Breaking news from NASA and the ICEsat team, that’s their headline, not mine.
This really makes all the hype over the now discredited Steig et al. paper, which attempted to establish an air temperature warming trend as one of the possible causes for “Antarctic melting”, only to have the Mannian PCA math they used shot down in flames for smearing data from the Antarctic Peninsula all over the continent, look even weaker.
![642730main_iceloss[1]](http://wattsupwiththat.files.wordpress.com/2012/04/642730main_iceloss1.jpg?resize=640%2C359&quality=83)
An international team of scientists used a combination of satellite measurements and models to differentiate between the two known causes of melting ice shelves: warm ocean currents thawing the underbelly of the floating extensions of ice sheets and warm air melting them from above. The finding, published today in the journal Nature, brings scientists a step closer to providing reliable projections of future sea level rise.
The researchers concluded that 20 of the 54 ice shelves studied are being melted by warm ocean currents. Most of these are in West Antarctica, where inland glaciers flowing down to the coast and feeding into these thinning ice shelves have accelerated, draining more ice into the sea and contributing to sea-level rise. This ocean-driven thinning is responsible for the most widespread and rapid ice losses in West Antarctica, and for the majority of Antarctic ice sheet loss during the study period.
“We can lose an awful lot of ice to the sea without ever having summers warm enough to make the snow on top of the glaciers melt,” said the study’s lead author Hamish Pritchard of the British Antarctic Survey in Cambridge, United Kingdom. “The oceans can do all the work from below.”
To map the changing thickness of almost all the floating ice shelves around Antarctica, the team used a time series of 4.5 million surface height measurements taken by a laser instrument mounted on ICESat from October 2003 to October 2008. They measured how the ice shelf height changed over time and ran computer models to discard changes in ice thickness because of natural snow accumulation and compaction. The researchers also used a tide model that eliminated height changes caused by tides raising and lowering the ice shelves.
“This study demonstrates the power of space-based, laser altimetry for understanding Earth processes,” said Tom Wagner, cryosphere program scientist at NASA Headquarters in Washington.” Coupled with NASA’s portfolio of other ice sheet research using data from our GRACE mission, satellite radars and aircraft, we get a comprehensive view of ice sheet change that improves estimates of sea level rise.”
Previous studies used satellite radar data to measure the evolution of ice shelves and glaciers, but laser measurements are more precise in detecting changes in ice shelf thickness through time. This is especially true in coastal areas. Steeper slopes at the grounding line, where floating ice shelves connect with the landmass, cause problems for lower-resolution radar altimeters.
ICESat was the first satellite specifically designed to use laser altimetry to study the Earth’s polar regions. It operated from 2003 to 2009. Its successor, ICESat-2, is scheduled for launch in 2016.
“This study demonstrates the urgent need for ICESat-2 to get into space,” said Jay Zwally, ICESat project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “We have limited information on the changes in polar regions caused by climate change. Nothing can look at these changes like satellite measurements do.”
The new research also links the observed increase in melting that occurs on the underside of a glacier or ice shelf, called basal melt, and glacier acceleration with changes in wind patterns.
“Studies have shown Antarctic winds have changed because of changes in climate,” Pritchard said. “This has affected the strength and direction of ocean currents. As a result warm water is funnelled beneath the floating ice. These studies and our new results suggest Antarctica’s glaciers are responding rapidly to a changing climate.”
A different picture is seen on the Antarctic Peninsula, the long stretch of land pointing towards South America. The study found thinning of the largest ice shelf on the peninsula can be explained by warm summer winds directly melting the snow on the ice shelf surfaces. The patterns of widespread ocean-driven melting and summer melting on the Antarctic Peninsula can be attributed to changing wind patterns.
The study was carried out by an international team from the British Antarctic Survey, Utrecht University in Utrecht, Netherlands, the University of California in San Diego and the non-profit research institute Earth and Space Research in Corvallis, Ore.
For more information about ICESat and ICESat-2, visit:
==============================================================
I have the paper:
Antarctic ice-sheet loss driven by basal melting
of ice shelves
H. D. Pritchard, S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan1, M. R. van den Broeke & L. Padman
doi:10.1038/nature10968
And I’ll be posting more on it later, for now, here is the summary:
To summarize, we find thinning attributed to ocean-driven basal melt on 20 of 54 ice shelves, with the most widespread and rapid losses (up to ~ 7m yr -1) on the coast of West Antarctica, where warm waters at depth have access to thick ice shelves via deep bathymetric troughs. There is evidence that changes in wind forcing explain both the
increased oceanic supply of warm water to thinning West Antarctic ice shelves, and the atmospheric warming on the Antarctic Peninsula that caused the loss of Larsen A and B and now dominates the thinning of Larsen C. That is to say, both processes are ultimately linked to the atmosphere. Both mechanisms imply that Antarctic ice shelves can respond rapidly to Southern Hemisphere wind patterns that vary on
timescales of years to decades.
We find that ocean-driven ice-shelf thinning is in all cases coupled with dynamic thinning of grounded tributary glaciers that together account for about 40% of Antarctic discharge and the majority of Antarctic ice-sheet mass loss2. In agreement with recent model predictions, we conclude that it is reduced buttressing from the thinning
ice shelves that is driving glacier acceleration and dynamic thinning.
This implies that the most profound contemporary changes to the ice sheets and their contribution to sea level rise can be attributed to ocean thermal forcing that is sustained over decades and may already have triggered a period of unstable glacier retreat.
And just in case people forget, the sea-ice trend in Antarctica is positive:
http://arctic.atmos.uiuc.edu/cryosphere/IMAGES/seaice.anomaly.antarctic.png
![seaice.anomaly.antarctic[1]](http://wattsupwiththat.files.wordpress.com/2012/04/seaice-anomaly-antarctic1.png?resize=640%2C520&quality=75)
The newspaper alarmists have said this melting will cause sea levels to rise. Have they never tried the famous experiment of putting some ice cubes to float in a glass of water and watching them melt without any rise whatoever in the level of the water?
There’s a similar recent paper covering the arctic. It covers the Barentz Sea which is responsible for much of the fall in extent in the arctic of the past couple of decades. In this case the warming is coming from the Atlantic. It makes you wonder about just how significant the role of internal ice feedback are.
Abstract here
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00466.1
The following looks like a preprint although some of the language has changed.
https://bora.uib.no/bitstream/1956/5126/1/Barents%20Sea%20ice%20cover%20reflects%20Atlantic%20inflow.pdf
Did anyone notice how dishonest the video is? The red is the thickest ice shelves.
“The shelves are indicated by the rainbow color; red is thicker (>550m), while blue is thinner (<200m)."
““This study demonstrates the urgent need for ICESat-2 to get into space,” said Jay Zwally, ICESat project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.”
Now there’s a surprise! /sarc
Bob Tisdale has had a word recently about the Southern Ocean temperatures, he is talking about the circumpolar current below 60deg South.
Image : http://bobtisdale.files.wordpress.com/2012/04/figure-82.png
His comment on the graph :
Nice codicil to the banner “NASA : warm ocean currents cause majority of ice loss from Antarctica”……..the argument seems to disappear.
Lets see, we’ve had two satelites crash and burn. How convenient. I wonder what the odds are of a third one crashing. Probably directly proportional to the thickness of the ice at the polar caps.