Giving Credit to Willis Eschenbach for setting the Nikolov-Zeller silliness straight

Note: I normally don’t publish anything related to the ideas of Nikolov and Zeller, for three reasons: 1) It’s just wrong, 2) It invariably descends into a shouting match. 3) These two guys published a paper under fake names to fool the peer-review process, which is a professional no-no.

But, here we are. I thought this was important to share. – Anthony


Giving Credit to Willis Eschenbach (originally published at drroyspencer.com)

by Roy W. Spencer, Ph. D.

The non-greenhouse theory of Nikolov (and now Zeller-Nikolov) continues to live on, most recently in this article I’ve been asked about on social media.

In short, it is the theory that there really isn’t a so-called “greenhouse effect”, and that the excess planetary surface temperatures on Earth, Venus, and other planets above the Stefan-Boltzmann (SB) temperature calculated from the rate of absorbed solar radiation is due to compressional heating by the atmosphere.

This is a popular alternative explanation that I am often asked about. Of course, if there is no “greenhouse effect”, we don’t have to worry about increasing CO2 in the atmosphere and all of the global warmmongers can go home.

I have posted on this blog many times over the years all of the evidences I can think of to show there really is a greenhouse effect, but it is never enough to change the minds of those who have already convinced themselves that planetary surface temperatures are only a function of (1) absorbed sunlight and (2) atmospheric pressure, as Zeller and Nikolov claim.

I’ve always had the nagging suspicion there was a simpler proof that the Zeller-Nikolov theory was wrong, but I could never put my finger on it. My co-worker, Danny Braswell (a PhD computational physicist) and I have joked over the years that we tend to make problems too difficult… we’ve spent days working a problem when the simple solution was staring us in the face all along.

Enter citizen scientist Willis Eschenbach, a frequent contributor at Wattsupwiththat.com, who back in 2012 posted there a “proof” that Nikolov was wrong. The simplicity of the proof makes it powerful, indeed. I don’t know why I did not notice it at the time. My apologies to Willis.

Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation (the Stefan-Boltzmann equation). Conceptually, in the absence of an atmosphere, sunlight will heat the surface and the temperature will rise until the rate of emitted infrared radiation from the surface to outer space equals the rate of absorbed solar energy. (To be accurate, one needs to take into account the fact the planet is rotating and spherical, the rate of heat conduction into the sub-surface, and you also need to know the planet’s albedo (solar reflectivity) and infrared emissivity).

The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.

Significantly, Willis pointed out that if atmospheric pressure is instead what raises the temperature above the S-B value, as the Zeller-Nikolov theory claims, the rate of energy loss by infrared radiation will then go up (for the same reason a hotter fire feels hotter on your skin at a distance). But now the energy loss by the surface is greater than the energy gained, and energy is no longer conserved. Thus, warming cannot occur from increasing pressure alone.

In other words, without the inclusion of the greenhouse effect (which has downward IR emission by the atmosphere reducing the net loss of IR by the surface), the atmospheric pressure hypothesis of Zeller-Nikolov cannot explain surface temperatures above the Stefan-Boltzmann value without violation of the fundamental 1st Law of Thermodynamics: Conservation of Energy.

This is a simple and elegant proof that radiation from the atmosphere does indeed warm the surface above the S-B value. This will be my first go-to argument from now on when asked about the no-greenhouse theory.

I like to give credit where credit is due, and Willis provided a valuable contribution here.

(For those who are not so scientifically inclined, I still like the use of a simple hand-held IR thermometer to demonstrate that the cold atmosphere can actually cause a warmer surface to become warmer still [and, no, the 2nd Law of Thermodynamics is not violated]).

1,813 thoughts on “Giving Credit to Willis Eschenbach for setting the Nikolov-Zeller silliness straight

    • Real science should rely more on observation and less on conjecture. Observation: I see four inches of snow sitting on a steel cylinder of oxygen welding gas out next to my shed. I also see four inches of snow on everything else. The oxygen gas pressure in the cylinder is 2000 psi (138 Bar, 13.8 MegaPascal, 141 Kg/sq/centimeter, whatever). Leads me to the hypothesis that compressed gas does not retain its heat after the compression process is complete.

      Dan

      • Exactly. My thoughts drifted to the compressed air on the back of divers – I couldn’t say that those air bottles were warm for long after filling…

      • Playing the devil’s advocate here. Is that what the Zeller-Nikolov hypothesis maintains, or rather that greater atmospheric compression results in higher molecular collision rates (increasing temperature) when heat is being added?

        • Icisil, as I understand, yes. The heating of the atmosphere in the N-Z theory has nothing to do with compression heating, as happens when a bicycle tire is blown up. The theory is completely misread.

          Think atmospheric density and then this will be more along the right path.

          Also, consider that if you were lying on the ground and the pressure weren’t equalized, you’d feel 20 grand pianos on top of you. This isn’t trivial, and that fact is significant but I don’t think really understood.

          Don132

          • I think this theory makes perfect sense considering the lapse rate into the stratosphere. Different preasure creates different heat. We can measure it, and it stays the same.

            Global warming is a bizarre phenomenon. A great event to be sure. Herd suggestion at its peak. We are a dumb race. No matter how many incisive and accurate observations can be made here, the sheeple will continue to believe. Oceanic outgassing or a volcanic event spits all over this stupidity.

            …what this money could be used for…

          • Global warming is measured via temperature, not heat. Energy imparted to a volume of gas increases average molecular kinetic energy, which increases temperature. Higher pressure creates denser arrangement of molecules, which translates to higher average kinetic energy and higher temperature. Is this not correct?

          • No that only works in a closed system … FYI the Earth isn’t a closed system 🙂

            Under your theory if you compress something like a cylinder of compressed air it not only gets initially hot (If an 80 cf tank is filled too quickly it will get hot to the touch) but stays hot .. every scuba diver is carrying this charming little burning ember on there back and have 3rd degree burns on the middle of their back???

            See the problem the idea doesn’t even work on a scuba tank.

          • Isicil, no higher pressure does not increase the average kinetic energy. Each molecule/atom has exactly the same amount of energy as before.

          • Right, higher pressure doesn’t increase kinetic energy, but it does increase atmospheric density near the surface, which means more kinetic energy imparted to the atmosphere via UV absorption, surface conduction, and increased gas molecule collisions.

          • I’m certainly not arguing that this theory makes sense, but it does seem that I had a misunderstanding of what they were saying. The actual claim seems to be that gas density “amplifies” the solar heating of the atmosphere due to an unspecified effect of collisions. This is not quite the same thing as “compressional heating by the atmosphere”. But I do not see any description of a physical mechanism for that “amplification”. It does not make sense to me that more collisions could somehow increase the total kinetic energy of the atmosphere since each collision merely reallocates the total kinetic energy of the colliding molecules.

            From the actual paper

            Pressure by itself is not a source of energy! Instead, it enhances (amplifies) the energy supplied by an external source such as the Sun through density-dependent rates of molecular collision. This relative enhancement only manifests as an actual energy in the presence of external heating. Thus, Earth and Titan have similar NTE values, yet their absolute surface temperatures are very different due to vastly dissimilar solar insolation. While pressure (P) controls the magnitude of the enhancement factor, solar heating determines the average atmospheric volume (V), and the product P×V defines the total kinetic energy and temperature of the atmosphere.

            (PDF) Unified Theory of Climate – Expanding the Concept of Atmospheric Greenhouse Effect Using Thermodynamic Principles: Implications for Predicting Future Climate Change. Available from: https://www.researchgate.net/publication/309651389_Unified_Theory_of_Climate_-_Expanding_the_Concept_of_Atmospheric_Greenhouse_Effect_Using_Thermodynamic_Principles_Implications_for_Predicting_Future_Climate_Change [accessed Dec 31 2018].

            If the apologists for this hypothesis can’t come up with a physical mechanism to explain the “amplification” effect, then I would say it should be dismissed as a curve fitting exercise.

          • Physical work in needed to compress a gas. It is this INPUT of energy, ie the work done in compressing the gas which gives it more energy and thus ( temporarily ) makes it warmer.

            This energy comes either from whatever is driving a pump, or from the change in gravitational potential energy when a mass of gas changes in altitude.

          • That is correct Greg you sort of have to invoke the first law, the problem is it is really a lie to try and make classical physics not break. There are countless examples a classic example I gave below … try working out how a fridge magnet stays on a door or have a super magnet stuck on a roof beam and hang a large mass indefinitely.

            Under classical physics you have to assert the magnet is not doing work it is just holding the object at a given potential energy (AKA not doing work). Normally the layman sees the obvious problem why can’t you just put an object in the air and it not fall then?

            Done properly under QM Field theory it is much easier to explain 🙂

            If you need a hint, get two random shaped metal objects and put them on a catapult and toss them watch the motion. Now take a magnet and attach the two objects to each other and use the catapult again. Notice something different about the centre of gravity.

            So the hint is how does the magnet change the centre of gravity so the two objects act as one?

            There is a lot more going on than just classical physics energy and force 🙂

          • “Global warming is measured via temperature”

            Global warming isn’t measured, it’s calculated, inferred, and wrong.

          • Rich Davis,
            “If the apologists for this hypothesis can’t come up with a physical mechanism to explain the “amplification” effect, then I would say it should be dismissed as a curve fitting exercise.”

            The “amplification” effect is simply the density of an atmosphere.
            Why is Mars cold if it has an atmosphere of mostly CO2? Because it’s farther from the sun and because the atmosphere is so thin. If the atmosphere were denser would it matter? Yes. If it has less CO2, would it matter? No.

            Why is it colder the higher we go? Because the atmosphere is thinner. It is not because of radiative effects.

            Are radiative effects including in the lapse rate? No. That should be a clue. What governs the lapse rate? Mostly pressure, which directly affects density.

            The “curve fitting” is this: looking at all the factors involved in planetary temperatures and performing dimensional analysis to determine which factors play a role in temperature, it was found that the presence of greenhouse gases had no influence. Maybe people are overlooking this. Where is the universal formula for which you can plug in insolation, greenhouse gas content/action, etc., and come up with temperature, and have that apply to our solar system? It doesn’t exist. This is what NV found. What matters is atmospheric density and solar insolation. Did it fit a curve? Yes. That’s what we might expect if they actually found a universal formula.

