Nieves et al. – Another excuse for 'the pause': Redistribution of Heat in Oceans

New Paper Calls into Question Reanalysis-Based and Climate Model-Based Explanations for the Slowdown in Global Surface Warming

Guest Post by Bob Tisdale


The topic of this post is the paper Nieves et al. (2015) Recent hiatus caused by decadal shift in Indo-Pacific heating, which was embargoed until 2PM eastern today. The abstract reads (my boldface):

Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences compared to model results from reanalyses, and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003.

The press release reads:

Redistribution of Heat in Oceans Explains Global Warming “Hiatus”

Since 2003, cooling in the top 100 meters of the Pacific Ocean has been compensated by warming in the 100- to 300-meter layers of the upper Indian and Southern Oceans, researchers say. These findings help to explain where the world’s heat has gone during the so-called climate “hiatus” — an apparent pause in global warming during the first decade of the 21st century. Because the Pacific Ocean covers such a vast expanse of our planet, say the authors, it is not surprising that its cooling could drive a significant change in temperatures globally. Surface temperatures around the world have cooled over the past decade or so, and scientists have been trying to determine whether this hiatus from the heat was triggered by an internal redistribution of heat in the ocean, with rapid warming happening at some deeper ocean level instead of at the surface, or if the world’s oceans are reducing their heat uptake. Now, Veronica Nieves and colleagues present an analysis of data collected over the past 20 years, which shows that Earth’s oceans have absorbed the same amount of heat — and that the planet’s atmosphere has let the same amount of heat through — for the past decade. Their results suggest that the interaction of the cooling Pacific Ocean, which covers nearly one-third of Earth’s surface, with the Indian Ocean at upper levels of the water column (from the surface to 300 meters depth) largely regulated global surface temperatures over the past two decades. During that time, temperatures below 700 meters didn’t change much at all, according to the researchers. Models of global climate should be updated to include these dynamics and account for the reorganization of heat within the oceans, they say.

Article #19: “Recent hiatus caused by decadal shift in Indo-Pacific heating,” by V. Nieves at University of California, Los Angeles in Los Angeles, CA; V. Nieves; J.K. Willis; W.C. Patzert at Jet Propulsion Laboratory in Pasadena, CA; V. Nieves; J.K. Willis; W.C. Patzert at California Institute of Technology in Pasadena, CA.


There’s really nothing new about the overall theme of Nieves et al. (2015). They blame the recent pause in surface warming on a rearrangement of heat within the oceans (like other papers)…and conclude that there has been no overall change in ocean heat uptake during the hiatus (like other papers). One novelty: they use data (not models, not reanalyses) to show where the heat has gone.

Our analysis indicates that during the most recent decade, cooling in the top 100 m layer of the Pacific Ocean is compensated by warming in the 100 to 300 m layer of the Western Pacific and Indian Oceans with the largest contribution in the tropics. The Southern Ocean plays a secondary role in warming the 100-300 m layer, but this warming is steady over both of the past decades. The Atlantic Ocean does show a switch from warming to cooling, but its area is so small that it cannot meaningfully contribute to the hiatus signal in surface temperature over the past decade (see figs. S1 and S2). Finally, we find little evidence for any change in warming rates below 700 m between the past decade and the previous one or that the net ocean heat uptake has slowed in the most recent decade.

The primary difference, however, between Nieves et al. and the other ocean-heat-uptake-increased-during-the-hiatus papers is that Nieves et al. say the variations in the heat uptake in the top 300 meters of the oceans can explain the hiatus, where others say the heat is hiding at greater depths.

With the final sentence of the paper, Nieves et al. conclude:

Furthermore, as previously shown for interannual fluctuations (11), the decade long hiatus that began in 2003 is the result of a redistribution of heat within the ocean, rather than a change in the net warming rate.

That sentence in some respects is a jab at climate model-based papers that claim the pause in surface warming was caused by decreases in radiative forcings. If there was no change in the net warming rate of the oceans to depth for the decades before and after 2003, then there hasn’t been a decrease in radiative forcings at the surface of the oceans.

Nieves et al. start the pause in 2003. With that start year, even the new NCEI (formerly NCDC) global land+ocean surface dataset (with its unjustifiable and overcooked adjustments) show warming at a rate that’s about one-third the rate simulated by the IPCC’s climate models for surface warming. See Figure 1. I’ve presented the model-data comparison two ways in Figure 1. In the top cell, the model output (multi-model mean) and data are referenced to the WMO-preferred period of 1981-2010, and in the bottom cell, to help highlight the differences in the trends, the model output and data were shifted so that their trend lines “zeroed” at 2003.

