Note: This was a poster, and adopted into a blog post by the author, Ned Nikolov, specifically for WUWT. My thanks to him for the extra effort in converting the poster to a more blog friendly format. – Anthony
Expanding the Concept of Atmospheric Greenhouse Effect Using Thermodynamic Principles: Implications for Predicting Future Climate Change
Ned Nikolov, Ph.D. & Karl Zeller, Ph.D.
USFS Rocky Mountain Research Station, Fort Collins CO, USA
Emails: ntconsulting@comcast.net kzeller@colostate.edu
Poster presented at the Open Science Conference of the World Climate Research Program,
24 October 2011, Denver CO, USA
http://www.wcrp-climate.org/conference2011/posters/C7/C7_Nikolov_M15A.pdf
Abstract
We present results from a new critical review of the atmospheric Greenhouse (GH) concept. Three main problems are identified with the current GH theory. It is demonstrated that thermodynamic principles based on the Gas Law need be invoked to fully explain the Natural Greenhouse Effect. We show via a novel analysis of planetary climates in the solar system that the physical nature of the so-called GH effect is a Pressure-induced Thermal Enhancement (PTE), which is independent of the atmospheric chemical composition. This finding leads to a new and very different paradigm of climate controls. Results from our research are combined with those from other studies to propose a new Unified Theory of Climate, which explains a number of phenomena that the current theory fails to explain. Implications of the new paradigm for predicting future climate trends are briefly discussed.
1. Introduction
Recent studies revealed that Global Climate Models (GCMs) have significantly overestimated the Planet’s warming since 1979 failing to predict the observed halt of global temperature rise over the past 13 years. (e.g. McKitrick et al. 2010). No consensus currently exists as to why the warming trend ceased in 1998 despite a continued increase in atmospheric CO2 concentration. Moreover, the CO2-temperature relationship shows large inconsistencies across time scales. In addition, GCM projections heavily depend on positive feedbacks, while satellite observations indicate that the climate system is likely governed by strong negative feedbacks (Lindzen & Choi 2009; Spencer & Braswell 2010). At the same time, there is a mounting political pressure for Cap-and-Trade legislation and a global carbon tax, while scientists and entrepreneurs propose geo-engineering solutions to cool the Planet that involve large-scale physical manipulation of the upper atmosphere. This unsettling situation calls for a thorough reexamination of the present climate-change paradigm; hence the reason for this study.
2. The Greenhouse Effect: Reexamining the Basics
Figure 1. The Atmospheric Greenhouse Effect as taught at universities around the World (diagram from the website of the Penn State University Department of Meteorology).
According to the current theory, the Greenhouse Effect (GHE) is a radiative phenomenon caused by heat-trapping gases in the atmosphere such as CO2 and water vapor that are assumed to reduce the rate of surface infrared cooling to Space by absorbing the outgoing long-wave (LW) emission and re-radiating part of it back, thus increasing the total energy flux toward the surface. This is thought to boost the Earth’s temperature by 18K – 33K compared to a gray body with no absorbent atmosphere such as the Moon; hence making our Planet habitable. Figure 1 illustrates this concept using a simple two-layer system known as the Idealized Greenhouse Model (IGM). In this popular example, S is the top-of-the atmosphere (TOA) solar irradiance (W m-2), A is the Earth shortwave albedo, Ts is the surface temperature (K), Te is the Earth’s effective emission temperature (K) often equated with the mean temperature of middle troposphere, ϵ is emissivity, and σ is the Stefan-Boltzmann (S-B) constant.
2.1. Main Issues with the Current GHE Concept:
A) Magnitude of the Natural Greenhouse Effect. GHE is often quantified as a difference between the actual mean global surface temperature (Ts = 287.6K) and the planet’s average gray-body (no-atmosphere) temperature (Tgb), i.e. GHE = Ts – Tgb. In the current theory, Tgb is equated with the effective emission temperature (Te) calculated straight from the S-B Law using Eq. (1):
where αp is the planetary albedo of Earth (≈0.3). However, this is conceptually incorrect! Due to Hölder’s inequality between non-linear integrals (Kuptsov 2001), Te is not physically compatible with a measurable true mean temperature of an airless planet. To be correct, Tgb must be computed via proper spherical integration of the planetary temperature field. This means calculating the temperature at every point on the Earth sphere first by taking the 4th root from the S-B relationship and then averaging the resulting temperature field across the planet surface, i.e.
where αgb is the Earth’s albedo without atmosphere (≈0.125), μ is the cosine of incident solar angle at any point, and cs= 13.25e-5 is a small constant ensuring that Tgb = 2.72K (the temperature of deep Space) when So = 0. Equation (2) assumes a spatially constant albedo (αgb), which is a reasonable approximation when trying to estimate an average planetary temperature.
Since in accordance with Hölder’s inequality Tgb ≪ Te (Tgb =154.3K ), GHE becomes much larger than presently estimated.
