. http://bravenewclimate.com/2014/08/22/catch-22-of-energy-storage/

Gloateus Maximus
April 8, 2016 10:15 am

Stock plummeted from 54 cents to six cents, but has fought back to 14 cents:
http://finance.yahoo.com/q?s=BSRC

Reply to  Gloateus Maximus
April 8, 2016 11:16 am

Did you notice they also filed patent application in China and S. Korea. Expect China to manufacture knock-offs and capture the market from Bio-Solar. Although this won’t stop interim price gains for Bio.

Evan Jones
Editor
Reply to  kokoda
April 8, 2016 4:03 pm

Re. knockoffs. I agree with the diagnosis — presuming always that the thing actually works (mostly) as well and as inexpensively as the ad says it does. (We’ll find out about that, soon enough.)
From a demographic point of view, that would mean cheaper, more reliable and efficient power made far more widely available. The US might get unfairly partially cut out (robbed blind, if you will). But affluence would increase, especially at the marginal level. That could save and prolong a huge number of lives (the lives that could be saved, globally, during winter months are the least of it).
Interestingly, it might also pull at least some of the current madcap schemes’ nuts out of the fire. Make them at least marginally viable (as opposed to worse than a total loss).
That’s assuming the thing works. That has yet to bee seen. I have been pessimistic about battery tech. But I’m more than willing to have been wrong.

Reply to  Gloateus Maximus
April 8, 2016 11:33 am

Strategically placed publicity can be very useful for “pump and dump” stock marketing schemes. See https://en.wikipedia.org/wiki/Pump_and_dump

AZ1971
Reply to  Gloateus Maximus
April 8, 2016 11:52 am

They’re down 96% from 2011 and down over 99% from the peak in 2008. They are what would be called a “penny stock” that carries high risk. An entire day’s trading volume of 245K shares at 0.145/share is only $35,525. If true, opportunities like this would mean untold wealth just like those lucky few who got in on the ground floor of other high-flying stocks. But I need more convincing first — and a few extra thousand dollars I can easily part with.

Gloateus Maximus
Reply to  AZ1971
April 8, 2016 1:07 pm

Quite a turn-around today!
Closed up almost 20%. Who knew WUWT had such power?

Paul Westhaver
April 8, 2016 10:16 am

Fire. When you put a polymer inside a hot running cell there is a fire risk. And lithium already wants to burn. Lithium batteries today are fire traps…. with out the polymer incendiary fuel.

Paul Westhaver
Reply to  Paul Westhaver
April 8, 2016 10:19 am

Reply to  Paul Westhaver
April 9, 2016 12:38 am

when there is a battery fire like this of this size. you should act quickly!! tell everyone around the fire to get out their water bottles and dump their soda pop and water on the battery to cool it off. if you can quench the flames and cool the battery pack down enuff to pick it up off of the carpet and then carry it to the lavatory and put it in the sink or urinal and continue dumping water on it until cool. shorting the battery by wetting it is not important. getting the battery cool again is the only way to stop the thermal runaway. the electrolyte is not toxic. you cannot suppress the flames by smothering it. only dunking in water will put out the fire. act fast!!!

Reply to  Paul Westhaver
April 8, 2016 10:24 pm

I was going to same something similar when I saw your post.
I’ll just add that at that energy density discharge heating is real concern for fire hazards. Also even if the fire hazard is nil, the heating cycles of a battery with that energy density will likely have a short life span. Read “short” as you wish.