Figure 1c

Figure 1

The GISS and UKMO HadCRUT4 surface temperature data, of course, show even lower warming rates, while the RSS and UAH (v6.0) lower troposphere temperature data show a very slight cooling from 2003 to 2014. Then again, Nieves et al. ended their analysis in 2012, so the trends would be even lower.

Another big-ticket item is that Nieves et al. point out problems with the reanalyses in the final paragraph. Pretty big slam (my boldface):

Comparison of several of the most commonly used reanalyses with ocean observations raises concerns about their fidelity in simulating temperature changes, or in quantitatively explaining the redistribution of heat associated with the recent surface temperature hiatus. Observational estimates provide a more accurate means of assessing oceanic temperature changes and show clear decadal signals that are robust across different analyses (see fig. S5) and clearly significant relative to observational errors. Our findings support the idea that the Indo-Pacific interaction in the upper-level water (0-300 m depth) regulated global surface temperature over the past two decades and can fully account for the recently observed hiatus.

Shifting topics, but related to the quote above: Nieves et al. fail to discuss in any detail the processes that cause “the Indo-Pacific interaction in the upper-level water (0-300 m depth)”, which are likely related to the sunlight-fueled processes of ENSO. Remarkably, the authors only make a passing reference to ENSO.

Because it covers nearly one-third of Earth’s surface, it is not surprising to find that surface cooling during the past decade appears to be mainly driven by the Pacific (see figs. S1 and S2). A closer look at different basins (figs. S8 to S12) shows that between 2003 and 2012 the most rapid warming in the top 300 m is around the depth of the thermocline (100-200 m) in the Indo-Pacific region and, to a lesser extent, in the Southern Ocean. This is also clear in the global maps (fig. S6) and the zonal average temperature trends in the upper 300 m (Fig. 2). In addition, this is where the most active redistribution of heat occurs on shorter time scales due to ENSO (11, 14).

It’s hard to believe that Nieves et al. discuss and present the ocean heat uptake of the Pacific Ocean but fail to provide anything more than a brief mention of ENSO.

Further to reanalyses, Nieves et al. write in the body of the paper:

Interestingly, reanalysis also do not seem to correctly reproduce the ocean warming rates and lie well outside the observation uncertainty at different depths and times. Both the hiatus and the net amount of heat absorbed by the ocean below 700 m are overestimated (see table S1). Reanalyses are also inconsistent with ocean observations, in terms of the vertical and regional distribution of heating. This is true for both global and basin-wide averages (see bottom panel of Fig. 1 and figs. S8 to S12). We found that biases are model dependent with NCEP showing the largest deviations, followed by ECMWF (particularly in the 00s within the 300-700 m layer) and SODA…

Nieves et al. then go on to describe problems with the individual ocean reanalyses. Those discussions of the flaws in the ocean reanalyses are quite remarkable.

The press release ends with a comment about climate models:

Models of global climate should be updated to include these dynamics and account for the reorganization of heat within the oceans, they say.

Easier said than done. In order to do that, climate models would have to properly simulate ENSO processes and their variability on decadal timescales. That would mean that modelers would have to use ENSO-caused variations in sunlight at the surface of the tropical Pacific to properly model ENSO ocean heat uptake and redistribution, and that’s a thorn in the side of the AGW hypothesis that modelers have been avoiding. The modelers would also have to be able to hindcast ENSO, which is chaotic. Good luck with that.


First: As noted above, the authors use 2003 as the start year for the hiatus, later than many discussions of the slowdown in surface warming. They compare the ocean heat uptake at different depths for the two decades of 1993-2002 and 2003-2012. I’ve included their Figure S6 as my Figure 2 as an example.

Figure 2

Figure 2

Second: Why did Nieves et al. excluded data for 2013 and 2014? They could just as easily have written the paper for the 12 years before and after 2003, instead of using 10 years. Are the results dependent on the start and end years? Considering that ENSO plays large roles in the uptake of heat in the tropical Pacific and its distribution from the tropical Pacific at depth, the results likely depend on the start and end years, especially over such short (decadal) timeframes.

Third: Looking at all of the left-hand maps of subsurface temperature trends for the period of 1993-2002 in my Figure 2 above, one should question the significance of the trends, considering (1) that they’re looking at a short, decade-long period, and (2) that there is so little source data prior to the ARGO, especially in the Southern Hemisphere.