According to Eq. (2), our atmosphere boosts Earth’s surface temperature not by 18K—33K as currently assumed, but by 133K! This raises the question: Can a handful of trace gases which amount to less than 0.5% of atmospheric mass trap enough radiant heat to cause such a huge thermal enhancement at the surface? Thermodynamics tells us that this not possible.
B) Role of Convection. The conceptual model in Fig. 1 can be mathematically described by the following simultaneous Equations (3),
where νa is the atmospheric fraction of the total shortwave radiation absorption. Figure 2 depicts the solution to Eq. (3) for temperatures over a range of atmospheric emissivities (ϵ) assuming So = 1366 W m-2 and νa =0.326 (Trenberth et al. 2009). An increase in atmospheric emissivity does indeed cause a warming at the surface as stated by the current theory. However, Eq. (3) is physically incomplete, because it does not account for convection, which occurs simultaneously with radiative transfer. Adding a convective term to Eq. (3) (such as a sensible heat flux) yields the system:
where gbH is the aerodynamic conductance to turbulent heat exchange. Equation (4) dramatically alters the solution to Eq. (3) by collapsing the difference between Ts, Ta and Te and virtually erasing the GHE (Fig. 3). This is because convective cooling is many orders of magnitude more efficient that radiative cooling. These results do not change when using multi-layer models. In radiative transfer models, Ts increases with ϵ not as a result of heat trapping by greenhouse gases, but due to the lack of convective cooling, thus requiring a larger thermal gradient to export the necessary amount of heat. Modern GCMs do not solve simultaneously radiative transfer and convection. This decoupling of heat transports is the core reason for the projected surface warming by GCMs in response to rising atmospheric greenhouse-gas concentrations. Hence, the predicted CO2-driven global temperature change is a model artifact!
Figure 2. Solution to the two-layer model in Eq. (3) for Ts and Ta as a function of atmospheric emissivity assuming a non-convective atmosphere. Also shown is the predicted down-welling LW flux(Ld). Note that Ld ≤ 239 W m-2.
Figure 3. Solution to the two-layer model in Eq. (4) for Ts and Ta as a function of atmospheric emissivity assuming a convective atmosphere (gbH = 0.075 m/s). Also shown is the predicted down-welling LW flux (Ld). Note that Ld ≤ 239 W m-2.
Figure 4. According to observations, the Earth-Atmosphere System absorbs on average a net solar flux of 239 W m-2, while the lower troposphere alone emits 343 W m-2 thermal radiation toward the surface.
C) Extra Kinetic Energy in the Troposphere.
Observations show that the lower troposphere emits 44% more radiation toward the surface than the total solar flux absorbed by the entire Earth-Atmosphere System (Pavlakis et al. 2003) (Fig. 4). Radiative transfer alone cannot explain this effect (e.g. Figs. 2 & 3) given the negligible heat storage capacity of air, no matter how detailed the model is. Thus, empirical evidence indicates that the lower atmosphere contains more kinetic energy than provided by the Sun. Understanding the origin of this extra energy is a key to the GHE.
3. The Atmospheric Thermal Enhancement
Previous studies have noted that the term Greenhouse Effect is a misnomer when applied to the atmosphere, since real greenhouses retain heat through an entirely different mechanism compared to the free atmosphere, i.e. by physically trapping air mass and restricting convective heat exchange. Hence, we propose a new term instead, Near-surface Atmospheric Thermal Enhancement (ATE) defined as a non-dimensional ratio (NTE) of the planet actual mean surface air temperature (Ts, K) to the average temperature of a Standard Planetary Gray Body (SPGB) with no atmosphere (Tgb, K) receiving the same solar irradiance, i.e. NTE = Ts /Tgb. This new definition emphasizes the essence of GHE, which is the temperature boost at the surface due to the presence of an atmosphere. We employ Eq. (2) to estimate Tgb assuming an albedo αgb = 0.12 and a surface emissivity ϵ = 0.955 for the SPGB based on data for Moon, Mercury, and the Earth surface. Using So = 1362 W m-2 (Kopp & Lean 2011) in Eq. (2) yields Tgb = 154.3K and NTE = 287.6/154.3 = 1.863 for Earth. This prompts the question: What mechanism enables our atmosphere to boost the planet surface temperature some 86% above that of a SPGB? To answer it we turn on to the classical Thermodynamics.