            The physical mechanism is simple. If you add a fixed amount of heat to a gas until the gas molecules warm to the temperature of the heat source (i.e., the kinetic energy of the molecules of gas match the kinetic energy of the heat source) then the temperature of the gas will depend on its density: the temperature of a gas is the average kinetic energy of a volume of gas. Fewer molecules (thinner atmosphere) means lower temperature, many more molecules mean higher temperature, all else equal. This is by definition.

            This is why the thermosphere is cold, even though the molecules have high energy.

            On earth all the denser gas molecules are near the surface; therefore most of the atmospheric heat is near the surface, without any help from greenhouse gases. The atmosphere retains some of the heat from the surface; the oceans retain more. Between the oceans and the density of the atmosphere, there is no need to invoke the radiative greenhouse effect, which is not the same as saying that there is no radiative greenhouse effect. It’s just that according to NZ and others, the radiative greenhouse effect doesn’t drive the surface temperature. Pressure, along with the sun, does.

            That is my take on it.

            Don132

          • Don,
            Density is indeed the critical issue as I’ve been saying since 2007.
            The reason being that greater density leads to more effective conduction.
            That is why I say that the lapse rate slope is an indicator for increasing conduction relative to radiation as one descends deeper into the mass of an atmosphere.
            It is no coincidence that the lapse rate slope precisely follows the decline in density with height.
            The denser the atmosphere the more conduction and the higher the temperature rises above S-B.
            Conduction is a slower energy transfer process than radiation so the more of it you have the longer will be delayed the exit of solar energy back to space.
            Downward radiation does not significantly delay the release of energy back to space because it is near instantaneous and therefore cannot be the cause of surface warming above S-B.

        • Moreover, the near-surface atmosphere, in close contact with a surface warmed intensely by the sun, is far denser than the much colder upper atmosphere, and thus the bulk of the “average heat” in concentrated at the surface.

          It has nothing to do with compressive heating and thinking that it does is messing everyone up. It has everything to do with near-surface atmospheric density, caused by … the weight of the atmosphere, caused by … the bulk of the atmosphere, and …. gravity.

          Don132

          • The lower atmospheric is more dense because it is compressed by the upper atmosphere. Isn’t it semantics? Last airline flight I was on it was -60F at altitude and +60 when I landed. A pressure/altitude table predicts this.

          • Farmer Ch E retired – “Last airline flight I was on it was -60F at altitude and +60 when I landed. A pressure/altitude table predicts this.”

            Kindly reference that table. The last time I flew at -60F at altitude, the local landing temperature was -30F (as in minus thirty).

          • Chad – here’s the table for Atmospheric Pressure at Different Altitudes.

            https://www.avs.org/AVS/files/c7/c7edaedb-95b2-438f-adfb-36de54f87b9e.pdf

            In an adiabatic system, compressed gas is hotter (think diesel engine compression). The atmospheric temperature at altitude is going to vary depending on cold fronts, warm fronts, jet stream from the poles, etc. so this table is not going to predict temperature at altitude perfectly. The audience to WUWT is pretty diverse so I never know if I’m commenting to a university professor, text book author, activist, or interested person w/o a science background.

          • This is exactly what I’m seeing in this discussion. I don’t know why NZ talk about amplification, but the mass of the lower atmosphere seems to provide a sufficient explanation of retained heat. Noting that moist air is more “massive” than dry air, it is easy to see why desert air cools quickly at sundown, while humid air does not. And of course the greater air pressure at low altitude also represents the relatively greater mass of the denser air. This seems to be the crux of NZ’s paper, and I don’t know why adiabatic heating is even mentioned here.

            Much of this discussion seems to overlook the ever-changing solar input due to the earth’s rotation. Fortunately for life on the planet, the atmosphere provides not only essential gases but also molecules that retain some of the sun’s daily input.

            With due respect to Dr. Spencer, I think much of this discussion tends to “make problems too difficult”.

          • dwieland,

            A couple comments on your post:
            You refer to “retained heat”. Remember that “heat” is energy that is transferred and is not typically used in a noun form. Heat is something that flows.

            Also, this comment is puzzling to me:
            “Noting that moist air is more “massive” than dry air, it is easy to see why desert air cools quickly at sundown, while humid air does not.”

            Water vapor has a very significant impact on how the atmosphere heats and cools, primarily due to the huge energy speed bumps that are encountered as water changes phases (solid to liquid, liquid to vapor, solid to vapor and all three of these in reverse). For your desert example, minimum nighttime temperature is controlled by the dew point (temperature at which the water vapor becomes saturated). To cool below this point requires crossing over one of the energy speed bumps – either it rains or it snows which incrementally lowers the dew point. A desert cools more at night because it is dry (low dew point) and there is minimal cloud cover to retain the nighttime heat.

          • You refer to “retained heat”. Remember that “heat” is energy that is transferred and is not typically used in a noun form.
            Yet, you do just that:
            A desert cools more at night because it is dry (low dew point) and there is minimal cloud cover to retain the nighttime heat.

          • To amend my “energy speed bump” analogy above, this is more than a speed bump, its almost like a wall. It’s like a jogger who runs the first part of a race on a dry track and then finishes the race running in 3 feet of water. The dry track represents cooling of the atmosphere and the water represents the extra energy required for the phase change (rain or snow).

        • With due respect to Dr. Spencer, I think much of this discussion tends to “make problems too difficult”.
          The problem is that the table for Atmospheric Pressure at Different Altitudes is not for an atmosphere with lots and lots of water vapour in and a little bit of CO2.
          NZ reference purely the pressure, not the atmospheric composition.
          Their figures for an earth like planet will be out because a stock atmosphere without GHG will be at a lower temp than one with GHG. Not by a lot, But by enough for Roy and Anthony to distance themselves from the claim that GHG and by extension CO2 are not important.
          The only way a planet of earth size pressure and albedo can have the same surface temp as planet earth is if they have used pressures including the effects of H2O and CO2 on said atmosphere.
          In which case they should not diss the effects of CO2 and H20 which are important , real and scientifically alter the pressure and albedo significantly.

      • Good thinking Dan! The weight of a skyscraper resting on its foundation doesn’t heat the ground either.

        Work, force times distance) is a form of energy and temperature is proportional to internal energy. Force alone is not energy, until it moves something. Imagine an Earth without an atmosphere far from any star. Then we allow air to fall from space to the surface to create an atmosphere. That air would certainly heat up. The force of gravity is doing work by moving air closer to the surface. Some PdV work will also be done. However, without the sun, that heat will soon be radiated away.

        • Frank, you will be interested to learn that we are dealing with different phases of matter, solid and gaseous, in your example. They act differently because of vastly different internal structure. Solids will heat and shift slightly under great force while gases do both vastly more easily. Just why is worth learning, I reckon.
          It is however not doing N and Z justice to say something is wrong if the sun is required. Of course it is, for whtever theory, or the gases would be ice about 2m thick nevermind if CO2 was actually the miracle gas. No sun, no gas full stop in the real world.

          • Cold air sinks, warm air rises, that is work in the precise, physical definition, a heat engine in truth. In fact, forced compression is what ignites tender in a fire piston – an alternative to flint and steel or matches. The only debate seems to be where the bulk of the energy comes from and how much a biologically-critically important trace gas can influence things.

      • interesting analogy. I put 2 liters of water in a used soda bottle, set it outside and voila! It doesn’t rise and fall by several feet every day.

      • Whoa, you’re not addressing the obvious counter-example, that of dropping temperatures as you go to higher elevations, and hence lower pressures.

        You got to look at the atmosphere as a system, the whole system has been heated by the Sun, and on average has a black-body-ish temperature, but gravity causes a temperature gradient, that at the surface is higher, but is compensated by the lower-than-blackbody temps much higher up.

          • That statement whilst ‘theoretically’ correct, is rather misleading because there is all but no molecules of anything. This is not heat as we know it, eg., if you were to put your hand in it, it would not burn you.

          • Richard, “warmer” in my statement pertains to temperature, not how it feels to your hand. Temperature is not heat. This is why a discussion of global temperature is nearly meaningless as is exploration of the temperature of the air column. It has some use near the surface of the earth (within the troposphere in particular).

      • Dan, we do not say that. The energy input remains the sun of course. Not available to contained gas. Deeper understanding of Physics tells us, among other things, that energy fluxes always take the easiest route to increase entropy. Equipartition makes available the services of buoyancy for ground-heated gases, kinetically-thermalised molecules of all stripes and everywhere; and the massive power of water vapour. This can uplift five times more energy than needed here, being half the density of air and with specific heat capacity pretty near the top of any list for latent heat carriage.
        Roy imagines his instrument is actually sensing and making sense of clear sky readings when they are outside the designed capacities of the receptor and the algorithm feeding the guage reader’s screen. Folk who helped develope these devices and with immense practical experience of the actual engineering involved, have shown this to those who seek the truth. Here in NZ at 35deg S latitude, summer, my device can read clearsky below zero C.

        Reading Maxwell’s Theory of Heat from p330-350 would be a start. See Hockeyschtick for starters, and Tallblokes Blog. We have worked on this for many years now and understand that N and Z have many fellow scientists who have independently had to admit that the Ideal Gas Laws do not allow for unconfined (if constrained by gravity on their mass), atmospheres to be dominated by radiative transfer. Such a vector force is an effect of kinetic energy molecular vibration in the magnetic fields. It is relatively weak (-ve 4th power relationship), and its emissions happen so many orders of magnitude slower than KE collision transfer of energy that it hardly occurs. Indeed radiation is swamped by the instant expansion of energised gases – think gas-driven projectiles – followed by mass transfer uplift to where there is space for radiation to dominate. Say five to fifteen km for starters on Earth. Extrapolation of lapse rates tells the tale for those who wish to know….
        Ditto for all measured solar system atmospheres thicker than 0.1bar. Gases are not surfaced, and steel greenhouses are irrelevant. I stand on the foundation built by Maxwell, and the null hypothesis remains intact. Understanding why the Gas Laws rule does take work on how gases are not the same in their nature, which is what’Physics’ means, as solids’ I repeat, ‘God’s Empiricism’ demonstrates what we say in the Solar System and all the various measurements of a wild assortment of atmospheric gases. They do act in concert, affected only by solar distance and atmospheric mass. All else follows. Brett

        • Right on , Brett!
          Many people are having “black dog” moments.
          Some might recall a comment made in another post where I stated that I thought I saw a black dog in my driveway, even a half day after I found out that I’d been burgled, when what I’d actually seen was the burglar jumping from the window.
          Sometimes we see what we expect to see or are conditioned to see or want to see.