How sparse are the measurements of subsurface ocean temperature in the Southern Hemisphere prior to the ARGO era? Take a look at Animation 1. It presents maps of the locations of quarterly temperature measurements at 250 meters from the NODC website here, starting in 1993 and ending in 2012. Let the animation play through and watch the severe drop off in the number of observations when the animation shifts from 2012 back to 1993. Then notice how the number of measurements and their spatial distribution drops off even more in the late 1990s/early 2000s, until the ARGO floats are introduced in quantity around 2003/04.

Animation 1

Animation 1

How realistic are the 1993-2002 trends at various depth ranges presented by Nieves et al., especially when there are so few observations and such a decline in the numbers and spatial coverage of the temperature measurements at depth in the late 1990s/early 2000s?

Fourth: Nieves et al. present data (sea surface, depth-averaged temperature and ocean heat content) for the Atlantic, Indian and Pacific Oceans…and for the “Southern Ocean”. An example is their Figure S1, which I’ve included as my Figure 3. It presents sea surface temperature data (Reynolds OI.v2) for the globe and ocean basins, with the data smoothed with 5-year filters.

Figure 3

Figure 3

Note the warming of the “Southern Ocean” sea surfaces. That warming stands out like a sore thumb, because we know the surface of the Southern Ocean, as typically defined as the oceans south of 60S, shows cooling with the Reynolds OI.v2 data. We plot it every month in the sea surface temperature updates. See Figure 4, which is from the most-recent sea surface temperature model-data comparison.

Figure 4

Figure 4

(The climate models used by the IPCC show a relatively low warming rate for the surface of the Southern Ocean (90S-60S), but the data show a slight cooling. Note also that the surface data in Figure 4 are presented in absolute terms, not anomalies and that the models start about 0.7 deg C too warm, based on the trend lines.)

The map presented in their Figure S18 (my Figure 5) helps to explain why Nieves et al. (2015) shows warming at the surface of the “Southern Ocean”. They use a convoluted definition of the Southern Ocean, convoluted inasmuch as they do not use a fixed latitude for the Southern Ocean. Notice also the overlap of the Southern Oceans and the Atlantic, Indian and Pacific Oceans. That means (1) the results shown for the Southern Ocean are not independent of the Atlantic, Indian and Pacific results and (2) the Atlantic, Indian and Pacific results include their respective portions of the Southern Oceans. The odd definition of the “Southern Ocean” certainly skewed the results shown in their Figure S1. Did it skew the rest of their results?

Figure 5

Figure 5

The big question: Why did Nieves et al. use such an oddball definition of the Southern Ocean? Maybe it was so they could claim…

The Southern Ocean plays a secondary role in warming the 100-300 m layer, but this warming is steady over both of the past decades.

As a reference: you’ll remember from the October, 2014 post There is a Wide Range in the ARGO-Era Warming (and Cooling) Rates of the Oceans to Depths of 2000 Meters, the NODC’s depth-averaged temperature data for the Southern Ocean (with the typical definition of 90S-60S) shows no warming to depths of 2000 meters, starting in 2005.

Figure 6

Figure 6

Fifth: Nieves et al. take a jab at papers that claim the missing heat is hiding in the deep oceans below 700 meters:

Analysis of deep hydrographic data in comparison with satellite measurements of sea level change indicates a contribution of 0.76 mm/year of sea level rise due to thermal expansion within 700-2000 m (22). Assuming a thermal expansion coefficient of 1.3 × 10−4 °C−1 for that layer, this implies an average warming of 0.0045°C/year between the mid-90s and mid-00s and between 700 and 2000 m. Data below 700 m in the pre-Argo era (prior to 2004) were extremely scarce (14), which can cause objectively mapped estimates to be biased low (23). WOA’s pentadal estimate provides an alternative reference value, which should suffer somewhat less bias since 5-years of data are mapped simultaneously instead of only 1 year. The WOA pentadal estimate shows a heat content increase of 2.4 × 1021 J/year or about 0.0015°C/year (1993-2002 period, 700-2000 m layer). The latter is consistent with the 0.0013°C/year rate of warming for the 700-1500 m layer as measured by the Argo array in the 00s (table S1). Together, these findings suggest no significant increase in the rate of warming below 700 m since 2003. This is consistent with Levitus’ results (12), but contradicts Ishii’s estimate, which shows increased heating on the order of +0.0029°C/year between the 90s and the 00s for the same layer (table S1).