3.1. Climate Implications of the Ideal Gas Law
The average thermodynamic state of a planet’s atmosphere can be accurately described by the Ideal Gas Law (IGL):
PV = nRT (5)
where P is pressure (Pa), V is the gas volume (m3), n is the gas amount (mole), R = 8.314 J K-1 mol-1is the universal gas constant, and T is the gas temperature (K). Equation (5) has three features that are chiefly important to our discussion: a) the product P×V defines the internal kinetic energy of a gas (measured in Jules) that produces its temperature; b) the linear relationship in Eq. (5) guarantees that a mean global temperature can be accurately estimated from planetary averages of surface pressure and air volume (or density). This is in stark contrast to the non-linear relationship between temperature and radiant fluxes (Eq. 1) governed by Hölder’s inequality of integrals; c) on a planetary scale, pressure in the lower troposphere is effectively independent of other variables in Eq. (5) and is only a function of gravity (g), total atmospheric mass (Mat), and the planet surface area (As), i.e. Ps = g Mat/As. Hence, the near-surface atmospheric dynamics can safely be assumed to be governed (over non-geological time scales) by nearly isobaric processes on average, i.e. operating under constant pressure. This isobaric nature of tropospheric thermodynamics implies that the average atmospheric volume varies in a fixed proportion to changes in the mean surface air temperature following the Charles/Gay-Lussac Law, i.e. Ts/V = const. This can be written in terms of the average air density ρ (kg m-3) as
ρTs = const. = Ps M / R (6)
where Ps is the mean surface air pressure (Pa) and M is the molecular mass of air (kg mol-1). Eq. (6) reveals an important characteristic of the average thermodynamic process at the surface, namely that a variation of global pressure due to either increase or decrease of total atmospheric mass will alter both temperature and atmospheric density. What is presently unknown is the differential effect of a global pressure change on each variable. We offer a solution to this in & 3.3. Equations (5) and (6) imply that pressure directly controls the kinetic energy and temperature of the atmosphere. Under equal solar insolation, a higher surface pressure (due to a larger atmospheric mass) would produce a warmer troposphere, while a lower pressure would result in a cooler troposphere. At the limit, a zero pressure (due to the complete absence of an atmosphere) would yield the planet’s gray-body temperature.
The thermal effect of pressure is vividly demonstrated on a cosmic scale by the process of star formation, where gravity-induced rise of gas pressure boosts the temperature of an interstellar cloud to the threshold of nuclear fusion. At a planetary level, the effect is manifest in Chinook winds, where adiabatically heated downslope airflow raises the local temperature by 20C-30C in a matter of hours. This leads to a logical question: Could air pressure be responsible for the observed thermal enhancement at the Earth surface presently known as a ‘Natural Greenhouse Effect’? To answer this we must analyze the relationship between NTEfactor and key atmospheric variables including pressure over a wide range of planetary climates. Fortunately, our solar system offers a suitable spectrum of celestial bodies for such analysis.
3.2. Interplanetary Data Set
We based our selection of celestial bodies for the ATE analysis on three criteria: 1) presence of a solid planetary surface with at least traces of atmosphere; 2) availability of reliable data on surface temperature, total pressure, atmospheric composition etc. preferably from direct measurements; and 3) representation of a wide range of atmospheric masses and compositions. This approach resulted in choosing of four planets – Mercury, Venus, Earth, and Mars, and four natural satellites – Moon of Earth, Europa of Jupiter, Titan of Saturn, and Triton of Neptune. Each celestial body was described by 14 parameters listed in Table 1.
For planets with tangible atmospheres, i.e. Venus, Earth and Mars, the temperatures calculated from IGL agreed rather well with observations. Note that, for extremely low pressures such as on Mercury and Moon, the Gas Law produces Ts ≈ 0.0. The SPGB temperatures for each celestial body were estimated from Eq. (2) using published data on solar irradiance and assuming αgb = 0.12 and ϵ = 0.955. For Mars, global means of surface temperature and air pressure were calculated from remote sensing data retrieved via the method of radio occultation by the Radio Science Team (RST) at Stanford University using observations by the Mars Global Surveyor (MGS) spacecraft from 1999 to 2005. Since the MGS RST analysis has a wide spatial coverage, the new means represent current average conditions on the Red Planet much more accurately than older data based on Viking’s spot observations from 1970s.
Table 1. Planetary data used to analyze the physical nature of the Atmospheric Near-Surface Thermal Enhancement (NTE). Information was gathered from multiple sources using cross-referencing. The bottom three rows of data were estimated in this study using equations discussed in the text.
3.3. Physical Nature of ATE / GHE
Our analysis of interplanetary data in Table 1 found no meaningful relationships between ATE (NTE) and variables such as total absorbed solar radiation by planets or the amount of greenhouse gases in their atmospheres. However, we discovered that NTE was strongly related to total surface pressure through a nearly perfect regression fit via the following nonlinear function:
where Ps is in Pa. Figure 5 displays Eq. (7) graphically. The tight relationship signals a causal effect of pressure on NTE, which is theoretically supported by the IGL (see & 3.1). Also, the Ps–NTE curve in Fig. 5 strikingly resembles the response of the temperature/potential temp. (T/θ) ratio to altitudinal changes of pressure described by the well-known Poisson formula derived from IGL (Fig. 6). Such a similarity in responses suggests that both NTE and θ embody the effect of pressure-controlled adiabatic heating on air, even though the two mechanisms are not identical. This leads to a fundamental conclusion that the ‘Natural Greenhouse Effect’ is in fact a Pressure-induced Thermal Enhancement (PTE) in nature.