          In order to believe that NZ are wrong you’d have to believe that a gas with “x” number of molecules would have the same temperature as a gas with “10x” molecules, when both are up against a heated surface that remains constantly heated, such as the surface of the earth during the daytime.

          If NZ are wrong, then the implication is that it wouldn’t matter if surface pressure were 7 psi instead of 14.7 psi, and it wouldn’t matter if the surface pressure were 29 psi.

          Once again, it’s not about compressive heating, which is the “black dog” story we’re telling ourselves.

          Don132

          • The various proposals for terraforming Mars rely not upon increasing the radiative GHG effect, by increasing the number of molecules of GHGs in the Martian atmosphere, but rather upon adding mass to the Martian atmosphere thereby increasing the pressure of the atmosphere.

      • “Leads me to the hypothesis that compressed gas does not retain its heat after the compression process is complete.”

        Certainly but the oxy welding gas cylinder is in an atmospheric environment where things come to an equilibrium temperature – typically ambient air temperature.

        However an atmosphere is in an environment where the only means of exchange is radiation to space and this is entirely a different situation.

        NASA’s Planetary Fact Sheets show that the outer solar system planets ALL have temperatures at 1 bar pressure that exceed their calculated blackbody temperature and exceed the temperature at 0.1 bar.

        This characteristic is present in every planetor moon with an atmosphere. And using NASA’s data the temperatures can be calculated by the ideal gas laws.

        Also all of the outer planets have extremely high core temperatures deep in their atmospheres with Uranus the lowest at ~4700°C.

        None of that comes from the solar radiation and these have significantly lower traces- almost none – of GHG’s than Earth.

        Some say this is the remnant “heat of formation” but that explanation is strange because, if it isn’t gravitational compression of gases responsible for the temperature, then where did the “heat of formation” originate ?

        The outer planets also must have a gravitational core compressing the gases of their atmospheres because everything we know about gases indicates a “self compressing gas” is virtually impossible. We know the nature of a gas is to occupy any available space and therefore the accretion of free gases in a vacuum to form a self compressing mass is impossible.

        Any discussion should consider these facts as listed by NASA.

      • I am for from convinced that that analogy is informative, since the gaseous system inside the gas bottle is stable and in equilibrium, which is not the position with Earth’s atmosphere.

        Our atmosphere is constantly dynamic with air currents rising (via convection) and then falling. Further, the atmosphere is constantly being pulled/displaced by gravitational forces exerted by the sun and the moon, and the movement of tides etc, which gives rise to the atmospheric bulge. Hence work is constantly being performed in Earth’s atmosphere and the by product of this work may be sufficient to maintain temperature.

        It is well known in motor racing that tyre temperature is a factor of work done by the tyre. The slight bulging/flexing of the tyre wall causes heat to be generated or maintained. Thus on racing cars, tyres are fitted out of a warm blanket, and if the car is idle or run slowly for any extended period the tyre temperature cools, but it does not cool if the car is driven at race speeds, just because of the small amount of work being inputted into the tyre.

        The planet;s system is complex and a comparison with a simple analogy may not be appropriate.

        • Willis

          If you took the sun out of the picture the planet would still be warmer with an atmosphere (whether it is composed of nitrogen or any other atmospheric gas ) than without an atmosphere. Adiabatic heating does not add energy nor enthalpy to a system, but it does increase temperature when the volume decreases; or correspondingly decreases temperature when the volume increases. Of course there is always some heat lost to surroundings.
          Earth’s atmosphere acts like a pump which is moved by gravitational pressure which itself is influenced by the surrounding planets and sun. Even earth’s moon changes the gravitational pull of the earth. We may not understand gravity but we see its effects. It is this pumping action that gives the earth a basic temperature above what the moon has. There is no new energy source, thus no new energy to upset the energy balance. Adiabatic magnetization or demagnetization also has an effect on temperature. There is confusion between the definition of adiabatic in classical and quantum mechanics when referring to the speed of the process.

    • Heat Transfer, along with Thermodynamics, mass transfer, fluid dynamics and reaction kinetics are engineering subjects of which very few scientists understand even a little of anyone of these subjects.
      If one looks at the original work of Stefan and Boltzmann it will be found that the S-B equation applies to surfaces (not gases) in a vacuum. Boltzmann wrote a proof for the second law of thermodynamics (or more correctly the 4th postulate of thermodynamics) in terms of entropy which is defined in the 3rd postulate of Thermodynamics. Baron Fourier found that a clear atmosphere (ie no clouds) acts somewhat like a vacuum with respect to infrared radiation.
      N & Z’s propostion revolves around the 5th postulate which Willis and Spencer likely have ignored or do not understand.
      Dimensional Analysis which N & Z say in their publication few scientists are aware of and do not understand has been an engineering subject since around 1900. Dimensional analysis is used in heat and transfer giving dimensional numbers such as the Nusselt No. (convection) Grashof number (evaporation) Schmidt No (mass transfer) and in Fluid dynamics ( Reynolds No.)
      N&Z used dimensional analysis to find their relationship. They tried 12 dimensional relationships and found one which gave the least error based on measured values for different rocky planets (ie have a surface and an atmosphere-Venus, Earth, Mars, Titan and Triton). Their theory can be checked when more data is available for other moons and planets in the solar system .
      I respect most of the work of Dr Spencer, he did reply to an email from me honestly saying he did not know the answer to my question (about methane) as he had no knowledge of organic chemistry.
      I caught Willis out with a reference to a b*llSh*t paper you can see my response on my website (very little used) http://www.cementafriend.wordpress.com

      • Bad typing and editing meant to say dimensionless numbers -note Dr Gavin Schmidt did not know about the Schmidt number until he looked it up on Wiki and in a comment (on the website of an engineer in a post concerning a proposition by a Russian scientist about cyclones & tornados) admitted he did not know how the Schmidt number was used. Dr Schmidt certainly has no idea about dimensional analysis. It appears that most commentators here also do not understand.

      • cementafriend, you may understand dimensional analysis but you don’t seem to understand overfitting. Read The Mystery of Equation 8. I discuss overfitting there. In it, you’ll note that I developed an even simpler formula than that of N&Z that gives better answers than they got.

        From that post:

        They have used an equation

        e^(t1 * Ps ^ t2 + t3 * Ps ^ t4)

        with four free parameters to yield an estimate of Ts/Tgb based on surface pressure. As one would expect given the fact that there are half as many free parameters as there are data points, and that they are given free choice to pick any form for their equation without limit, this presents no problem at all, and can be done with virtually any dataset.

        Four free parameters and free choice of equation to fit eight points? That’s a scientific joke. It would only be surprising if they could NOT get a good result with those conditions, and as I said, I got an even better result.

        Best of New Years to you,

        w.

        PS—I followed your link to what you claim was when you “caught me out” but I couldn’t find anything about what you claimed. A link to your entire blog is less than useful …

        • Willis it seems you did not try very hard about the comment here is a link https://cementafriend.wordpress.com/2011/10/14/methane-good-or-bad/#comments
          to help you here is part of my comment
          “Willis, nice to have a response from you. It is strange that with the paper, by Kasting et al 1983, you refer to that your BS indicator was not working.
          Please note the first sentence of the abstract “A detailed model is presented of methane photochemistry in the primitive terrestrial atmosphere along with speculation about its interpretation” – model, primitive terrestrial atmosphere, speculation and interpretation.
          The article refers to modelled anaerobic conditions ie no oxygen present. The present conditions in the atmosphere are completely different.”
          I enjoy many of your articles but not this about the N&Z article which you may not have read in detail. I know plenty about curve fitting which is what all the so-called climate models do with temperature. Dimensional analysis is different especially when it looks at a range of measured parameters (with dimensions). The N&Z analysis may not be complete, there maybe better factors but at least it provides an equation which can be tested when data for other moons of Saturn and Jupiter is available.
          By the way if you have not guessed I am registered professional chemical engineer with considerable experience in heat transfer, combustion and process instrumentation and control. I also have a post graduate degree in business and understand the financial of the implications of the wasted efforts with so-called renewables.

        • Willis looked at your article. You make no mention of N & Z making dimensional analysis and looking at 12 sets of parameters and measured data from NASA and other country rockets (eg Russian for Venus). In their paper they did not include Europa because there was insufficient data particularly about its atmosphere and surface pressure. They did not include Mercury. I understand that only recently NASA has sent a rocket (space vehicle) to obtain data on surface temperature and atmosphere (if any) When accurate data for Mercury and Europa is available it should show if N&Z analysis applies to these rocky small sized planets.

        • cementafriend January 1, 2019 at 4:18 am

          Willis it seems you did not try very hard about the comment here is a link https://cementafriend.wordpress.com/2011/10/14/methane-good-or-bad/#comments
          to help you here is part of my comment

          cementafriend, it’s not my job to root through your junk to find something. If you want me to read whatever you wrote, that’s your job.

          Having just read it now, I haven’t the slightest idea why you brought it up. Near as I can tell it has nothing to do with the subject under discussion.

          Pass.

          You also say:

          Willis looked at your article. You make no mention of N & Z making dimensional analysis and looking at 12 sets of parameters and measured data from NASA and other country rockets (eg Russian for Venus). In their paper they did not include Europa because there was insufficient data particularly about its atmosphere and surface pressure. They did not include Mercury. I understand that only recently NASA has sent a rocket (space vehicle) to obtain data on surface temperature and atmosphere (if any) When accurate data for Mercury and Europa is available it should show if N&Z analysis applies to these rocky small sized planets.

          I couldn’t care less if they got there by way of dimensional analysis or ouija boards. All that matters is their final product. It contains 5 tunable parameters plus free choice of equations to fit eight data points. I said in the paper that it would only be surprising if they could NOT fit eight data points given those conditions.

          Then I developed a better fit using less parameters.

          Then I developed another equally good fit using one less variable.

          And NONE of these equations, mine or theirs, mean a damn thing. They are all just the result of overfitting.

          If at this point you don’t understand that we are dealing with meaningless curve fitting, then I encourage you to direct your comments elsewhere. If your understanding of overfitting is that poor there is no point in further discussion.

          Have a wonderful New Year,

          w.

        • Let’s not forget Ned Nikolov’s direct reply to Willis’ “The Mystery of Equation 8”:

          https://tallbloke.wordpress.com/2012/01/17/nikolov-and-zeller-reply-to-comments-on-the-utc-part-1/comment-page-2/#comment-15281

          I suppose he could have been more kind, but brutal honesty is something we all have to face at some time or another — I remember the time I was training in summer sessions of a professional arts school. Talk about brutal honesty !