Sixth: Last, while reading the paper, you’d note that trend uncertainties are rarely presented in the text. Just look at the quote above. That’s really unusual for a scientific study! How did it pass peer review without listing uncertainties in the text?


Scientific periodicals send out press packages about soon-to-be-published (embargoed) papers when they believe those papers are newsworthy. The newsworthy parts of Nieves et al. (2015) are the discussions of the problems with ocean reanalyses and how climate modelers got the answer wrong…again.

It will be interesting to see how the alarmists react to this paper since so many of them don’t even acknowledge the slowdown in surface warming.


91 thoughts on “Nieves et al. – Another excuse for 'the pause': Redistribution of Heat in Oceans

      • Tony Bob would not understand
        Surely the reason they didn’t use 2014 data is that the Paper was written in December of that year but was not published for 6 months
        One of the nasty little tricks people use is the following.
        You have data up to june 2015.
        You decide to end the data at 2014.
        You write your paper through 2014.. and submit .. its jan 2016.
        You start reviews…
        6 months goes by
        finally in june of 2016 at final edit a reviewer says… hey.. update the data.
        and that can can be kicked down the road foreever.

      • Ah, Mosh. You coders have it easier than I do, as I am a near illiterate in that. I had to update to USHCN2.5. I did it in Excel by hand. Also typed in all the new metadta (with lots of qc) from HOMR. It was a monumental chore.
        OTOH, I have the data-metadata rich USHCN to play with. You got Outer Mongolia. Plus, I only have to go back to 1979. I can afford to drop the perturbed stations (so I do). You can’t. So split you must. But I’ll have some suggestions for your pairwise soon enough.
        GHCN is a spotty beast, and if even better bits like the BOM can’t tell us if an AFB did a station move (as at Amberley), it must be pretty bad. Never seemed to occur to them to swivel their dang chairs, punch a few buttons and, like, find out. I think those guys need to get more mud on their boots. I was nailing down up to a half dozen stations a day back in 2009 by interview, and airports were the easiest; you didn’t even have to know the curator’s name.

      • Steve Mosher and tonyb, you’re conveniently overlooking the basis for the question: time sensitivity to ENSO. As I wrote in the post:
        “Are the results dependent on the start and end years? Considering that ENSO plays large roles in the uptake of heat in the tropical Pacific and its distribution from the tropical Pacific at depth, the results likely depend on the start and end years, especially over such short (decadal) timeframes.”
        Let me clarify:
        Example 1: Are the results of Nieves et al. dependent on the timing and strengths of individual ENSO events, as represented by NINO3.4 sea surface temperature anomalies?
        Example 2: Or, looking at the depth-averaged temperatures of the tropical Pacific for the depths of 0-700 meters, do the results of Nieves et al. depend primarily on the volatility of the responses of the subsurface temperatures of the tropical Pacific to the 1995/96 La Niña, the 1997/98 El Niño and the 1998-01 La Niña…and the simple decline in subsurface temperatures since 2003?

  1. Watch what happens to sea surface temperatures once the solar flux fall s below 100 in a consistent fashion.
    Then we will have to hear the next excuse I suppose.
    Clueless manipulative AGW enthusiast that will not quit in coming up with anything and everything to promote there soon to be obsolete theory.
    But because they are so arrogant it gives opportunity for alternative theories which fly right in the face of AGW theory, such as what I have suggested so many times. I have to thank them for that because without their extreme stance opportunity to present a different stance would not be present.

  2. Missing heat found! Located in ships “buckets”. Argo buoy’s terminated for cause due to inability to perform the job for which they were employed. And after all, there is no hiatus.
    (Do I have it right, and is sarc tag a requirement?). Generously considering myself amongst peers, looking forward to reviews and immediate posting of this scholarly work of mine.
    What channel is the tennis match?

  3. Thanks, Bob.
    There seems to be a few papers claiming to explain “the pause” and others claiming there is not a pause. This stuff is beginning to get boring – think Greece, the Donald, …, watching brown grass in the summer.
    Actually, of real interest are the shifting winds over the NE Pacific bringing temp & precip changes to Washington and Oregon.

    • Finally, some cooler weather is coming. Some of the apples in our orchards got a little heat stressed.

  4. Before reading the article I had the distinct impression that nobody really knows what’s going on with Earth’s climate system. The observations we have are too sparse and too uncertain, and even these cover too short a period.
    Nieves et al effectively trash other scientists who claim to know what’s going on, and Bob Tisdale effectively trashes Nieves et al.
    I finished reading the article with an even more distinct impression that nobody really knows what’s going on with Earth’s climate system.