NTE should not be confused with an actual energy, however, since it only defines the relative (fractional) increase of a planet’s surface temperature above that of a SPGB. Pressure by itself is not a source of energy! Instead, it enhances (amplifies) the energy supplied by an external source such as the Sun through density-dependent rates of molecular collision. This relative enhancement only manifests as an actual energy in the presence of external heating. Thus, Earth and Titan have similar NTE values, yet their absolute surface temperatures are very different due to vastly dissimilar solar insolation. While pressure (P) controls the magnitude of the enhancement factor, solar heating determines the average atmospheric volume (V), and the product P×V defines the total kinetic energy and temperature of the atmosphere. Therefore, for particular solar insolation, the NTE factor gives rise to extra kinetic energy in the lower atmosphere beyond the amount supplied by the Sun. This additional energy is responsible for keeping the Earth surface 133K warmer than it would be in the absence of atmosphere, and is the source for the observed 44% extra down-welling LW flux in the lower troposphere (see &2.1 C). Hence, the atmosphere does not act as a ‘blanket’ reducing the surface infrared cooling to space as maintained by the current GH theory, but is in and of itself a source of extra energy through pressure. This makes the GH effect a thermodynamic phenomenon, not a radiative one as presently assumed!
Equation (7) allows us to derive a simple yet robust formula for predicting a planet’s mean surface temperature as a function of only two variables – TOA solar irradiance and mean atmospheric surface pressure, i.e.
Figure 5. Atmospheric near-surface Thermal Enhancement (NTE) as a function of mean total surface pressure (Ps) for 8 celestial bodies listed in Table 1. See Eq. (7) for the exact mathematical formula.
Figure 6. Temperature/potential temperature ratio as a function of atmospheric pressure according to the Poisson formula based on the Gas Law (Po = 100 kPa.). Note the striking similarity in shape with the curve in Fig. 5.
where NTE(Ps) is defined by Eq. (7). Equation (8) almost completely explains the variation of Ts among analyzed celestial bodies, thus providing a needed function to parse the effect of a global pressure change on the dependent variables ρ and Tsin Eq. (6). Together Equations (6) and (8) imply that the chemical composition of an atmosphere affects average air density through the molecular mass of air, but has no impact on the mean surface temperature.
4. Implications of the new ATE Concept
The implications of the above findings are numerous and paradigm-altering. These are but a few examples:
Figure 7. Dynamics of global temperature and 12-month forward shifted cloud cover types from satellite observations. Cloud changes precede temperature variations by 6 to 24 months and appear to have been controlling the latter during the past 30 years (Nikolov & Zeller, manuscript).
A) Global surface temperature is independent of the down-welling LW flux known as greenhouse or back radiation, because both quantities derive from the same pool of atmospheric kinetic energy maintained by solar heating and air pressure. Variations in the downward LW flux (caused by an increase of tropospheric emissivity, for example) are completely counterbalanced (offset) by changes in the rate of surface convective cooling, for this is how the system conserves its internal energy.
B) Modifying chemical composition of the atmosphere cannot alter the system’s total kinetic energy, hence the size of ATE (GHE). This is supported by IGL and the fact that planets of vastly different atmospheric composition follow the same Ps–NTE relationship in Fig. 5. The lack of impact by the atmospheric composition on surface temperature is explained via the compensating effect of convective cooling on back-radiation discussed above.
C) Equation (8) suggests that the planet’s albedo is largely a product of climate rather than a driver of it. This is because the bulk of the albedo is a function of the kinetic energy supplied by the Sun and the atmospheric pressure. However, independent small changes in albedo are possible and do occur owning to 1%-3% secular variations in cloud cover, which are most likely driven by solar magnetic activity. These cloud-cover changes cause ±0.7C semi-periodic fluctuations in global temperature on a decadal to centennial time scale as indicated by recent satellite observations (see Fig. 7) and climate reconstructions for the past 10,000 years.
Figure 8. Dynamics of global surface temperature during the Cenozoic Era reconstructed from 18O proxies in marine sediments (Hansen et al. 2008).
Figure 9. Dynamics of mean surface atmospheric pressure during the Cenozoic Era reconstructed from the temperature record in Fig. 8 by inverting Eq. (8).
D) Large climatic shifts evident in the paleo-record such as the 16C directional cooling of the Globe during the past 51 million years (Fig. 8) can now be explained via changes in atmospheric mass and surface pressure caused by geologic variations in Earth’s tectonic activity. Thus, we hypothesize that the observed mega-cooling of Earth since the early Eocene was due to a 53% net loss of atmosphere to Space brought about by a reduction in mantle degasing as a result of a slowdown in continental drifts and ocean floor spreading. Figure 9 depicts reconstructed dynamics of the mean surface pressure for the past 65.5M years based on Eq. (8) and the temperature record in Fig. 8.
