July 24th issue of Science: Study shows clouds may exacerbate global warming with positive feedback, but there's a caveat in the Science summary

This study is being listed as proof by some of the usual alarmist types that the issue of cloud feedback is settled. Before accepting that, read this from the summary in the June 24th issue of Science by Richard A. Kerr:

The first reliable analysis of cloud behavior over past decades suggests—but falls short of proving—that clouds are strongly amplifying global warming. If that’s true, then almost all climate models have got it wrong. On page 460, climate researchers consider the two best, long-term records of cloud behavior over a rectangle of ocean that nearly spans the subtropics between Hawaii and Mexico. In a warming episode that started around 1976, ship-based data showed that cloud cover—especially low-altitude cloud layers—decreased in the study area as ocean temperatures rose and atmospheric pressure fell. One interpretation, the researchers say, is that the warming ocean was transferring heat to the overlying atmosphere, thinning out the low-lying clouds to let in more sunlight that further warmed the ocean. That’s a positive or amplifying feedback. During a cooling event in the late 1990s, both data sets recorded just the opposite changes—exactly what would happen if the same amplifying process were operating in reverse.

Here’s the press release. I’ve looked at a few news writeups on it, and the caution listed in Science about it not being proven  seems to be off the reporting radar. We’ll need further studies on a global scale, and not just one patch of ocean, before the question can be fully answered.  – Anthony

http://www.physorg.com/newman/gfx/news/hires/consultingwi.jpg
This image shows unique cloud patterns over the Pacific Ocean of the coast of Baja California, an area of great interest to Amy Clement and Robert Burgman of the University of Miami and Joel Norris of Scripps Oceanography, as they study the role of low-level clouds in climate change. Credit: NASA

From Physorg.com

The role of clouds in climate change has been a major question for decades. As the earth warms under increasing greenhouse gases, it is not known whether clouds will dissipate, letting in more of the sun’s heat energy and making the earth warm even faster, or whether cloud cover will increase, blocking the Sun’s rays and actually slowing down global warming.

In a study published in the July 24 issue of Science, researchers Amy Clement and Robert Burgman from the University of Miami’s Rosenstiel School of Marine and Atmospheric Science and Joel Norris from Scripps Institution of Oceanography at UC San Diego begin to unravel this mystery. Using observational data collected over the last 50 years and complex climate models, the team has established that low-level stratiform appear to dissipate as the ocean warms, indicating that changes in these clouds may enhance the warming of the planet.

Because of inconsistencies in historical observations, trends in cloudiness have been difficult to identify. The team broke through this cloud conundrum by removing errors from cloud records and using multiple data sources for the northeast , one of the most well-studied areas of low-level stratiform clouds in the world. The result of their analysis was a surprising degree of agreement between two multi-decade datasets that were not only independent of each other, but that employed fundamentally different measurement methods. One set consisted of collected visual observations from ships over the last 50 years, and the other was based on data collected from weather satellites.

“The agreement we found between the surface-based observations and the was almost shocking,” said Clement, a professor of meteorology and physical oceanography at the University of Miami, and winner of the American Geophysical Union’s 2007 Macelwane Award for her groundbreaking work on . “These are subtle changes that take place over decades. It is extremely encouraging that a satellite passing miles above the earth would document the same thing as sailors looking up at a cloudy sky from the deck of a ship.”

What was not so encouraging, however, was the fact that most of the state-of-the-art climate models from modeling centers around the world do not reproduce this cloud behavior. Only one, the Hadley Centre model from the U.K. Met Office, was able to reproduce the observations. “We have a long way to go in getting the models right, but the Hadley Centre model results can help point us in the right direction,” said co-author Burgman, a research scientist at the University of Miami.

Together, the observations and the Hadley Centre model results provide evidence that low-level stratiform clouds, which currently shield the earth from the sun’s radiation, may dissipate in warming climates, allowing the oceans to further heat up, which would then cause more cloud dissipation.

“This is somewhat of a vicious cycle potentially exacerbating global warming,” said Clement. “But these findings provide a new way of looking at clouds changes. This can help to improve the simulation of clouds in , which will lead to more accurate projections of future climate changes. ”

One key finding in the study is that it is not the warming of the ocean alone that reduces cloudiness — a weakening of the trade winds also appears to play a critical role. All models predict a warming ocean, but if they don’t have the correct relationship between clouds and atmospheric circulation, they won’t produce a realistic cloud response.

“I am optimistic that there will be major progress in understanding global cloud changes during the next several years,” said Norris. “The representation of clouds in models is improving, and observational records are being reprocessed to remove spurious variability associated with satellite changes and other problems.”

Source: University of Miami (news : web)

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

129 Comments
Inline Feedbacks
View all comments
Willis Eschenbach
July 28, 2009 7:13 pm

Joel is right, and there’s not even any theoretical way he could be wrong. The models do not distinguish CO2 by its source. Nor do they distinguish where any given amount of warming comes from. They apply incorrect feedbacks, but they do it equitably, without discriminating by race, creed, or origin …
However … that assuredly does not mean that they model the climate with sufficient fidelity to give hundred year forecasts.

Berry R
July 29, 2009 10:10 am

Joel: You seem to be putting words in my mouth. I was referring to the reporting of results of the models, not to the way the models themselves are constructed. In other words, if someone gives a low-ball estimate of the influence of say variation in solar input or warming from El Nino, they need to be aware that the impact of those natural variations would be amplified by this mechanism too, and they need to factor it in. Do they always or even usually? I may have missed it in the footnotes, but I don’t recall seeing this sort of thing in the articles I’ve read debunking various natural causes for temperature rises.

August 12, 2009 7:11 pm

The clouds changes are closely associated with the familiar decadal patterns of ocean temp in the Pacific – to the extent of turning around since 1998. Cloud cover has increased again folowing the transition to cooler ocean conditions – i.e. the period in which clouds caused reinforced warming was 1976 to 1998.
The paper is interesting in reconstructing clouds over a longer period – but the only link to AGW is that 1 in umpteen models passed the cloud test.

Vangel
August 12, 2009 7:52 pm

The recent Svensmark paper seems to indicate that changes in cosmic ray flux are very important factors that regulate cloud cover. If further studies keep producing similar results changes in solar activity will be sufficient to explain all of the changes noted since the end of the LIA.
http://www.agu.org/pubs/crossref/2009/2009GL038429.shtml

1 4 5 6