  5. Good analysis, Bob. Once again we see disagreement between the modelers, the data manipulators, and those using actual observations. This brings into question the whole notion that we can in some way take the entire Earth’s temperature in a meaningful way. Global warming is just another gross simplification – along with the claim that CO2 is the master climate control and that spending money on carbon reduction will in some way change future climate – that obscures the fact that this science is far from settled. Of course the most vociferous climate alarmists never actually read the research papers, and wouldn’t understand them if they did.

  6. They are attempting to cover all the bases in hopes that one of them will gain traction and convince the public to believe. The problem is they are contradicting each other in the process.

  7. Redistribution of Heat in Oceans Explains [why there’s no reason to worry about] Global Warming

  8. Embargo(ing), Massaging, Fine tuning, Smoothing, Eliminating….since when do these words have anything to do with true science – let alone the simple truth….
    What a bunch of ……s.!!

  9. Now, if they’d look at cloud behaviour they’d catch a clue.
    By the way, how did this get published in Science which declared the hiatus a fable just a couple of weeks ago? Cognitive dissonance, global climate models be thy name.

    • Perhaps that is why it took nearly 7 months to be accepted for publication in what i thought was a rapid response journal .Lots of off- scene discussions perhaps – which is good of course .
      There are more interesting charts in the “supplementary materials” section of the link provided by Bob above.

  10. during the so-called climate “hiatus”…
    Wonder how they feel about NOAA saying their paper is wrong?
    In order for it to be right, there has to be a pause…NOAA says there’s no pause

    • Nieves and Willis are at NASA JPL. NASA now says pause, oceans. Published in Science. NOAA (Karl 2015) says no pause. Published in Science. Science editor Marsha McNutt just editorialized that the climate science was settled. Obama assured us climate science was settled. How unsettling this must be for them.

      • I wonder if McNutt is aware of the discrepancy and if so, how she let this happen.

      • Andy Revkin must be wondering a little. He’s bright enough to note the discrepancy between the two papers.
        Here’s your chance, Andy; settle the science. Heh, should you choose to undertake the mission.

      • This is the sort of thing that Andrew Revkin wouldn’t have time to research, just going by the rationalizations he’s used in past.

      • He couldn’t bother to investigate Karl. Now I’ll bet a little corner of his mind wishes he had.

  11. Double heh, heh. I’ve just noticed Josh Willis’s name on the paper. A shot across the bow if I ever saw one. I’ve long had faith in Josh’s integrity; nice to see it validated.

    • Yes, that gives the paper considerable credibility which is why it is surprising that in an online journal sch as this it took six months from submission to pub
      Ovation. Unless it was seen as being contentious perhaps?

  12. Am I even reading this correctly:
    The authors claim if there is no change in the net warming rate, but the heat has moved around, then there must have been a change in the net warming rate ….
    geeze I thought Alice in Wonderland was fiction

    • So, no warming that survives through the year.