5. Unified Theory of Climate
The above findings can help rectify physical inconsistencies in the current GH concept and assist in the development of a Unified Theory of Climate (UTC) based on a deeper and more robust understanding of various climate forcings and the time scales of their operation. Figure 10 outlines a hierarchy of climate forcings as part of a proposed UTC that is consistent with results from our research as well as other studies published over the past 15 years. A proposed key new driver of climate is the variation of total atmospheric mass and surface pressure over geological time scales (i.e. tens of thousands to hundreds of millions of years). According to our new theory, the climate change over the past 100-300 years is due to variations of global cloud albedo that are not related to GHE/ATE. This is principally different from the present GH concept, which attempts to explain climate changes over a broad range of time scales (i.e. from decades to tens of millions of years) with the same forcing attributed to variations in atmospheric CO2 and other heat-absorbing trace gases (e.g. Lacis et al. 2010).
Earth’s climate is currently in one of the warmest periods of the Holocene (past 10K years). It is unlikely that the Planet will become any warmer over the next 100 years, because the cloud cover appears to have reached a minimum for the present levels of solar irradiance and atmospheric pressure, and the solar magnetic activity began declining, which may lead to more clouds and a higher planetary albedo. At this point, only a sizable increase of the total atmospheric mass can bring about a significant and sustained warming. However, human-induced gaseous emissions are extremely unlikely to produce such a mass increase.
Figure 10. Global climate forcings and their time scales of operation according to the hereto proposed Unified Theory of Climate (UTC). Arrows indicate process interactions.
6. References
Kopp, G. and J. L. Lean (2011). A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.
Kuptsov, L. P. (2001) Hölder inequality, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1556080104.
Lacis, A. A., G. A. Schmidt, D. Rind, and R. A. Ruedy (2010). Atmospheric CO2: Principal control knob governing earth’s temperature. Science 330:356-359.
Lindzen, R. S. and Y.-S. Choi (2009). On the determination of climate feedbacks from ERBE data. Geophys. Res. Lett., 36, L16705, doi:10.1029/2009GL039628.
McKitrick, R. R. et al. (2010). Panel and Multivariate Methods for Tests of Trend Equivalence in Climate Data Series. Atmospheric Science Letters, Vol. 11, Issue 4, pages 270–277.
Nikolov, N and K. F. Zeller (manuscript). Observational evidence for the role of planetary cloud-cover dynamics as the dominant forcing of global temperature changes since 1982.
Pavlakis, K. G., D. Hatzidimitriou, C. Matsoukas, E. Drakakis, N. Hatzianastassiou, and I. Vardavas (2003). Ten-year global distribution of down-welling long-wave radiation. Atmos. Chem. Phys. Discuss., 3, 5099-5137.
Spencer, R. W. and W. D. Braswell (2010). On the diagnosis of radiative feedback in the presence of unknown radiative forcing, J. Geophys. Res., 115, D16109, doi:10.1029/2009JD013371
Trenberth, K.E., J.T. Fasullo, and J. Kiehl (2009). Earth’s global energy budget. BAMS, March:311-323
===============================================================
This post is also available as a PDF document here:
Unified_Theory_Of_Climate_Poster_Nikolov_Zeller
UPDATE: This thread is closed – see the newest one “A matter of some Gravity” where the discussion continues.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.

Great. So now all that’s left to figure out is how big a tax increase we need to combat this Antrhopogenic Excess Pressure.
And we can reincarnate the Chicago Climate Exchange (CCX) as the Chicago Air Pressure Exchange (CAPE).
I will start selling Pressure Offsets. You send me $10,000, and I will fill up a scuba tank and bury it in the ground.
We’ll get people we know and trust as editors at the journals and in the media, and condemn deniers of Man-made Pressure Increase.
The IPCC will function just as it always has – keeping the money flowing to those on The Team.
The annual party in Doha in November will go on just as scheduled.
Everything is going to be just fine.
Nick says “Many things wrong with this paper. I’ll pick out just one”
Well to substantiate the many things, you should pick out many things. So far I only see the omission of one reference.
Anyway Hansen et al’s paleotemperature reconstruction depends on a lot of suppostions, for instance that the isotope ratios of Benthic Foraminifera adequately represent the local sea water isotope ratios. However, the chemical composition and pH play an important role. Moreover different species have different reactions and species die out and new appear all the time.
Then there is the problem of remagnetising of minerals that basically calls the whole reconstruction of plate tectonics into question. Paleo-north is not north anymore and the reconstruction of the earth temperature may simply be only a reconstruction of how much land mass was passing poles in the tectonic plate movements
No disrespect intended but it should be titled: “Towards a unified theory of climate”.
You have yet to demonstrate completeness or internal consistency across all factors.
Given our planet’s surface is mostly water, this seems so intuitively obvious.
I fully appreciate the fact you properly capture the geometry of the radiative inbound flux to be absorbed (something Lord Monckton has not addressed). The solar flux to be absorbed is much smaller than most people understand given the fact there is only a small surface that is being radiated full-on at any point in time.
When you include the incident of radiation angle on the surface to absorb, you find the watts/meter will go way down (from the maximum point of radiative flux the amount of radiation drops as you move towards the Day-Night terminator, where it reaches zero).