Mr Green Genes
Reply to  Paul Westhaver
April 9, 2016 1:38 am

Paul
I’m not saying that you’re wrong about the science in your post. However, putting 20 gallons of petrol in a metal tank and strapping to the underside of of a vehicle which you then drive around at anything up to 200 mph is an equal hazard. The whole matter boils down to managing the risk. With petrol and cars that risk has been almost completely managed away – let’s face it, Hollywood produces more exploding cars than the motor industry,
IF (I stress that because it seems to be a very big if at the moment) this technology works, the risks you outline will need to be managed away and I’m certain that they can be, just as the petrol tank risk has been.

george e. smith
Reply to  Mr Green Genes
April 10, 2016 9:18 pm

The Ford Mustang used to have a steel gas tank that actually was the floor of the trunk.
So the top of the tank, and the bottom of the trunk was the one sheet of metal.
So if you threw a bunch of wet clothes or surfing/diving gear and stuff in you trunk, eventually you would have a rusty gas tank (at least the outside on top.
I once rode with someone in such a Mustang, one evening, and in the dark of night we stopped at a gas station to fill up and soon after that on the freeway, we smelled a strong gas smell. Puled into another gas station with lights to investigate, and discovered the trunk sloshing with gasoline. The tank top had rusted to the point where it suddenly collapsed in parts, leaving holes and the gas sloshed out with cornering.
Don’t remember how we got home after that.
G

mogamboguru
April 8, 2016 10:17 am

How will this battery fare at ver high/low temperatures? IIRC Polyethylene is brittle at very low temps. Correct me if I am wrong.

MikeN
Reply to  mogamboguru
April 8, 2016 11:02 am

If they are being used as storage for solar power generators, then most of these will be in warm places.

MarkW
Reply to  MikeN
April 8, 2016 2:08 pm

Even warm places can get cold during a winter’s night, unless some form of heat is provided.

NW sage
Reply to  mogamboguru
April 8, 2016 6:03 pm

I think the article quoted said “polyacetylene films” NOT polyethylene. I do not the know thw physical property-temp relationships of polyactylene.

April 8, 2016 10:19 am

I’ve read about several battery “game changers” over the last 10 years. Not one of them actually came to market. Wake me up when these so-called revolutionary batteries can be purchased.

John Silver
Reply to  alexwade
April 9, 2016 3:14 am

I have read about game changing new battery technologies since the 80’s.
That’s 35 years!

April 8, 2016 10:28 am

Date for commercialization?

David Hall
April 8, 2016 10:28 am

So where is the snag ? There’s always a snag, Maybe it sets on fire unexpectedly (and downs an aeroplane – we’ve had that), or it self-discharges in a matter of hours, or it explodes in a car crash, or it suffers rapid and irreversible chemical change of some sort during it’s (short) lifetime,
Why am I thinking like that? Well the first thing I spotted is that this material has been known about since 1977, so why has it taken 40 years to come – nearly – to market ? There must be a reason for that, and therein probably lies a tale.

Janice Moore
Reply to  David Hall
April 8, 2016 11:02 am

Good point. Indeed…

Reply to  David Hall
April 8, 2016 12:25 pm

There is. Cycle life degradation. See my longer comment below.

Editor
Reply to  David Hall
April 8, 2016 12:37 pm

People gripe that Industrial Heat wasn’t able to commercialize the E-Cat in three years. If this has taken 40 years, it must be as fake as the E-Cat. 🙂

Bill Yarber
April 8, 2016 10:36 am

I agree, major step forward. How long before commercially available?

RT
April 8, 2016 10:36 am

A break-tru in battery technology has hitherto been as illusive as fusion power.
I have no doubt it we will eventually see it, but this was anything but convincing!

David
April 8, 2016 10:37 am

I was looking at the stock, trading at 14cents, near all time lows… Why is there no one to buy if the technology is so great? We are definitely missing something…

Lancifer666
April 8, 2016 10:38 am

Like alexwade said above, I’ll believe it when I can buy one for a reasonable price and use it in a variety of weather extremes.
These “break through” battery articles are a dime a dozen.

anarlib
Reply to  Lancifer666
April 8, 2016 12:04 pm

Reminds me of the flying cars featured on the cover of Popular Mechanics every year or so since the Pleistocene

Sleepalot
Reply to  Lancifer666
April 9, 2016 4:09 am

There’s prolly a new law there: any new technology insufficiently developed is indistinguishable from a scam.