      YEAR	Min Day2Day	Max Day2Day	SAMPLE Count
      1940	0.027298761	0.022036608	41903
      1941	-0.009712729	-0.007230209	38187
      1942	0.007815069	0.007795725	51695
      1943	-0.006423845	-0.006111168	107459
      1944	0.000715417	-0.00483569	173605
      1945	0.002708585	0.004913311	109356
      1946	-0.016936611	-0.016786251	75818
      1947	0.01583041	0.018413528	104912
      1948	-0.009918114	-0.008801445	197104
      1949	0.011770507	0.015912988	275825
      1950	0.001027253	-0.000957799	295156
      1951	0.020782491	0.018285991	301422
      1952	-0.014092528	-0.016602789	367890
      1953	-0.008820744	0.001780988	381249
      1954	0.010811001	0.006108649	396929
      1955	-0.007780095	-0.004623873	363029
      1956	0.008741969	0.016381289	355961
      1957	-0.028810508	-0.011494091	397178
      1958	0.003551263	0.002388059	501202
      1959	0.001423091	0.000235119	452536
      1960	-0.026165392	-0.003048416	508756
      1961	-0.001140288	0.001619423	512590
      1962	-0.007539275	-0.005522472	515023
      1963	0.010987384	0.011316623	507837
      1964	0.005712038	0.004902534	485606
      1965	0.009856408	0.012194025	335812
      1966	-0.017173447	-0.015514061	393037
      1967	-0.002145627	-0.001207449	398112
      1968	-0.01210967	-0.006301025	362322
      1969	0.004173452	0.000469588	416322
      1970	-0.01031787	0.011959579	486079
      1971	0.008302247	0.013282913	176121
      1972	0.007295899	0.005180516	172782
      1973	-0.00695695	-0.003137237	602951
      1974	-0.003081536	0.00487616	811089
      1975	-0.020921695	0.009585452	792670
      1976	-0.038306289	-0.026799764	1111465
      1977	0.026033957	0.021642987	923805
      1978	-0.016617456	-0.011083446	1095625
      1979	0.016309641	0.011310273	1028030
      1980	-0.017633573	0.007380085	1129323
      1981	-0.005178103	-0.008259053	1099109
      1982	-0.011393408	-0.002758003	1055075
      1983	-0.012805801	0.000286744	1166198
      1984	-0.003887963	-0.004858643	1221308
      1985	-0.00448943	0.004440765	1185674
      1986	-0.002182116	0.005074076	1255066
      1987	-0.003023367	0.002381269	1235014
      1988	-0.006540008	-0.002291404	1365931
      1989	0.00274354	-0.000581599	1265992
      1990	-0.00900308	0.004118948	1247673
      1991	-0.008780644	-0.003051398	1171463
      1992	-0.013710405	-0.00120415	1304987
      1993	-0.005470753	0.006117001	1276753
      1994	0.008078631	0.00198804	1298314
      1995	-0.009461838	-0.00646979	1292994
      1996	-0.002685696	-0.002695778	1319174
      1997	0.008314796	0.011042588	1321692
      1998	-0.021848942	-0.007128408	1170107
      1999	-0.020379749	0.010721654	1146810
      2000	-0.029978645	-0.00882113	1582303
      2001	-0.00229396	-0.000929614	1454690
      2002	-0.011745927	0.007367477	1534881
      2003	0.005623532	0.005259783	1589286
      2004	-0.000351387	0.002898791	1793748
      2005	0.000813829	-0.000443237	1954710
      2006	-0.008008039	0.003693182	2077450
      2007	-0.011930295	-0.010604023	2079739
      2008	-0.007203363	-0.004118706	2338963
      2009	-0.004892566	0.000902417	2412742
      2010	-0.001587703	0.00394405	2517032
      2011	-0.002501773	0.011018673	2562423
      2012	-0.019229595	-0.013061021	2695777
      2013	-0.003505691	0.001677769	2641305
      2014	-0.009804962	-0.006127727	2604620
      Average of all years.
      9999	-0.00413011	0.001059264	72992776

      If you round to a single digit (same as measurments)
      Min temp annual anomaly is 0.0 +/- 0.1F
      Max temp annual anomaly is 0.0 +/- 0.1F
      So warm water moves around, but adds no year to year increase in global temperatures.
      [inserted “pre” html for table data. .mod]

      • It adds up. With the oceans 70% of the globe, it takes less to raise global temps. We find that land trends are up to doubled, but that only has about a ~15% effect on overall AGW because of the size of the ocean. With the ocean, a little goes a long way. (Dr. Karl would know about that.)

  13. One novelty: they use data (not models, not reanalyses) to show where the heat has gone.

    Sounds great.

    you’d note that trend uncertainties are rarely presented in the text

    But they are there, right? Point 6 is just a style issue if they are there.
    And it’s good to see Karl et al get another kicking. By “good” I mean “funny”.

  14. I wonder if some of the dissent in his office over Karl’s paper was at least partly because some saw this paper coming.
    The two papers don’t co-exist in the real world. Something’s got to give.

  15. ‘Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature in the most recent decade. ‘ Given no increase , in the scientific sense , is called a ‘slowdown’ there by avoiding having to use words like paused, what would a decrease by called, really really slow down or reverse increase?

    • If the slope goes significantly negative I can’t wait to hear the competing explanations… it will be just like a teenager trying to explain why there’s a crease in the fender of a 56 T-bird.

      • The slope will never go negative. They’ll readjust the past right through the next glacial period and tell us that the “record warm” temperatures of 2014 were really a global average of -30C

  16. How can this be reconciled with the AR5 chart that shows no model underestimate of ocean heating?
    You can’t say the models are wrong because the heat went into the oceans if the models aren’t wrong about the ocean heat.

  17. I’m losing track. Is this excuse 65 or 72 to explain all the non-warming they insist hasn’t been taking place for the last two decades?