          • Nikolov was brutal, but far from honest. If he had been he’d have noted that he used the less accurate of my two replacements for his curve fitting, rather than the one that has only three quarters of the RMS error of his curve fitting.

            And if he were honest he wouldn’t have used a bogus temperature for Mars (180K) simply because it fit his curve to within 0.1°C. Instead, he would honestly have used the real Mars temperature of 201K, which gives a 30°C error …

            w.

          • Willis,

            I seem to be finding some wiggle room on mean temp of Mars. Does anybody really know what it is within the range being discussed?

            Also, how do you answer Nikolov’s claim about your “confusion” over some of the values in his equations and how you characterize them as categories of measure that they are not? Specifically, the following are a couple of quotes in his critique of your critique of him:

            Now, Willis gets somehow confused thinking that our Eq. 8 meant Ts = t5 * Solar^0.25 * Ts / Tgb; hence Ts = Ts. This is purely a result of his inability to follow the text and understand how math equations get re-arranged.

            He also claims that the constant 25.3966 in front of our Eq. 8, i.e.
            Ts = 25.3966 (So + 0.0001325)^0.25 NTE(Ps) is a ‘tune parameter’, which he labels t5. This confusion is directly related to the one above.

            He had a laundry list of five, I think. It would have been cool to see your exact responses to these over at tallbloke, but I’m gathering that maybe you and the tall one had some friction to hinder this.

          • Robert Kernodle January 4, 2019 at 12:42 pm

            Willis,

            I seem to be finding some wiggle room on mean temp of Mars. Does anybody really know what it is within the range being discussed?

            His claim of a Mars temperature of 180K is a long, long ways outside the “range being discussed”.

            Also, how do you answer Nikolov’s claim about your “confusion” over some of the values in his equations and how you characterize them as categories of measure that they are not? Specifically, the following are a couple of quotes in his critique of your critique of him:

            Now, Willis gets somehow confused thinking that our Eq. 8 meant Ts = t5 * Solar^0.25 * Ts / Tgb; hence Ts = Ts. This is purely a result of his inability to follow the text and understand how math equations get re-arranged.

            Side issue, unrelated to my two main points.

            He also claims that the constant 25.3966 in front of our Eq. 8, i.e.
            Ts = 25.3966 (So + 0.0001325)^0.25 NTE(Ps) is a ‘tune parameter’, which he labels t5. This confusion is directly related to the one above.

            It is indeed a “tunable parameter”, it has no physical basis.

            He had a laundry list of five, I think. It would have been cool to see your exact responses to these over at tallbloke, but I’m gathering that maybe you and the tall one had some friction to hinder this.

            Tallbloke banned me from his site. I’ve asked him to lift the ban. He has refused. Which, no doubt, is why Nikolov posted his reply there.

            To reiterate my two points:

            1. Whether there are four tunable parameters or five plus a freely chosen non-physically based equation, he is only fitting eight data points, so it is wildly overfitted.

            2. As my proof shows, the details of his claim are immaterial. if there are no GHGs in the atmosphere, it is physically impossible for any atmospheric-based (pressure, density, gravity, etc) processes to raise the surface temperature higher than the blackbody S-B temperature. Doing so means that the surface is radiating more than it receives, which is physically impossible.

            Not only did he not falsify either of those points, he didn’t touch them at all. Instead he focused on a host of meaningless side issues like whether there are four or five tunable parameters …

            w.

          • Willis:
            “If there are no GHGs in the atmosphere, it is physically impossible for any atmospheric-based (pressure, density, gravity, etc) processes to raise the surface temperature higher than the blackbody S-B temperature. Doing so means that the surface is radiating more than it receives, which is physically impossible.”

            Because … if the atmosphere is warmed, then that means that some of that warmth is necessarily transmitted to the surface, and if so, then that means that the surface is transmitting more energy than it receives! Got it! Thank you.

            Now, please explain to us why an atmosphere that is heated by GHGs does not also transmit some of that energy to the surface, thereby causing the surface to radiate more than it receives. Divine heating?

            The logic of the GHG warming position is impossible when set up against the atmospheric thermal effect. It’s an arbitrary logic that’s designed to support a position that gets weaker and weaker the more one examines it.

            Don132

          • @Don
            “explain to us why an atmosphere that is heated by GHGs does not also transmit some of that energy to the surface, thereby causing the surface to radiate more than it receives”

            In a way this occurs. The atmosphere receives ~78 w/m^2 directly from solar radiation. It radiates ~333 w/m^2 to the surface and ~199 w/m^2 to space.
            The surface receives ~161 w/m^2 of direct solar radiation. It radiates ~40 w/m^2 to space and ~356 w/m^2 to the atmosphere. It also moves ~97 w/m^2 to the atmosphere by evaporation (latent heat) and conduction/convection.

            Confused? Most of this energy transfer occurs in a loop between surface and atmosphere and back again. It plays no direct role in net energy received or lost by the Earth. This energy loop is also what drives things like convection and thermals, which also play no direct role in Earth’s energy gain or loss.

          • Donb says of GHGs:

            “Most of this energy transfer occurs in a loop between surface and atmosphere and back again. It plays no direct role in net energy received or lost by the Earth. This energy loop is also what drives things like convection and thermals, which also play no direct role in Earth’s energy gain or loss.”

            Sounds a lot like the loop Stephen was describing.

            In fact the theoretical mechanisms differ but the fact that the atmosphere is warmed by GHGs or by absorbed kinetic energy makes no difference to energy in/energy out. The only difference is that you arbitrarily say that one will cause more energy to be emitted than received.

            Don132

          • Thanks for the reply, Willis.

            I’m trying to wade through all this with my less-than-perfect [understatement] understanding of the math.

            In one of your earlier comments, you wrote:

            And if he [Nikolov] were honest he wouldn’t have used a bogus temperature for Mars (180K) simply because it fit his curve to within 0.1°C. Instead, he would honestly have used the real Mars temperature of 201K, which gives a 30°C error

            I’m thinking that there might be a better characterization of his (their) choice for Mars temperature than your implication of dishonesty. I took a quick look at this:

            https://www.omicsonline.org/open-access/new-insights-on-the-physical-nature-of-the-atmospheric-greenhouse-effect-deduced-from-an-empirical-planetary-temperature-model.php?aid=88574

            Nikolov N, Zeller K (2017) New Insights on the Physical Nature of the Atmospheric Greenhouse Effect Deduced from an Empirical Planetary Temperature Model. Environ Pollut Climate Change 1:112.s

            … where the authors explain their choice of Mars temperature as follows:

            “We found that quoted values for the mean global temperature and surface atmospheric pressure of Mars were either improbable or too uncertain to be useful to our analysis. Thus, studies published in the last 15 years report Mars’ GMAT being anywhere between 200 K and 240 K with the most frequently quoted values in the range 210–220 K [6,32,76-81]. However, in-situ measurements by Viking Lander 1 suggest that the average surface air temperature at a low-elevation site in the Martian subtropics does not exceed 207 K during the summerfall season (Appendix B). Therefore, the Red Planet’s GMAT must be lower than 207 K. The Viking records also indicate that average diurnal temperatures above 210 K can only occur on Mars during summertime. Hence, all such values must be significantly higher than the actual mean annual temperature at any Martian latitude. This is also supported by results from a 3-D global circulation model of the Red Planet obtained by Fenton et al. [82]. The surface atmospheric pressure on Mars varies appreciably with season and location. Its global average value has previously been reported between 600 Pa and 700 Pa [6,32,78,80,83,84], a range that was too broad for the target precision of our study. Hence our decision to calculate new annual global means of near-surface temperature and air pressure for Mars via a thorough analysis of available data from remote-sensing and in-situ observations. Appendix B details our computational procedure with the results presented in Table 2. It is noteworthy that our independent estimate of Mars’ GMAT (190.56 ± 0.7 K), while significantly lower than values quoted in recent years, is in perfect agreement with spherically integrated brightness temperatures of the Red Planet derived from remote microwave measurements in the late 1960s and early 1970s [85-87].”

            Their reasons seem well thought out along a very structured line of argument, and I would not characterize this as dishonest.

            I don’t have the command of the math to be a technical ref for you and Nikolov’s exchanges, but his ability to answer each of your objections indicates to me that he has a command for what he is doing.

            What I find, in these sorts of higher level intellectual kung fu matches, is that inevitably one side claims that the other side does not understand some basic, while the other side claims the same of its respective other. It’s frustrating to be such a novice that I cannot declare a true winner of these debates. What I see, however, is that N&Z seem to be holding their own, despite your efforts to find something wrong with their ideas.

            I, thus, cannot yet discount their approach to explaining Earth’s near-surface warmth via their alternative explanation, which seems consistent with banishing the insanity over the Satan molecule (CO2).

            I have seen technical arguments against the “radiative greenhouse effect” that equal or surpass the rigor of your technical arguments against N&Z. Both approaches seem to have their proponents and detractors.

          • Robert Kernodle January 4, 2019 at 6:23 pm

            Thanks for the reply, Willis.
             
            I’m trying to wade through all this with my less-than-perfect [understatement] understanding of the math.
             
            In one of your earlier comments, you wrote:
             

            And if he [Nikolov] were honest he wouldn’t have used a bogus temperature for Mars (180K) simply because it fit his curve to within 0.1°C. Instead, he would honestly have used the real Mars temperature of 201K, which gives a 30°C error

             
            I’m thinking that there might be a better characterization of his (their) choice for Mars temperature than your implication of dishonesty. I took a quick look at this:

            Robert, every modern reference I can find puts the average temperature at ~210K—220K. I find nobody who puts it below 200K.

            However, Nikolov used the value of 180K.

            Now, you are free to believe that it is just a fortunate cosmic coincidence that 180K is within 0.1°C of the value predicted by Nikolov’s miracle equation.

            Me … not so much …

            w.

          • Here’s the reason why Mr. Eschenbach is right that almost all of those arguments are irrelevant: there would be no average conduction between the earth’s surface and the atmosphere if the atmosphere were perfectly non-radiative.

            There are three components: the earth, its atmosphere, and space. If the atmosphere were completely non-radiative, then heat flow to and from the atmosphere could occur only by conduction, and that conduction would occur only between the atmosphere and the earth: there’s no conduction to space.