This means at any instance the emission surface area (the full global surface at your preferred emissions altitude) is much larger than the area absorbing energy from the Sun.
But on these global scales these are massive differences and have an effect – as you note.
Now to the other large effects.
(1) The Earth’s Oceans are also an absorber and transport mechanism – a massive heat sink. Energy can be captured and retained for decades. To my mind this is the great energy balancing mechanism – not the atmosphere. The atmosphere is a transport layer between space and the mass of water. A proper model would probably look more like that, where the atmosphere attenuates absorption and emission.
(2) Emissivity is a function of wavelength and the matter emitting and the matter’s temperature. If the ocean is the true absorber and emitter, its emissivity is the driver. This means it is not constant (because of the temperature factor). Add in the cloud/atmosphere attenuation (which returns emitted/transported heat back to the ocean and land) you have a very complex model. What you require is some reasonable factor averaged over lat and long that represents the attenuation in both directions.
(3) Core heat: the Earth is not warmed solely by the Sun. We have a hot ball of molten iron at the core which has estimated temperature and heat transport flow. Much of the difference between a warm and cold planet is the molten core. Look at the Moon Io versus Mars. Io is much farther distant, gets much less solar radiation, yet is much warmer than Mars (whose molten core cooled off long ago). Our atmosphere remains in place due to the molten core and subsequent magnetic field that acts like a protective shield. Without that you can forget about any Green House effect. We do not know if our planet experiences changes in gravitational forces over millennium as our solar system travels through the galaxy. Increased overall gravitational forces may increase the temperature of our core – who knows. Definitely not the tree ring folks.
(4) Solar radiation spectrum: We get lots of radiation in different forms. Some come right through and others are stopped, deflected or attenuated (e.g., magnetic field). The solar flux coming in is also a function of wave length.
Anyway, You definitely have addressed the correct geometry, so are much closer. I would suggest you add in the hot core as steady heat source that will probably close your gap with Monckton a bit.
Cheers, AJStrata
We’ve always had a unified theory of climate. The general figure as given as I’ve seen it is that the whole of the atmosphere is Earth’s greenhouse and therefore all the gases in it are greenhouse gases, predominantly nitrogen, oxygen and water.
Without the atmosphere the Earth would be -18°C, but, it only gets the +33°C warming to 15°C via the dynamics of all the greenhouse gases –
without any atmosphere -18%deg;C
with atmosphere but minus the Water Cycle – 67°C
The water cycle cools the Earth by 52°C
– to bring it down to the 15°C from the 67%deg;C it would be with the main greenhouse gaseous ocean of nitrogen and oxygen above us, pressing down on us a ton/square foot.
Carbon Dioxide is utterly insignificant in that. Heavier than air anyway it will always sink displacing air without any work being done on it, and anyway spontaneously joining with water vapour in the atmosphere to form carbonic acid, all pure rainwater is carbonic acid, as is dew, fog, and so on, so is part and parcel of the ‘greenhouse gas’ cooling as water vapour releases its heat higher in the atmosphere and condenses out as water, falls to Earth.
What needs to re-written is the AGWScience Ficition physics written out.
As here:
Re your Figure 4: whatever happened to the direct from the Sun thermal infrared radiation reaching Earth?
Some of us remember being taught that the heat reaching Earth direct from the Sun is the invisible thermal infrared and that visible light is not thermal energy, it can’t heat land and oceans. Water is transparent to visible light, therefore, visible light does not heat the oceans, for example.
Who originally created this ‘energy budget’? Why are you all paid scientists taking it seriously at all since this ‘basic physics’ is of a fantasy world?
I think I see a tipping point here. If only I could follow the math more easily. I think Tallbloke had this on his blog first. 🙂
Update to last post:
Ugh. Forgot one item. On any given day or season, the height of the atmosphere changes. Warmer periods it expands, cooler periods it contracts. So much so we have to adjust the models for satellite orbits that are in the Low Earth Orbits (LEOs). In addition, you have the radiation belts – by definition these are acting like another attenuation layer as does the atmosphere. There composition also changes over time and would seem to be a second radiative surface and absorption point. Much higher up – much larger surface, much lower density of matter and mostly plasma. But another layer all the same.
Cheers, AJStrata
Well, I don’t completely get it. Nor would one expect me to, given my ignorance of the math involved. Nikolev & Zeller say that the total mass of the atmosphere conditions the response of surface T to insolation and other active factors. But over the medium term, say the past 500-2,000 years, if the mass of the atmosphere is constant, this still leaves open the question of atmospheric sensitivity to other presumed “forcings,” such as GHG. I’m wondering that even if the thermodynamics of this thesis prove to be sound, the concept is vulnerable to warmist attacks on the sensitivity assumptions. At least, they still seem like assumptions to me. Just asking so as to learn.
Oddly, all these papers seem to ignore the contribution to the surface temperature from the nuclear reactions in the earth’s core. I grant it is probably not large and if somebody could point me at a paper that guesstimates it, I would be most obliged. There is a reason that the core and mantle are a bit molten after 4 billion years and it is not CO2.