Richard Cain
April 8, 2016 10:38 am

It’s early days, but I’m excited as a scientist. As a human, the awful downside (there’s always at least one) is that if this really delivers then the UK will become a sea of giant windmills interrupted by ever smaller patches of beautiful nature. Remember Joni Mitchell’s “Big Yellow Taxi” – ‘They opened up a tree museum, a dollar and a half just to see ‘em’. Prophetic?

schitzree
Reply to  Richard Cain
April 8, 2016 12:38 pm

Actually, I believe in Joni’s version it was just 25 cents to see them. The buck and a half came from a later version.
Inflation, don’t you know. ^¿^

Evan Jones
Editor
Reply to  schitzree
April 8, 2016 4:07 pm

It was a dollar-and-a-half on Miles of Aisles. (But that was concert.)

April 8, 2016 10:40 am

Taking this news at face value, this is great news!
I hope to see it implemented commercially soon. The famous science fiction writer Robert Heinlein foresaw changes to almost every area of society if decent batteries were developed, admittedly, not all of them good. He called his fictional ones ‘Shipstones’ if I recall correctly.
I’ve never been against renewables or batteries for their own sake, but only for their being abused in the service of economic insanity by the hard-of-thinking.
Should this pan out, it’ll produce a great rise in the standard of living for all of us and for the poor of this world.

Evan Jones
Editor
Reply to  Leo Morgan
April 8, 2016 4:14 pm

Agreed.

Janice Moore
April 8, 2016 10:49 am

The battery is suitable for … trucks

How many truck owners want a truck that can go, max, about 200 miles on one charge and can haul very little?
How many SUV owners use their vehicle to go up into the mountains or out on backroads far from charging facilities?
How many people can afford to own a ~ $35,000 base price (for the new “mid-range” electric car) second car that is dedicated to around-town driving? Not many people want to own ONLY an around-town vehicle. There are family vacations…. trips to visit friends far away…. emergencies…. . That there ARE such people is not the point: there are not enough to make this a large-market share product — ever (unless there is a MAJOR tech breakthrough — and that could happen, but it is not even on the horizon).
There is a market, but the electric vehicle market will remain a small, niche, market, lithium battery improvement notwithstanding.
******************************************************

A wind energy project would not be limited to selling power at low prices, currently 3 cents per kWh, but instead selling the power as would a gas-fired power plant, on demand and reliably at the market price.

This is completely unsupported by the facts about wind turbine technology and power generation. It is merely grandiose puffery, designed to fool the uninformed. “Would not be…” — when technology has advanced FAR beyond anything mentioned in this article.
**************************************************
In short: This article is good news for those who already use electric vehicles. It will, however, gain almost no market share.
****************************************************
GO, INTERNAL COMBUSTION ENGINE!
FREEDOM ROCKS!

Yes! That is what gasoline-powered vehicles give us: freedom from having to rent a truck for hauling or towing … freedom from having to rent a car or an SUV that can drive a long ways or can take us up into the mountains ….. freedom from the electric grid (most people do not have the option to use personal solar power to run their cars)…. freedom to GO — whenever we want to!
(No — using gas does not make us dependent on Middle East oil. That is a green-tech-pushed myth.)
****************************
(And, yes, I’m for freedom of choice: have fun, electric car people! Enjoy your ride.)

Latitude
Reply to  Janice Moore
April 8, 2016 11:09 am

+1

Janice Moore
Reply to  Latitude
April 8, 2016 11:31 am

Latitude! Thanks 🙂

Bryan A
Reply to  Latitude
April 8, 2016 12:36 pm

But the Tech, If affirmed, could be utilized in a Plug In Hybrid that gets more than 35 miles before the Gas Engine kicks in. As a Hybrid it would become a Vast Improvement. As touted, you could effective double the battery capacity and thereby the mileage making that 230 mile ranged Tesla S a 460 mile car with a battery that still costs half normal. What is needed would be the development of Solar PV paint that would coat the entire auto surface and recharge on the fly. Perhaps a 2 battery system where one is recharged as the other is used and swaps on the fly.