  18. From the press release:
    “Surface temperatures around the world have cooled over the past decade or so” So now people can state that surface temperatures are cooling not warming and cite a peer-reviewed press release….

  19. Please help me here. Following Bobs’ work I have learned much about the complexity of oceanography and the crucial role it plays in understanding the climate (if that is actually possible).
    In this post I have been thrown by your figure 3 (Nieves et Al figure s1). the Y axis is clearly labeled “sea surface temperature” , but the values, for ALL the oceans (except the Arctic!) range from – 0.5c to + 0.5c , even the Indian Ocean. Are these anomalies? If so – what is the baseline?
    Your truly beautiful animation 1 shows clearly that (at 250m depth at least) prior to 2004 nobody had a clue what was happenig before 2004, especially in the southern ocean. Was the surface data any better? As regard Nieves fig 18 (your fig 5) I share your comments regarding the “southern ocean” which appears to be seperate but part of all the others!

    • diogenese2 says: “In this post I have been thrown by your figure 3 (Nieves et Al figure s1).”
      So have others on this thread.
      diogenese2 says: “Are these anomalies? If so – what is the baseline?”
      The annual average global sea surface temperature is in the neighborhood of 18+ deg C, so they have to be anomalies. I don’t believe there’s a fixed set of base years. They appear to be offset for illustration purposes.
      diogenese2 says: “Your truly beautiful animation 1 shows clearly that (at 250m depth at least) prior to 2004 nobody had a clue what was happenig before 2004, especially in the southern ocean. Was the surface data any better?”
      Nieves et al. used Reynolds OI.v2 sea surface temperature data, which is satellite enhanced, so, yes, it was much better.

      • Interestingly, I’ve seen little defense of Karl (2015) and no criticism at all as of yet for the UAH 6.0 trend reduction.

  20. I also consider the hokey delineation of the ” Southern Ocean ” to be entirely contrived.
    For starters, the equator is at zero deg. latitude; not some arbitrary wandering latitude.
    And reading a lot of the excerpted text parts it seemed like some anecdotal ramble, rather than an authoritative presentation of observed scientific facts. Simply an elaborate opinion piece.
    “””””….. We found that biases are model dependent with NCEP showing the largest deviations, …..”””””
    Um ; aren’t the model output results model dependent ??
    Wouldn’t that automatically make the biases in their assertions also model dependent. ??
    Bit of a stretch paper if you ask me; well don’t ask me. They didn’t actually observe and measure anything new did they.

  21. I thought there was a consensus with Karl et al.
    So now we have a Karl et al skeptic ?
    Will these “Climate Extremists” stop at nothing ?

    • Will these “Climate Extremists” stop at nothing ?
      I hope so. They won’t stop at anything.

  22. This is probably the first time ever that the Great Barrier Reef has been defined as being part of the Southern Ocean. This is a particularly egregious data manipulation since the Southern Ocean has a natural border in the Antarctic Convergence.

  23. Bob–Your Fig. 3 (Nieves Fig S1) shows that global SST is greater than any of the four components pictured. How is this possible?

    • Lance Wallace, There is no further description of Nieves et al Figure S1 in the text of the supplementary materials or the paper itself. The data presented are definitely not in absolute form. So they’re anomalies and I assume they’ve been offset for the illustration to show the differences in the variability…the sharp decline in the Pacific.

  24. If there was all that fancy heat re-distribution going on in the ocean why didn’t any of it re-distribute to the atmosphere warming the planet surface?

  25. Sadly, it looks like another paper that ignores error ranges and assumes buckets and other ocean temperature measurements are accurate at tenths and hundreths of a degree.
    Illogical concepts of accuracy and precision.

  26. Sorry, wrong link. Mods, I did not intend to advertise, please could you remove it.
    These two schools, the Pause and NO pause camps are sounding a lot like Monty Python

  27. In Australia we think water South of the continent to be the Southern Ocean and West of Perth as the Indian Ocean. We base this on the water temperature and the strong winds in the Southern oceans.
    The Kiwis are proud to say that Aukland is on the Pacific, though Dunedin is definately in the Southern Ocean with glaciers on the mountains.
    Who knew we were all wrong? I could be reclassified as citizen of Papua New Guinea under this system.

  28. Furthermore, as previously shown for interannual fluctuations (11), the decade long hiatus that began in 2003 is the result of a redistribution of heat within the ocean, rather than a change in the net warming rate.

    I fail to see what difference it makes if the heat is/was redistributed (hiding in) the ocean, the atmosphere, under a cabbage leaf, or in the refrigerator. In any case, said heat, did not add to the annual/monthly global average temperatures.