Andre says: December 29, 2011 at 5:06 am
“So far I only see the omission of one reference.”
I don’t mind (much) having to look for the reference. But a lot is deduced from Fig 8, and if it is from that paper, it looks like they have just plotted something that isn’t global surface temperature anomaly.
As to other things, we could start with the 133K greenhouse effect. That is based on an airless planet where the temperature goes to absolute zero at the poles. That’s not what the 33K GH effect calc is based on. And then they say
The figure is their own invention. But thermodynamics does not tell us that it is not possible.
That’s a big discrepancy. Is there evidence to support it? What evidence is there to say what the Earth’s temperature would be without an atmosphere? We could ask about the temperature of the moon.
The above quote has the average surface temperature of the moon as -75 to -80 deg. C. So, what is the average temperature of the Earth?
That gives a difference in average temperature between the Earth and Moon of about 95 deg. C. (or K if you prefer) That gives some reason to believe the 133 degree figure.
David Jones says:
December 29, 2011 at 1:42 am
I like the touch of including the graph from Pen State University Department of Meteorology as Figure 1.
Shows chutzpah!
———————————————————
I concur plus using Hansen for Figure 8. Dynamics of global surface temperature during the Cenozoic Era reconstructed from 18O proxies in marine sediments (Hansen et al. 2008).
Using their data Nikolov & Zeller show there is a better answer than CO2.
Are you listening Lisa?
I think there are a lot of interesting points made but I am not convinced that the overall case is made. For example if the downwelling radiation is not dependent on GHGs why is the fequency of this radiation characteristic of water vapour and carbon dioxide. If these molecules were not there where would the radiation at these frequencies come from? There would be no downwelling radiation if the atmosphere was just oxygen and nitrogen.
The reason I do not find the logic completely convincing is as follows.
The downwelling radiation is dependent on the number of molecules capable of radiating ( and thus absorbing ) infrared photons. These photons must be within an energy band characteristically emitted by a body at a temperature of about 300C because this is where the energy originally comes from. The number of those molecules is dependent on the percentage of those molecules in the atmosphere and the total number of molecules in a given volume of the atmosphere which, at a given temperature is proportional to pressure. So unless the atmosphere contains no greenhouse gases of any sort the greenhouse effect will always be proportional to total pressure. Furthermore, as the pressure increases, the effective concentration of greenhouse gases needed before the effect saturates will drop to a few parts per billion in the case of Venus.
So I cannot see how the correlations presented disprove the GHG effect. I do not believe that GHGs are responsible for the CHANGES in our climate because I think the effect is near saturation and now too small to be significant, but it would take more than this to convince me that they do not contribute to the steady state system.
Great to see this getting the mighty WUWT megaphone after we scooped it at the Talkshop yesterday:
http://tallbloke.wordpress.com/2011/12/28/unified-theory-of-climate-nikolov-and-zeller/
I’ll be following this discussion intently and collating salient comments on our post for additional consideration.
It’s nice to see Gravity finally brought back into atmospheric science.
NK2011: “Pressure by itself is not a source of energy! Instead, it enhances (amplifies) the energy supplied by an external source such as the Sun through density-dependent rates of molecular collision. This relative enhancement only manifests as an actual energy in the presence of external heating.”
True, this is not the same discussion as if it was pressure in a tire. The air in a tire does not have radiation passing through it. The air in our atmosphere does.
Also, there is another aspect I have always had with agw climate ‘science’. This is so radiative logic, so to speak. As the pressure increases as you descend into our atmosphere the molecules get closer and closer together per the increase in density, mass per volume. Now interplay that with a factor termed “mass extinction coefficient” that increases markedly and non-linearly the deeper and deeper toward the surface you go and is solely dependant on the mass (density). The same effect work in reverse for outgoing LW radiation. In essence this supplies the energy (P•V in joules) needed to physically support the atmospheric mass above each point at various altitudes. Otherwise the atmosphere would simply collapse.
This seems to mean that the often ignored ~78 wm-2 absorbed incoming SW and the net ~23 wm-2 of LW outgoing radiation (that is 396-333=63-40=23 per K-T) plays as one of the largest factors throttling the mean temperatures at a given latitude and altitude. Cold increases the density, pressure does not necessarily change, from the surface upwards placing more absorption lower. The opposite for increase temperatures, force these absorptions higher in the atmosphere and it all depends only on the mass this radiation is passing through.
Forget the bicycle tire analogies.
I remember as a young boy back in the 60s/70s when there was great interest in space that my Dad told me that the reason why Venus was hot was due to the pressure of its atmosphere and he iullustrated it with a bicycle pump. I guess that different science was being taught back in that day and age.
That is the most compelling introduction I have ever read. Trillions of dollars at stake and lots of reasons to think the ‘consensus’ hasn’t got it right.
“Hence, the atmosphere does not act as a ‘blanket’ reducing the surface infrared cooling to space as maintained by the current GH theory, but is in and of itself a source of extra energy through pressure.”