            In such a situation there may be net local conduction over time between individual portions of the surface and the atmosphere. And for finite periods of time there may be net global conduction between the entire surface and the atmosphere. But on average over the entire surface and over time, the net heat flow by conduction has to be zero. Otherwise the atmosphere would eventually reach absolute zero or get so hot as to escape the earth’s potential well.

            So it doesn’t matter whether the earth is spinning, whether convection is occurring, whether there’s one sun or many, or whether gravity imposes some temperature gradient on the atmosphere. Barring a long-term trend in the atmosphere’s total energy, all the energy received from the sun is either (1) retained by the earth to give its temperature a long-term trend or (2) radiated back out to space. Barring a long-term trend in the earth’s temperature, that is, the earth’s surface will on average radiate away all the power it receives from the sun, independently of the atmosphere’s size.

            Yes, Holder’s inequality being what it is, the atmosphere and the spatial distribution of the incoming radiation will affect what the average temperature is that’s responsible for that outgoing radiation. But at steady state the average power the surface radiates has to equal the average power received from the sun(s).

            In contrast, the real earth’s surface radiates more on average than the earth receives from the sun. Since that can’t occur with a non-radiative atmosphere, the earth’s surface temperature does depend on the atmosphere’s composition, not just on its the mass. And the overall conclusion of Nikolov and Zeller’s mental gyrations is that this isn’t true.

            So, no matter what mental gyrations they go through to reach their conclusion, there’s something wrong with their reasoning, because their conclusion is wrong.

            No, I’m under no illusion that this will convince anyone here. Having succumbed to morbid fascination at the appalling illogic of so many who have obviously studied some physical science, though, I had to vent.

          • “there would be no average conduction between the earth’s surface and the atmosphere if the atmosphere were perfectly non-radiative.”

            That is perfectly correct but does not lead to the conclusion you think it does.

            If you read my description you will see how a circulation of stored energy can lead to a warmed surface for the entire globe whilst not disrupting the energy in / energy out balance.

            All you need is for the stored energy to cycle continually through a closed adiabatic loop.

            Once the loop is established there is indeed then a net zero energy exchange with the surface but it still heats the surface because it represents a ‘rolling’ delay in the emission of solar energy to space.

            I think it may be the ‘rolling over’ aspect that is causing some contributors a conceptual difficulty.

          • Joe Born:
            “But on average over the entire surface and over time, the net heat flow by conduction has to be zero. Otherwise the atmosphere would eventually reach absolute zero or get so hot as to escape the earth’s potential well.”

            This doesn’t make sense.

            The atmosphere will conduct with the surface according to how dense the atmosphere is and how much insolation the surface receives. If the GHG-free atmosphere is extremely dense, then it’ll absorb lots of energy. It will in turn warm the surface; Willis admits this. The warmed surface will therefore radiate more energy than it would without an atmosphere, but this energy came from the atmosphere that had absorbed energy in the first place. No laws are violated.

            The atmosphere (in a typical planet) will also conduct with polar regions and nighttime regions and with molecules that have been cooled by these. At some point an equilibrium will be reached that depends on atmospheric density and solar insolation, and there can be no runaway cooling or heating that violates conservation of energy.

            Don132

          • Note the manner in which Mr. Wilde debates. Faced with an incontrovertible refutation of his position, he avoids addressing it directly but instead says there’s something the refutation failed to take into account. He then follows with word salad that no one understands.

            The reason no one understands it is that it doesn’t make sense. And there’s no point in addressing the word salad, because he’ll always take the position that it means something other than what you think it does.

            But someone who doesn’t yet have the background knowledge, or who just didn’t get the logic gene, blames his inability to understand on his shortcomings rather than on Mr. Wilde’s poor logic, and he assumes that because Mr. Wilde keeps on responding there must be something to what he says.

            Unfortunately, this approach can be amazingly successful. Christopher Monckton has duped the Heartland Institute and Anthony Watts with it, for example. As a consequence, the world is dumber than it should be.

            You will husband your time (and intelligence) best by skipping over Mr. Wilde’s comments.

          • Myself: “Now, please explain to us why an atmosphere that is heated by GHGs does not also transmit some of that energy to the surface, thereby causing the surface to radiate more than it receives. Divine heating?”

            Myself: because some the energy is radiated out by the atmosphere and that’s how balance is achieved..

            I make mistakes, and then I admit them. I’m trying to sort through all the logic here and I get tired, too.

            But Willis is wrong when he says his hypothetical planet violates conservation of energy. Since there are no GHGs, the energy from the atmosphere is returned to the surface and not radiated out, and the surface radiates at a higher temperature than it would with GHGs, yes, but none of this violates conservation of energy.

            It has to be. The atmosphere MUST absorb energy, and if it can’t radiate it away then that energy must be returned back to the surface from which it absorbed.

            Don132

          • To Willis E, you wrote:

            Now, you are free to believe that it is just a fortunate cosmic coincidence that 180K is within 0.1°C of the value predicted by Nikolov’s miracle equation.

            Yes, I am free to believe such, but to suggest that I actually do believe such would be a misrepresentation of my belief. What I believe is that N&Z have made a determined effort to establish a better estimate of Mars temp than all previous references that you rely on, and they explained this clearly in their latest paper to which I posted a link earlier.

            I also have not relinquished belief that you might be muddying up their approach with higher-level errors than I can understand. The grander ones knowledge, the grander the mistakes that can be made. (^_^) Rest assured, though, that I continue to try to wade through your objections, hoping that glimmers of deeper understanding might shine through. I always read your stuff, and gain insights from it.

            What I will say, in your defense, is that I believe Nikolov became a bit impatient and resorted to taking the lower ground when he brought your background into play in some of his comments. That is irrelevant to me. I try to look at the arguments and not the man, in these situations. This does nothing to reduce his credibility, however — it only shows that people who are passionate about what they do are human and get fed up with annoying situations, when they have to keep fighting the same battles over and over again to make any progress.

            I’ve seen great genius in pissed off people. (^_^)

          • Don132:

            I’ll try this once, but, no offense, nothing in the comments you’ve written so far gives me much optimism that you’ll get it.

            “If the GHG-free atmosphere is extremely dense, then it’ll absorb lots of energy.”

            That’s true. But make sure you keep a distinction in your mind between energy and power. The atmosphere can have prodigious amounts of energy without having any net heat flow occur between it and the surface at steady state. In fact, unless the atmosphere’s energy content—and presumable its temperature—is increasing or decreasing, there can be no net flow.

            “It will in turn warm the surface.”

            Not really. Yes, part of the surface could be warmed by the atmosphere—i.e., heat could flow on an ongoing basis from the atmosphere to that part of the surface—but only because heat is flowing from some other part of the surface to the atmosphere, for a net flow of zero. If the net flow into/out of the atmosphere weren’t zero, the atmosphere’s temperature would be changing.

            “The warmed surface will therefore radiate more energy than it would without an atmosphere”

            Well, yes, that warmed part of the surface will indeed radiate more—because the other part, the part that’s warming the atmosphere, is cooler than it would be without the atmosphere, so it’s radiating less. The surface as a whole is not radiating more. (Because of the fourth-law relationship between temperature and radiation, the average temperature will be higher with such an atmosphere than without it, but that’s different from a higher level of radiation.)

            I don’t know if it will help you understand this stuff, but here’s a highly simplified one-dimensional model that shows how the surface will emit more than system receives from the sun if the atmosphere radiates. If you then change the radiation/absorption percentages to zero to simulate non-greenhouse gases, you’ll see that it won’t.

            We will (arbitrarily) divide the atmosphere into two lumped-parameter chunks. Because of convection and conduction, an altitude layer in the real atmosphere can emit more or less radiation than it absorbs. To keep things simple, though, let’s imagine that there’s no convection or conduction: at equilibrium each layer has to emit all it absorbs. Also, although the real atmosphere absorbs some solar radiation directly, the atmosphere in our hypothetical is completely transparent to solar radiation; it absorbs radiation only from the surface and other layers.

            The following radiation quantities are consistent with those assumptions but show that the surface emits 2.2 W/m^2 for every 1 W/m^2 it absorbs from the sun. And only that 1 W/m^2 escapes back to space. Yet the emissions equal the absorptions: no energy is created or destroyed.

            \begin{array}{lcccccc}  &&&&&&\mathrm{Total}\\  \mathrm{Absorbed\,from:}&\mathrm{Surface}&\mathrm{L.Atm}&\mathrm{U.Atm}&\mathrm{Space}&&\mathrm{Absorbed}\\  &&&&&&\\  \mathrm{Absorbed\,by:}&&&&&\\  \mathrm{Surface}&0.0000&1.0500&0.1500&1.0000&||&2.2000\\  \mathrm{Lower Atmosphere}&1.6500&0.0000&0.4500&0.0000&||&2.1000\\  \mathrm{Upper Atmosphere}&0.4125&0.7875&0.0000&0.0000&||&1.2000\\  \mathrm{Space}&0.1375&0.2625&0.6000&0.0000&||&1.0000\\  &&&&&&\\  \mathrm{Total\,Emitted:}&2.2000&2.1000&1.2000&1.0000  \end{array}

            Each atmosphere layer in this (no-convection, no-conduction, lumped-parameter) hypothetical absorbs ¾ of the radiation it receives, and it emits all the radiation it absorbs. Also, 1 W/m^2 comes from space and the same amount is returned to space, but the surface emits 2.2 W/m^2. If you go through the arithmetic you can confirm this. If you so change it that each atmosphere layer absorbs all the radiation it receives, then the surface will emit 3.0 W/m^2. But, if you change the atmosphere to a non-greenhouse gas, then neither atmosphere layer will absorb any of the radiation that it receives, and it will therefore emit none. So the surface will receive no radiation from the atmosphere, and it therefore radiates only the 1.0 W/m^2 it receives from the sun.

            And this is true independently of whether the total energy in an atmospheric layer is gargantuan or minuscule; the net conductive flow is zero.

          • Stephen in reply to Joe:
            “Desperate, just desperate.
            Converts a perfectly clear concept into utter gibberish.”

            Disagree, Stephen. This is how we descend into name-calling and arguing.

            I think Joe has valid points and they should be able to be logically answered. I’m still thinking of an answer myself. Where’s the flaw in Joe’s thinking? Point it out if you think it’s there.

            We’re looking through different paradigms and in large part talking past each other.

            Joe: “The following radiation quantities … show that the surface emits 2.2 W/m^2 for every 1 W/m^2 it absorbs from the sun. And only that 1 W/m^2 escapes back to space.” Say what, Joe? The earth is emitting more than it absorbs? I thought this entire discussion started because that can’t happen?