MarkW
Reply to  Latitude
April 8, 2016 2:11 pm

Even if the entire surface of your car were covered with 100% efficient solar panels, it would provide only about 5% of the energy needed for cruising at highway speeds.

Tom Yoke
Reply to  Latitude
April 8, 2016 5:33 pm

As an addendum to MarkW’s point. The 2nd law of thermodynamics restricts single stage photo-voltaic cells to a maximum of about 20% efficiency, so there is that as well.

Tom Yoke
Reply to  Latitude
April 8, 2016 5:35 pm

As an addendum to MarkW’s point. The 2nd law of thermodynamics restricts the efficiency of single stage Photovoltaic cells to no more than about 20%, so there is that as well.

Unmentionable
Reply to  Latitude
April 8, 2016 7:11 pm

Bryan A April 8, 2016 at 12:36 pm
Brian, as you can see, most people in here don’t even have a clue what a hybrid drive train, is or how it operates, in practice, hence you get people referring to them as “electric cars”. People don’t know what they don’t know but some also don’t even want it to change.
Nevertheless when Suzuki makes a 130hp hybrid-electric GSX-R750 at the rear wheel, they’ll have nailed the holy grail, as having driven hybrid-electrics for years I wouldn’t hesitate to buy one. The bottom-end DC stomp would be ridiculously strong, it would accelerate even better than the conventional bike … just needs lighter and higher capacity batteries for widespread use in motorbikes. 😉

Janice Moore
Reply to  Janice Moore
April 8, 2016 11:38 am

The article appears to be written by someone who has VERY little actual driving experience (or who is aiming the article at a low-experience driver). The electric car industry talks about a 200 mile “tipping point” – that is, that the average customer is too nervous to buy a short-range car, but at 200 – YAY, we will buy your car!
Range is a naïve way to think about driving. In rush-hour, a 30 mile freeway commute can take over an hour…. and all the while that battery is draining…. and there are accidents that back up traffic…. and on a long journey (a WHOLE 150 miles, say (lol)), road projects often cause delays. All the while, the battery is draining away.
An experienced driver knows these things.
200 mile range is barely a meaningful fact, much less a persuasive one.

Steve Taylor
Reply to  Janice Moore
April 8, 2016 12:31 pm

Except you don’t idle electric motors, so when you ain’t moving, you’re probably only running the lights and radio.

Editor
Reply to  Janice Moore
April 8, 2016 12:42 pm

And heater or air conditioner. In a vehicle with a heat engine, there’s plenty of waste heat for the passenger compartment, that’s not the case with electric vehicles. You Californians may do okay, us New Englanders turn up the heat and wear ski parkas.

schitzree
Reply to  Janice Moore
April 8, 2016 12:57 pm

The lights and the radio, yes. And the heater or AC. In an electric car those can be huge power drains. And maybe the windshield wipers. And did you have anything plugged into the cigarette lighter? GPS? Phone? The kids’ handheld game?
Get caught in a traffic jam while driving a Tesla and you better kiss all that good bye, or you just might run out of juice before you get wherever you where going. And no pulling into a handy gas station for a quick fill up if you notice you don’t quite have enough.
Personally I’d rather put my trust in a hybrid. Most of the benefits of both gas and electric, and few of the drawbacks.

A C Osborn
Reply to  Janice Moore
April 8, 2016 1:02 pm

Air Conditioning, Heater?