It cannot be overemphasized that ALL of the energy comes from the Sun, contrary to what the authors seem to be saying in that quote. The governing hydrostatic vertical pressure distribution only determines the vertical temperature distribution, not the actual temperatures, because the atmosphere’s ability to hold heat energy from the Sun increases with the pressure. Filling the atmosphere with heat energy is like filling a glass with water, and the glass is wider, and so can hold more water, the farther down you go, that’s all. The actual temperature at any given pressure is basically fixed by the incident solar energy, with local and/or transient modifications by clouds or other particulates, and weather phenomena in general. I would offer two warnings about this article: 1) As in their claiming that the atmosphere is a source of extra energy, they are loose in their statements of physical cause and effect, to the point of being fundamentally misleading about the real physics; and 2) Their relationship (Eq. 7 and Fig. 5) basically shows the ATE does not explain the surface temperatures of the bodies with very thin atmospheres at all, and quickly becomes relatively insensitive to changes in surface pressure beyond the “knee” in the curve. Only Earth and Titan fall in the sensitive range of the equation, and the Earth data point is slightly above the mathematical prediction line while Titan is slightly below it. My detailed Venus/Earth temperature comparison, at pressures over the range of Earth tropospheric pressures, shows there is no albedo effect upon the Venus/Earth temperature ratio, though Venus reflects 70% of the solar radiation while Earth reflects only 30%. I look upon this article as an attempt to harmonize the radiation transfer theory with the real thermodynamics of the atmosphere, basically through application of the ideal gas law, but from my Venus/Earth findings (that the atmospheres are warmed by direct absorption of solar infrared radiation, and that there is neither the consensus-defined greenhouse effect nor an albedo effect) I know this is in the end a vain attempt. This article is just a demonstration of the predominance of a governing hydrostatic vertical temperature lapse rate in sufficiently massive planetary atmospheres, in my opinion. That is something my Venus/Earth comparison already well indicates, and it boils down, in climate science, to saying “The Standard Atmosphere model of Earth’s atmosphere is THE equilibrium state of the atmosphere, and any and all deviations from it constitute the weather as we know it.”
Very interesting. Ned and Karl, you gave me enough material to study and think about for the next days!
I would like to see the predictive power of this theory, both through backcasting and forecasting over a thirty year period. Can this theory predict temperature (pressure) variations observed from 1980 thru 2010?
The analysis is elegant and has many good points. Unfortunately, It is not quite fully correct. If an atmosphere had only gases with no long wave IR absorption, there would be no radiation absorption up and no back radiation at all. An atmosphere of say Argon (with no water present) is such an example. For that case, surface albedo and solar insolation would be mainly important. There would be an atmospheric effect, to transport some of the conducted and convected energy from lower latitudes to higher latitudes, where the atmosphere could conduct some energy to the local ground (there still would be heating from the surface to the gas and back), and the integrated area 4th power radiation out would be modified compared to no convection. However, if the gas did not transport much of the surface energy compared to the direct radiation out, the pressure and volume of the gas would not affect the average surface temperature. There has to be radiation absorbing gases (or aerosols) for a greenhouse effect. There would still be an adiabatic temperature profile as long as mixing from convection were strong enough, but the profile would be locked to match the surface value. With a greenhouse gas (or aerosols), the profile is locked to the temperature at the location of average outgoing radiation, and the adiabatic effect results in the atmosphere below this height warming. For Venus, the outgoing radiation comes from near the top of the atmosphere, so the adiabatic effect is dominate to determine surface temperature.
In the case of all real planets, there is always present greenhouse gases (CO2, water vapor, methane, etc.) and solid or liquid aerosols (dust, water drops, etc.). However, the present writeup is correct that the pressure and volume of the atmosphere determine the surface temperature. It is how the volume is determined. It is changes in pressure and volume due to greenhouse gases that was not considered. Much of the mass change for Earth’s atmosphere (and thus pressure) is controlled by water vapor content. However, the increased CO2, while not changing mass much, does change the temperature slightly by absorbing outgoing radiation (as does water vapor), and the slightly higher temperature does change the volume slightly. The whole concept of back radiation is misplaced. It is not back radiation that causes the extra heating, it is the movement of the average location of the outgoing radiation due to absorption. Feedback is another issue, and I agree there seems to be negative feedback for CO2 due to change in albedo (due to dominance of water vapor). That is a separate issue.
Barefoot boy from Brooklyn says:
December 29, 2011 at 5:24 am
… But over the medium term, say the past 500-2,000 years, if the mass of the atmosphere is constant, this still leaves open the question of atmospheric sensitivity to other presumed “forcings,” such as GHG.
>>>
Read within the text again. Not variations in any trace GHGs but short living variations in the albedo… variations in the anount of cloud cover, plant life cover and color, differences in the color of the oceans (plankton), ice/snow cover, aerosols, even solar insolation itself, etc.
Phil Jones will be checking all these formulae out on Excel right now I should imagine.