            Joe: “.. . let’s imagine that there’s no convection or conduction: at equilibrium each layer has to emit all it absorbs.” OK, maybe, but cutting off conduction/convection is making another universe altogether, one that doesn’t work like ours.

            So yes, I’m confused, and the people who understand this might be able to clarify.

            Don132

          • Joe Born January 5, 2019 at 2:36 am

            Here’s the reason why Mr. Eschenbach is right that almost all of those arguments are irrelevant: there would be no average conduction between the earth’s surface and the atmosphere if the atmosphere were perfectly non-radiative. …

            Thanks, Joe. The truth of it is so obvious that it staggers me that so many people absolutely refuse to face it. In a steady-state condition with no GHGs, there can be no net conduction of heat between the atmosphere and the surface. As you say, if there were the atmosphere would eventually either freeze or boil away.

            I also had to laugh at your accurate description of Stephen Wilde’s method of debate …

            All the best of the New Year to you,

            w.

      • Thankyou cementafriend. You can show some folk the truth but they refuse to recognise it.
        Just got to keep it out there…. Gas Laws Rule, Entropy and Gradients Win. Brett

      • The Stefan-Boltzmann equation (SB)_assumes a closed cavity with perfect reflecting surfaces inside, and a hole to measure the flux of the electromagnetic radiation leaving the hole.

        The SB surface is an imaginary surface *INSIDE* the object.

        SB works at estimating the surface temperature of the Sun because the Sun can be modeled as an ideal furnace, i.e., a closed cavity with perfect reflecting surfaces.

        And even with these assumptions, it works pretty well.

        But the Earth not a star.

        When you apply the SB to the Earth, it produces the temperature measured by the satellite plus a piece of junk.

        The resulting temperature is most likely in the stratosphere.

        A greenhouse is a physical structure which reduces heat transfers to conduction.

        A greenhouse gas is atmospheric gas enclosed by the greenhouse.

        The atmosphere cools by convection.

        Hence the atmosphere and the greenhouse have nothing common.

        In order for the atmosphere to behave like greenhouse, one would have to introduce magical molecules and a hockey stick’.

        Oh wait, Hansen provided the magical molecules and Mann provided the hockey stick.

        Everyone in favor of consensus science say ‘Aye’.

  1. Definitely. If surface temperatures are due to compressional heating, the added temperature would radiate away.

        • Klem, pressure doesn’t generate heat. CompressING a gas generates heat, but when it is at a steady pressure no heat is generated.

          w.

          • Icisil,
            Yes. That is exactly the point. The highest pressure is nearest the surface.

            I think we’re getting warmer!

            Don132

          • For a given number of molecules, having a higher density means that a given amount of energy is distributed among a higher number of molecules, thus the amount by which each molecule is warmed is decreased by greater density: Less energy added per molecule.
            The relationship between molecular velocity and temp is linear, so I believe that adding a given amount of energy to a less dense gas will heat it more, not less.

          • Sorry, I rewrote the description and did not change the first part of it.
            It should start “For a given volume…”

          • Let’s keep volume constant and increase the number of molecules with pressure.

            Volume x in the stratosphere containing y number of molecules each having z kinetic energy will not have the same temp as volume x at the earth’s surface with (let’s say) y^100 number of molecules each having z kinetic energy.

            Is that correct?

          • It is not about weight heating the ground, it’s about the tremendous weight of the atmosphere at the surface being warmed by the surface, and the near-surface atmospheric density (a result of atmospheric weight due to atmospheric bulk and gravity) necessarily keeps the conducted heat near the surface: that’s where most of the atmospheric molecules are.

            Without surface atmospheric density, there is no greenhouse effect at all. Try it! How about: Mars?

            Don132

          • “The relationship between molecular velocity and temp is linear, so I believe that adding a given amount of energy to a less dense gas will heat it more, not less.”

            That doesn’t make sense. A dense surface atmosphere will have more molecules heated by that surface through conduction, and therefore a given volume of gas will have more molecules that are sped up through conduction. As the temperature of a gas is the average of the speed of all the molecules in a volume of gas, the temperature of a denser gas warmed by surface conduction will be warmer than a less dense gas.

            Why is it cooler three kilometers up? Primarily because the atmosphere is less dense three kilometers up.

            Why is the thermosphere cold even though the molecules in it are moving exceedingly fast? Because the atmosphere is so thin there. The molecules are “hot” but a volume of gas in the thermosphere is cold.

            Don132

          • ” Klem, pressure doesn’t generate heat. CompressING a gas generates heat, but when it is at a steady pressure no heat is generated”

            But our atmosphere is not at a steady pressure, every day it varies. meteorologists tell us daily that high and low pressure systems are sweeping through our region.

            It sounds like pressure variability to me.

            How does this not generate as least SOME heat?

          • The pressure is not steady. That would be the heat death of the planet. That would be the bicycle tire blown up once and done.

            The atmosphere is free to expand (less the pressure of the currently diminished solar wind).

            Sorry, yours and Roy’s argument fails to account for entropy as energy of position. Bang a cumulonimbus into the stratosphere (they dent it) and that suckah is coming down around the periphery of the cell. Energy is conserved, but part of the energy is potential energy, like a rock precariously perched on a canyon wall. Entropy statistically guarantees the rock will come down to reduce the energy of position. Mass over distance is work.

            The tragedy here is that Ned Nikolov overstates the case just as you do. You’re both right. Your arguments are not exclusive. The greenhouse effect definitely exists (albeit in a form different than human CO2 reducing radiation to space). Ned’s gravitatinal warming also exists.

          • Menicholas December 31, 2018 at 2:24 pm said

            “The relationship between molecular velocity and temp is linear…”

            No it isn’t. The relationship between energy and temperature is linear that means the (absolute)temperature is proportional to the √ of the molecular velocity. Pilots know this because they know that the delta T with increase in speed is (TAS /100)^2

            KE = 1/2MV^2 applies to molecules just as surely as bigger lumps of stuff.

          • Willis (and Roy).

            “Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation… …The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.”

            OK, now let’s substitute a totally non-GHG atmosphere (maybe pure nitrogen?) to 1 bar surface pressure.

            Where is the surface from which the SB calculation is to be performed?

            Is there no thermal conduction or convection and zero lapse rate?
            Regards, just asking.

          • Bob Fernley-Jones has some very good questions that should not be ignored.

            As for comparing a planet with no atmosphere with one with an atmosphere and using a law that does not apply (theoretically and empirically) to a body, for the said body, I think that Gerhard Gerlich and Ralf D. Tscheuschner already explained quite clearly why it’s not a good idea.

          • Bob Fernley-Jones December 31, 2018 at 8:18 pm

            Willis (and Roy).

            “Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation… …The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.”

            OK, now let’s substitute a totally non-GHG atmosphere (maybe pure nitrogen?) to 1 bar surface pressure.

            Where is the surface from which the SB calculation is to be performed?

            The S-B calculations are only valid for something which radiates. There are only two things in the system, the atmosphere and the surface. The atmosphere doesn’t radiate. The surface does. Where would you guess that the calculations take place?

            Is there no thermal conduction or convection and zero lapse rate?

            There is indeed a lapse rate. However, since the surface is evenly heated and there is no loss of energy from the atmosphere there is neither convection nor conduction.

            Regards,

            w.

          • Willis Eschenbach: “There is indeed a lapse rate.”

            There you lost me. I thought your hypothetical was a “perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns” with a perfectly non-radiative atmosphere.

            That sounds as though the surface temperature would be uniform. What drives the adiabatic expansion normally thought to cause the lapse rate? What did I miss?

          • Joe Born January 1, 2019 at 11:23 am

            Willis Eschenbach: “There is indeed a lapse rate.”

            There you lost me. I thought your hypothetical was a “perfectly evenly heated blackbody planet that I spoke of above, evenly surrounded by a sphere of mini-suns” with a perfectly non-radiative atmosphere.
             
            That sounds as though the surface temperature would be uniform. What drives the adiabatic expansion normally thought to cause the lapse rate? What did I miss?

            Yeah, you’re right, I misspoke. The atmosphere would be isothermal.

            There’s a good discussion of this question by Professor Brown here

            Always good to hear from you, have a wonderful New Year,

            w.

          • Willis,

            The S-B calculations are only valid for something which radiates. There are only two things in the system, the atmosphere and the surface. The atmosphere doesn’t radiate. The surface does. Where would you guess that the calculations take place?

            I forgot to mention that I agree that GHG effect is well demonstrated but that there is other stuff going on too, and yes, e.g. nitrogen apparently only absorbs incoming UV.

            There is indeed a lapse rate. However, since the surface is evenly heated and there is no loss of energy from the atmosphere there is neither convection nor conduction.

            I disagree that there would be no convection. The modelled flat surface planet is spherical and rotating, with complications including tidal and Coriolis effects. Also, gas contact with the surface must result in conduction boosted by convection/advection even though gases have low conductivity. Consider an analogy of a vertical rod of low conductivity material. The taller the rod, (equivalent to higher atmospheric pressure) the slower will be the rate of heat escape from the surface.

            Haven’t done the sums of course, just wondering.
            Regards

          • Bob Fernley-Jones January 1, 2019 at 12:49 pm

            Willis,

            I disagree that there would be no convection. The modelled flat surface planet is spherical and rotating, with complications including tidal and Coriolis effects. Also, gas contact with the surface must result in conduction boosted by convection/advection even though gases have low conductivity. Consider an analogy of a vertical rod of low conductivity material. The taller the rod, (equivalent to higher atmospheric pressure) the slower will be the rate of heat escape from the surface.
             
            Haven’t done the sums of course, just wondering.

            My bad if I didn’t mention it, but in my mind the planet in my thought experiment is not rotating. As you can see, I wanted to simplify the situation as much as possible.

            Next, there is no conduction. The air in the experiment will be isothermal, and will be at the same temperature as the surface. See Refutaion of Stable Thermal Equilibrium Lapse Rates for details.

            Finally, the atmosphere can only lose heat to the surface. So your vertical rod doesn’t apply.

            Best regards,

            w.

          • “pressure doesn’t generate heat. Compressing a gas generates heat, but when it is at a steady pressure no heat is generated.”