Janice Moore
Reply to  Janice Moore
April 8, 2016 1:09 pm

Defroster? Rear window de-fogger?
Aaaaa — THE ELECTRIC CAR IS A DEATH TRAP.
#(:))
(okay, a bit exaggerated, but, if that article wasn’t exaggeration I don’t know what is, lol)
[Your mileage may vary. Tax, tag, and title license not included. Not all models in stock. Dealer may hold manufacturer’s rebate. .mod]

Markopanama
Reply to  Janice Moore
April 8, 2016 1:09 pm

Janice, you are right about the fallacy of range logged in miles. When you are driving a car, there are two regimes: Too cold and too hot. And cars made of metal and glass traveling through a current of fresh air are among the most thermally inefficient devices conceived by the mind of man or woman.
Internal combustion engines thoughtfully provide a source of waste heat to take care of the too cold situation. Electric cars, not so. Too hot requires constant air conditioning. Even when your electric chariot is sitting motionless in a traffic jam.
Promoters of electric cars pretend that their cars only exist in a thermally perfect world, requiring neither heating or air conditioning. I would submit that these two factors need to be considered in practical use models, which makes their actual useful range dependent on the weather, or dare I say it, climate, just like their solar panel and windmill brethren.
[With no running lights, no headlights, no windshield wipers or glass defoggers running. No radio, no cell phone or Apples plugged with teen-age riders busily burning their batteries texting. 8<) .mod]

Janice Moore
Reply to  Janice Moore
April 8, 2016 1:43 pm

Dear Mod. SO good to see you again — love your fun annotations! And, thank you, so much, for all your work keeping WUWT the great science truth site it is.
Nice comment, Markopanama. “Solar and Windmill Brethren” — love it.
“We MUST use FREE — HEAR ME NOW — FREE!!! — solar and wind energy….. it is susTAINABLE!! Do I need to SHOUT it?

Sustainable!


Will the ushers please come forward to take the offering.”

MarkW
Reply to  Janice Moore
April 8, 2016 2:15 pm

Markopanama, cars leak air like a sieve as a safety feature, to make sure that leaking engine fumes can’t kill the passengers. (Not much or problem in modern cars, but the regulations are still in place.)
Pure electric cars presumably won’t have that problem and can be made more air tight.

PeterK
Reply to  Janice Moore
April 8, 2016 6:15 pm

Janice: But, but…isn’t that about 320 kms? See, the number is bigger.
Do I need a sarc?

Unmentionable
Reply to  Janice Moore
April 8, 2016 7:49 pm

UK Department for Transport, fuel consumption data:
Standard 2011 Prius 2-door model = 3.90 L/100 km
It has a fuel capacity of 11.9 Gal, or 45 liters.
(45 / 3.90) * 100 = 1,153.8 km = 716.9 miles
So a range of up to 700 miles is implied for the 2011 Prius hybrid model.
And this website give the more conservative range for a Prius:
http://www.edmunds.com/toyota/prius/2011/features-specs/
“… RANGE IN MILES (CTY/HWY) 606.9/571.2 mi …”
You can talk about 200 mile ranges all you want Janice, but it just reveals you have no experience of the technology or of the subject of their spectacular range performance, of what you want to call an “electric car”.

Moose from the EU
Reply to  Janice Moore
April 11, 2016 11:49 pm

+1,000,0000

April 8, 2016 10:55 am

The maximum specific energy (by mass) or energy flux density of a Li ion battery can not exceed roughly 6% of that of crude oil. a good paper on the physics and chemistry of the cells follows: http://www.sciencedirect.com/science/article/pii/S1369702114004118 There is no “Game changer” here. This is an applied materials issue and a technology issue; this is not an energy storage breakthrough.

Peter Morris
April 8, 2016 10:56 am

What happens when a battery with a lithium cathode and a polyacetylene cell catches fire? Poly. Acetylene.

Peter Morris
Reply to  Peter Morris
April 8, 2016 10:59 am

Anode, I meant.

Reply to  Peter Morris
April 8, 2016 1:39 pm

Lithium iron phosphate is a cathode.

Mike McMillan
April 8, 2016 11:12 am

Rechargeable NiMH batteries run from $500 to over $1000 per kWH at Amazon.

April 8, 2016 11:15 am

I wondered if a Siemens was a plain old mho . Yep .

Reply to  Bob Armstrong
April 8, 2016 4:52 pm

And if you say it out loud in mixed company, you may get into trouble.