  29. Nieves et al. – Another excuse for “the pause”: Redistribution of Heat in Oceans

    I suspect obama: like any other commie, he wants to redistribute wealth (from those who work for it, to he and his comrades). Why stop with wealth? Now he is on to redistributing heat.
    He is also trying to redistribute neighbourhoods.

      • Who’s talking about billionaires? Wealth in this context doesn’t refer only to rich people, in obama’s world, If you have more than someone else, that is a “social injustice” that he must put right. That’s one of the reasons he’s importing illegal aliens – so he will have a bigger underclass to pit against the middle class.
        Yes the people who work for their “wealth” are those from which obama intends to use as redistribution fodder.
        His billionaire friends are safe, of course.

  30. Veronica Nieves
    Ph.D., Applied Physics and Scientific Simulation with Honors (qualified as Cum Laude) and European Doctorate Mention, Polytechnic University of Catalonia, Barcelona, Spain (2008)
    M. Sc., Meteorology and Climatology, University of Barcelona, Spain (2003)
    B. Sc., Physics, University of Barcelona, Spain (2002)

  31. Ummm. Doesn’t heat rise? Soooo the warmer water would rise to the top of the water column, instead of “hiding” on the lower depths?

    • I cannot understand it either – all my life I thought my IQ was on the right side of the bell curve; but my brain just cannot follow all this : I would so much like to understand JUST HOW that heat from the atmosphere moves down to below 100 meters through a cooling layer of surface waters. It must be magic (or my IQ is lower than I thought).

  32. The NASA public release gets us back on message “”Greenhouse gases continued to trap extra heat, but for about 10 years starting in the early 2000s, global average surface temperature stopped climbing and even cooled a bit,” said Willis.” and, to avoid widespread confusion, they conclude “”In the long term, there is robust evidence of unabated global warming,” Nieves said.”
    Long term ? please define.
    A showpiece from NASA/JPL on how to massage a research article for the general public that appears to straying from the consensus.

  33. there is a line that has the phrase “ENSO-caused variations in sunlight at the surface” Puzzled by how ENSO would cause variations in sunlight.

  34. Bob,
    If this is, as your title claims, an excuse for the pause, what in your opinion is the actual cause for the pause?

  35. Is not The Pause a temporary downturn from a warming trend, whose pre-Pause warming trend was a temporary naturally occurring one that naturally contributed to total global temperature outrunning the manmade component of the mid-1970s to shortly-after-2000 trend?

  36. Models of global climate should be updated to include these dynamics and account for the reorganization of heat within the oceans, they say.

    If the models aren’t doing it by themselves based on the physics they’ve implemented, what updates would they suggest? Let me guess. Ones that fit their data.

  37. Would you contest that:
    – Trade winds were stronger since 1998 ?
    – Those winds buried heat in the western part of the Pacific ocean ?
    – Part of theses warm waters went in the Indian Ocean ?
    – Less heat was released from ocean to the atmosphere ?
    – Poor coverage of the Arctic promoted a cooling bias in air temps data ? While sea ice as declined in the Arctic since 1998.

  38. Gerrymandering the geography of the oceans. Why am I not surprised in a politically driven area of study…

  39. Something I don’t understand: If they have to have an explanation that the heat is pushed into the oceans, then how do they know the heat wasn’t withdrawn from the oceans over the last 40 years of warming? And how much of it was withdrawn?

    • One way to make that determination is to look at the thermocline depth across the Pacific equator. When the depth is shallow at 90 degrees W and is deep at 120 degrees E, two things are happening: 1) all the warm water that likes to evaporate heat is all shoved up against the western Pacific reducing the amount of evaporation happening, and 2) lots of Sunshine is happening almost from shore to shore (there are no clouds in the way). When the surface flattens out across the Pacific two things are happening: 1) heat is being evaporated into the air all along the equator, and 2) the ocean is not getting as much sunshine (clouds are in the way) almost shore to shore. This is the seesaw discharge/recharge process.
      When trade winds slow down, the difference between the East and West thermocline depth is less of a slope. If that keeps up, less mixing and shoving is happening and more evaporation is happening all along the equator. Net result? We are losing heat out of the Pacific equatorial region and it is not getting replenished. Look at the Hovmoller graph and see if you can tell what is happening with the seesaw discharge/recharge process over time and ask yourself: are we losing heat in the ocean or gaining it around the equator where it counts the most?

Comments are closed.