            There is potential energy, There is motion energy, heat is constantly being generated by the molecules in the gas until they run down.
            If the gas is at constant steady pressure it is generating heat, the balloon is not deflating.
            Your comment is apropos in a system with no energy input.
            Ie no sun, the atmosphere would compress into ice sheets. Energy shut down.
            So anywhere that pressure is preserved there is heat being generated to help it do so.
            Even if the initial stimulus is external energy.
            Now it may not be new energy [Your definition of generation I guess] but the collisions do occur and heat is generated.
            Hence in any atmosphere with an energy input and a vaguely steady pressure there is heat being generated by the motion of the particles higher with higher pressures due to higher gravity.
            That is why the gas stays as a gas under constant pressure.
            NZ do have some science behind them.

            Semantics is not science.
            “pressure doesn’t generate heat” is not correct.
            Pressure does not increase the energy in a system is much more precise.
            The two do have a relationship
            Gay-Lussac’s Law: The Pressure Temperature Law
            This law states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
            Now how does it stay at constant volume again?

          • Willis,
            Thanks for your interest,

            My bad if I didn’t mention it, but in my mind the planet in my thought experiment is not rotating. As you can see, I wanted to simplify the situation as much as possible.

            Sorry, I was relating to Roy’s post and his model which involves a great deal of non-equilibrium stuff. For instance, the thermal inertia of the whatever regolith or rock surface (nothing to do with albedo) is a tricky one as the inclined sphere rotates from midday alignment to midnight. In demonstration, I can’t recall the details now but remember that NASA screwed-up on predicting the surface T’s on the moon at one stage (might have been from overestimation of the amount of dust, I vaguely recall).

            Next, there is no conduction. The air in the experiment will be isothermal, and will be at the same temperature as the surface. See Refutation of Stable Thermal Equilibrium Lapse Rates for details.

            At a quick look, I’m not satisfied with Robert Brown’s paper that it applies to Roy’s unstable model, and that therein a non-GHG column could be isothermal. In Roy’s rotating sphere I submit that the surface air T will mostly be different to that of the surface itself (in part because of convection/advection).
            By definition, the non-GHG in contact with the surface is not heated by the sun (ignoring UV absorption) and so prima facie should be very cold at the surface. So how is it as you say that it is at the same T as the surface? What would the heat transfer process from the surface be? Might it be via conduction (curiously with zero interface resistance), and devoid of any of the thermal inertias? My long understanding has been that if you heat a fluid in a gravitational field from below, then convection and conduction will result and I can see no reason why that would not be true in Roy’s model.

            Finally, the atmosphere can only lose heat to the surface. So your vertical rod doesn’t apply.

            The analogy was intended to show that an atmosphere slows the escape of heat from the surface even if it comprises only non-GHG’s.
            Regards, Bob F-J

          • “The S-B calculations are only valid for something which radiates.”

            That is not correct. They are not valid in general for ‘something which radiates’. A lot of problems are in the climastrological pseudo science because they consider as valid a law where it isn’t.

        • Willis states:

          However, since the surface is evenly heated…

          How can the surface of this planet be equally heated when it presents itself to the sun at different angles, and when the surface has different albedos?

          If the surface was equally heated, there would not be a significant difference in temperatures between the Arctic, Antarctic, and the equator.

          Further, a not insignificant area of this planet is covered by tropical rain forests. In a tropical rain forest, how much heating is there of the surface by the sun given the thickness of the canopy? I have seen estimates that the dense canopy blocks about 95% of the sun light such that there must be relatively little direct warming of the surface. Of course it is warm near the surface but this is due to high humidity, not due to direct solar irradiance.

          The canopy is significantly higher than the surface (may be 30 to 40 metres above ground), and whilst the canopy receives solar energy some significant proportion of this is used to power photosynthesis, such that the absorption and re-radiation from the canopy can never be the same.

          • richard verney January 2, 2019 at 5:06 pm

            Willis states:

            However, since the surface is evenly heated…

            How can the surface of this planet be equally heated when it presents itself to the sun at different angles, and when the surface has different albedos?

            READ THE DAMN LINK! I even provided a freakin’ PICTURE!

            Sheesh … do your homework, you won’t look so foolish.

            w.

          • I am talking about planet Earth, you are not talking about anything remotely like planet Earth (in your Link).

            Your theoretical planet has even albedo (indeed it is a blackbody) and it is surrounded by 1000s of suns which evenly heat the theoretical planet. The surface is not presented to the sun at different angles because of the number of suns, and it is even stationary, and if it has an axial tilt that would be irrelevant because of the even distributions of the 1000s of suns. It does not have unequally distributed storage heaters (the oceans) etc. That conceptually is nothing like planet Earth.

            In the real world, where there are differences one will normally see different responses. So for example if the population of this planet is about 7 billion people, the future population growth will depend upon the ratio of men to women and their distribution. So there will be a very different population growth if the split is about 50/50 with about 3.5 billion of each, but a very different population growth if there are say just 100 million women and about 6.9 billion men, or if 90% of the women are over 50 but 95% of the men are between 1 and 10 years old.

            Thus, in the real world, on planet Earth, for example, the distribution of the land masses is pivotal. Even the slightest movement such as the opening up of the Panama Isthmuth can lead to a radical response to the same solar input and the same CO2 levels.

            The devil is almost always in the detail, and this is a potential problem when one tries to extract a though experiment into the real world. Whilst thought experiments are interesting, one should not lose sight of their limitations.

    • Tom, why assume there is no sunlight. We are not talking about something in steel, but atmosphere in space under that ol’ sun. Just because Willis cannot see the difference between the gas phase and solid steel, two totally different forms of matter (nope, no ‘ideal steel law’ applies), and he imagines he can make up equations that trump the work of fine Physicists, does not make the null hypothesis invalid. Which is what N and Z support. Brett

      • I was considering the equilibrium effect of gravitational compression, apart from the solar effects. Whatever warming one has from gravitational compression would radiate away, as would the effects from solar heating.
        It was more a matter of dealing with one factor at a time.

        • Tom, except I deal with the real world, and input is punctuated variably but continuosly so. People should get out more….. Please stop making your assumptions about what I write. No models can approach reality in this situation. Brett

  2. Once, as a college student, I figured this out. It was a matter of increasing refractive index approaching the black body, but that’s a detail, and one an atmosphere of increasing pressure supplies. The prof couldn’t figure out what was wrong with it (outside of breaking the laws of thermodynamics) and neither could I. I decided to trust the laws of thermodynamics.

    Somewhere in grad school, I figured it out – black body radiation depends on the refractive index of the space it’s in. I’d love to claim a marvelous proof that was too large for the margins of the page, but I’d be lying. It was over fifty years ago, and I’ve simply forgotten the details.

    • Two comments on that.

      A worst case approximation for the introduced error when neglecting these [refractive index] effects is presented, showing that the error is below 0.1 % for wavelengths above 200 nm.

      SOURCE

      Since the thermal radiation that we’re discussing is typically between 5,000 and 35,000 nm (5 – 35 microns), the error is meaninglessly small.

      Next, the apparent conflict with the laws of thermodynamics is discussed here.

      Best New Years wishes,

      w.

  3. I think an even simpler explanation is to observe what happens with a hand-operated air pump. Fill up the tire on your kid’s bicycle, and touch the metal outlet fitting with you finger. You will not forget the experience! You will pull your hand away quickly, and possibly teach the kids standing nearby some words they hadn’t heard before (at least from you!). Touch it 10 minutes later, and neither it or the air in the tire will be much different from the air temperature.

    The message here is that, yes, compressing air will cause it to heat up as per Charles Law. But, through conduction and radiation, (as explained by the Second Law of Thermodynamics) the heated gas will come to be in equilibrium with its surroundings. That is, without the constant addition of energy equal to that which is lost, the compressed gas will decrease in temperature until equilibrium is reached.

    • That would apply to CONTINUOUS pressure increase only (work). A STABLE pressure is not the same..Bad analogy I would think..If you stop pumping, the pressure stays the same, but the temperature of the gas, when released, would be colder than the surrounding air..( I’ve used Acetylene/Oxygen tanks at work before and the released gas was always cold)..? What am I missing ? (probably lots..LOL) Or is it the release of pressure that makes the gas colder ?

      • In the case of acetylene (it’s actually dissolved in an acetone/support mixture) the liberation of acetylene involves a phase change that removes heat necessary for its vaporization and hence the tank cools.

      • Pressurize a gas, and it heats up (that’s why scuba tanks are usually in a tank of water while they are being filled to around 3300 PSI, so the water can adsorb the heat). Typically when the gas is later released, the gas absorbs roughly the same amount of heat as was created when it was pressurized. This is also roughly how A/C systems work. The net result being that heat is being moved around. Pressuring a gas does cause the gas to heat, but the heat is usually lost to something until, as Marcus says, it reaches ambient temperature. The once heated gas cannot stay at the pressure heated temperature unless it is in a perfectly insulated container. As I understand it, Earth’s atmosphere loses heat to space. Once the heat of pressurization is lost, it cannot continue to provide its heat – it is gone, else it would be a kind of perpetual motion (energy) machine.

        • Correct Clay all the junk being peddled assumes a closed system, the system isn’t closed exactly as the Scuba tank shows. As I said above if it worked like this every scuba tank diver would be swimming around with 3rd degree burns in the middle of there back.

    • You have it. While air is being compressed, kinetic energy is changed to heat energy. Once the pumping stops there’s no more kinetic energy to produce heat. It’s just compressed air in a container. Atmospheric air is compressed by gravity but not in the active sense of a mechanical tire pump or air compressor. Gravity maintains the compression and the amount of compression is a function of altitude.

      I’ve tried to rephrase what you wrote just like the famous science-popularizer Neil deGrasse Tyson habitually rephrases everything anyone says to him.
      Me: “Hello.”
      Neil: “You mean ‘Greetings’ or ‘How’s it going’ or some other phrase commonly understood to …blah blah…”

      • CKMoore and Marcus
        The air IS heated during compression (ala Charles Law) and the pressure is maintained inside the tire. Yet, the tire does not stay hot.

        • Clyde Spencer December 31, 2018 at 12:20 pm said

          “The air IS heated during compression (ala Charles Law) …”

          Charles’law does not have anything to do with the heating of a gas as it is compressed. Nothing At all.

          Charles’ law: The volume of a given mass of a gas, held at constant pressure, is propotional to the absolute temerature. See, nothing to do with compression, in fact neccesarilly, by defintion, pressure is held constant.

      • Gravity doesn’t cause a pressure gradient in a pile of books, but it does in the atmosphere, and that’s why the temperature drops as you go to higher altitudes and lower pressures.