Gamecock
April 8, 2016 11:15 am

You have to have something to store, as climanrecon says. Taking solar/wind power from supplemental to primary will take a lot more than batteries. Like 4X the solar panels. For just a days worth, with no carryover for stormy second day. Production/storage for several days gets prohibitive very fast.

urederra
April 8, 2016 11:37 am

If everybody moves to subsidized electric cars. Who is going to pay for road construction and maintenance?

GTL
Reply to  urederra
April 8, 2016 11:54 am

You will be taxed per mile for driving your car. Your punishment for environmentalism.

Tom Halla
April 8, 2016 11:42 am

I wonder how many cycles the battery is good for, besides the problems with fire and the fact it improves batteries in vehicles from a toy to marginal.

Unmentionable
Reply to  Tom Halla
April 8, 2016 8:55 pm

See this:
https://wattsupwiththat.com/2016/04/08/this-new-battery-is-a-game-changer/#comment-2185728
People who think that are the people who have never driven one. The people who have driven them, or owned them, know you’re speaking from prejudices, not knowledge.
I’ve actually asked Taxi drivers how much they drive each day and they universally said about 300 km city driving per 12-hour shift driving either a conventional or hybrid vehicle. (if you don’t believe this just ask them yourself).
On that basis a Prius hybrid can drive as a city Taxi for up to 40 hours of shift time before needing to refuel.
In other words it can exhaust three consecutive taxi drivers, first, and drive the equivalent duration of the average working week for most people, before needing a refuel, and has essentially the same (or better) acceleration, cornering, braking and comfort level as any other 4-seat 2-door car on the road today.
It just uses a whole lot less fuel than a conventional car needs after 40 hours of Taxi operation.
The current model has a tank size of only 43 liters (down from 45L) and weighs ~1,400 lb and can travel well over 1,000 km without a refuel.
My sportsbike holds 17L for goodness sake! It has half the cubic capacity of Prius, weighs 420 lb with a full tank and accelerates like a scalded-cat, but has far less power than a Prius and still goes only ~240 km and its dry, and that’s if I’m particularly well-behaved with the throttle.
By any practical performance measure these cars with batteries in them are in fact a raging technological and efficiency success story. I like them simply because they deliver dazzling efficiency and impressive performance.
Why people are so prejudiced about them and presume so much is interesting though.
Whether people want to acknowledge it, or not, there are hybrids around that can sustain 300 km per hour and will blow away most 1970 ‘muscle cars’ on performance, acceleration, cornering, suspension, braking, and especially on range and outright reliability.
They’re anything but “marginal”.

Tsk Tsk
Reply to  Unmentionable
April 8, 2016 9:20 pm

You confuse a hybrid with an EV. They’re not the same thing at all. But given that you think a Prius handles like a sports car…
My experience with driving a Prius has been it’s one of the most sluggish vehicles I’ve driven in years.

Unmentionable
Reply to  Unmentionable
April 8, 2016 9:49 pm

No, you’re failing to understand that the biggest beneficiaries of a new battery tech would be hybrids, as they’re much more numerous than EVs, with much better performance and much greater market potential, and easily the biggest market for such batteries.
As for performance, Prius’s come standard with traction control because when electronically bypassed the Prius just keep spinning its wheels when the foot is planted, so your claim of sluggishness is nonsense. Current the current model accelerates strongly from a stand still, and is just as fast as similar sized 2-door conventional cars and overtakes just as well on the highway.
But the Prius is not even a performance hybrid, its at the other end of the hybrid spectrum.

Tom Halla
Reply to  Unmentionable
April 9, 2016 8:29 am

Apples and Kumquats, Unmentionable. I waw refering to pure battery cars like the Tesla, not hybrids, which do not have the multi-hour recharge problem. A Tesla is a toy.

u.k(us)
April 8, 2016 11:43 am

It seems that sometimes our current batteries take things personally:

1 2 3 4
Verified by MonsterInsights