      • There is a fundamental difference between solids and gases. But that said, if there is enough gravitational forces exerted on a solid object, solids will be heated, eg ., the Jovian moon Io. As Wikipedia notes:

        Io (Jupiter I) is the innermost of the four Galilean moons of the planet Jupiter….With over 400 active volcanoes, Io is the most geologically active object in the Solar System.[8][9] This extreme geologic activity is the result of tidal heating from friction generated within Io’s interior as it is pulled between Jupiter and the other Galilean satellites—Europa, Ganymede and Callisto.

        Our planet’s atmosphere is also subject to constant gravitational tides which result in the atmospheric bulge. Our atmosphere is constantly being pulled by the moon and the sun, sometimes working in opposition and sometimes working in conjunction.

        The atmosphere is constantly being displace from below by the action of the tides (as they come and go, and by the passing of mountain ranges as the planet spins on it’s axis. On top of that our planet’s atmosphere is constantly being heated from above by the sun and below by the surface and air currents are constantly circulating in 3 dimensions causing work to be done, the by product of which is heat.

        Whether these processes are enough to explain why the atmosphere can maintain its heat is probably anyone’s guess. I have never seen anyone try and calculate the effect of all of this, and whether this point is sufficient to address and overcome the point made by Clay Sanborn December 31, 2018 at 11:15 am

    • a hand-operated air pump
      =======
      You are using the wring model. Consider a sterling engine. When you rotate the shaft you get a hot side and a cold side.

      Now mount a solar panel and electric motor to the shaft. Put the hot side of the sterling engine on the surface and the cold side in the upper atmosphere.

      The surface will now be warmer and the upper atmosphere cooler but the average will be unchanged.

    • When air compresses and heats, there is “work” done of some form to cause the compression (W= the integral of -PdV according to chapter 1 of my old P Chem book). This is a reversible process so when air in the atmosphere sinks and compresses, it heats, and when it rises, it cools (pretty basic stuff). There should be no “net” addition of energy to the system. On the other hand, the greenhouse effect takes energy emitted by the earth towards space and sends part of it back towards earth, so there is a net increase in energy at and near the surface (again pretty basic stuff). I think this is consistent with what Dr. Spencer is saying in a comment below.

      Any experts out there want to add or correct my understanding here?

      • “On the other hand, the greenhouse effect takes energy emitted by the earth towards space and sends part of it back towards earth, so there is a net increase in energy at and near the surface (again pretty basic stuff).”

        On the other hand, the atmospheric greenhouse effect (NZ) takes energy emitted by the earth towards space and keeps part of it near the surface due to the density of the near-surface atmosphere which has absorbed heat from the surface via conduction and convection, so there is a net increase in energy at and near the surface (pretty basic stuff.)

        I’m not sure that any of the above means that the surface must necessarily have more energy than it’s supposed to have, i.e., that it’s radiating more than it receives.

        It is not about compressive heating. If it is, then please state where NZ say explicitly that it is.

        Don132

        • From the article above:

          “In short, it is the theory that there really isn’t a so-called “greenhouse effect”, and that the excess planetary surface temperatures on Earth, Venus, and other planets above the Stefan-Boltzmann (SB) temperature calculated from the rate of absorbed solar radiation is due to compressional heating by the atmosphere.”

          I consider compressional heating as a one-time event where once the atmosphere is compressed and in place, the temperature then equaliberates via various heat transfer mechanisms (convection, conduction, radiation) to a new equilibrium, unlike the GH effect where there is a continual boost in energy. In reading reviews of NZ, one of the reviewers stated NZ basically discovered the ideal gas law in an inefficient way with R2=0.9999. The ideal gas law connects temperature to pressure in a pretty ridged way (paraphrased from the reviewer).

          I’m not well versed in the NZ topic and at this point will defer to others.

          • Farmer Ch E retired, you are quoting from Willis and Spencer who assume that NZ are talking about “compressional heating by the atmosphere.” NZ are not talking about compressional heating of the atmosphere, and they are not talking about the heating that takes place when a gas is compressed. Suggest that Willis and Spencer review the theory before making claims about it.

            If the radiative greenhouse effect is what warms our atmosphere then we should be able to see a similar effect for all planets with GHGs, which is most of them, and we should be able to derive a universal formula for all of them. This has not happened. What NZ have done is search for a universal formula that captured the variables that mattered, using dimensional analysis. What they found is that the presence of GHGs did not matter; what mattered was atmospheric density and proximity to the sun. Those who are wedded to the radiative theory don’t like this and so assume that the theory says something else, so they can tear it down.

            Over and over something about compressional heating is repeated. It is not about compressional heating. It is about atmospheric density and the concentration of warmed molecules where the atmosphere is most dense– namely, at the planetary surface.

            Don132

          • I would consider that earth’s atmosphere acts like a continuous pump. The atmosphere expands and contracts. Whether gravity does this or not, I wouldn’t conjecture because no one understands or understood gravity (not even Einstein, but that is a topic for another day). However DWIR does exist as even Ned Nikolov is forced to admit or why would cloudy nights be warmer than non cloudy nights. WILLIS Could you please put your thinking cap on to try to destroy Thayer Watkins conclusions about cloudy nights ? I took Thayer’s conclusions and figured out the maximum effect of CO2 from that.

            http://applet-magic.com/cloudblanket.htm
            The following is my calculations given that Thayer is correct in his.

            ********************************************************************************
            Clouds overwhelm the Downward Infrared Radiation (DWIR) produced by CO2. At night with and without clouds, the temperature difference can be as much as 11C. The amount of warming provided by DWIR from CO2 is negligible but is a real quantity. We give this as the average amount of DWIR due to CO2 and H2O or some other cause of the DWIR. Now we can convert it to a temperature increase and call this Tcdiox.The pyrgeometers assume emission coeff of 1 for CO2. CO2 is NOT a blackbody. Clouds contribute 85% of the DWIR. GHG’s contribute 15%. See the analysis in link. The IR that hits clouds does not get absorbed. Instead it gets reflected. When IR gets absorbed by GHG’s it gets reemitted either on its own or via collisions with N2 and O2. In both cases, the emitted IR is weaker than the absorbed IR. Don’t forget that the IR from reradiated CO2 is emitted in all directions. Therefore a little less than 50% of the absorbed IR by the CO2 gets reemitted downward to the earth surface. Since CO2 is not transitory like clouds or water vapour, it remains well mixed at all times. Therefore since the earth is always giving off IR (probably a maximum at 5 pm everyday), the so called greenhouse effect (not really but the term is always used) is always present and there will always be some backward downward IR from the atmosphere.

            When there isn’t clouds, there is still DWIR which causes a slight warming. We have an indication of what this is because of the measured temperature increase of 0.65 from 1950 to 2018. This slight warming is for reasons other than just clouds, therefore it is happening all the time. Therefore in a particular night that has the maximum effect , you have 11 C + Tcdiox. We can put a number to Tcdiox. It may change over the years as CO2 increases in the atmosphere. At the present time with 409 ppm CO2, the global temperature is now 0.65 C higher than it was in 1950, the year when mankind started to put significant amounts of CO2 into the air. So at a maximum Tcdiox = 0.65C. We don’t know the exact cause of Tcdiox whether it is all H2O caused or both H2O and CO2 or the sun or something else but we do know the rate of warming. This analysis will assume that CO2 and H2O are the only possible causes. That assumption will pacify the alarmists because they say there is no other cause worth mentioning. They like to forget about water vapour but in any average local temperature calculation you can’t forget about water vapour unless it is a desert.
            A proper calculation of the mean physical temperature of a spherical body requires an explicit integration of the Stefan-Boltzmann equation over the entire planet surface. This means first taking the 4th root of the absorbed solar flux at every point on the planet and then doing the same thing for the outgoing flux at Top of atmosphere from each of these points that you measured from the solar side and subtract each point flux and then turn each point result into a temperature field and then average the resulting temperature field across the entire globe. This gets around the Holder inequality problem when calculating temperatures from fluxes on a global spherical body. However in this analysis we are simply taking averages applied to one local situation because we are not after the exact effect of CO2 but only its maximum effect.
            In any case Tcdiox represents the real temperature increase over last 68 years. You have to add Tcdiox to the overall temp difference of 11 to get the maximum temperature difference of clouds, H2O and CO2 . So the maximum effect of any temperature changes caused by clouds, water vapour, or CO2 on a cloudy night is 11.65C. We will ignore methane and any other GHG except water vapour.

            So from the above URL link clouds represent 85% of the total temperature effect , so clouds have a maximum temperature effect of .85 * 11.65 C = 9.90 C. That leaves 1.75 C for the water vapour and CO2. CO2 will have relatively more of an effect in deserts than it will in wet areas but still can never go beyond this 1.75 C . Since the desert areas are 33% of 30% (land vs oceans) = 10% of earth’s surface , then the CO2 has a maximum effect of 10% of 1.75 + 90% of Twet. We define Twet as the CO2 temperature effect of over all the world’s oceans and the non desert areas of land. There is an argument for less IR being radiated from the world’s oceans than from land but we will ignore that for the purpose of maximizing the effect of CO2 to keep the alarmists happy for now. So CO2 has a maximum effect of 0.175 C + (.9 * Twet).

            So all we have to do is calculate Twet.

            Reflected IR from clouds is not weaker. Water vapour is in the air and in clouds. Even without clouds, water vapour is in the air. No one knows the ratio of the amount of water vapour that has now condensed to water/ice in the clouds compared to the total amount of water vapour/H2O in the atmosphere but the ratio can’t be very large. Even though clouds cover on average 60 % of the lower layers of the troposhere, since the troposphere is approximately 8.14 x 10^18 m^3 in volume, the total cloud volume in relation must be small. Certainly not more than 5%. H2O is a GHG. Water vapour outnumbers CO2 by a factor of 50 to 1 assuming 2% water vapour. So of the original 15% contribution by GHG’s of the DWIR, we have .15 x .02 =0.003 or 0.3% to account for CO2. Now we have to apply an adjustment factor to account for the fact that some water vapour at any one time is condensed into the clouds. So add 5% onto the 0.003 and we get 0.00315 or 0.315 % CO2 therefore contributes 0.315 % of the DWIR in non deserts. We will neglect the fact that the IR emitted downward from the CO2 is a little weaker than the IR that is reflected by the clouds. Since, as in the above, a cloudy night can make the temperature 11C warmer than a clear sky night, CO2 or Twet contributes a maximum of 0.00315 * 1.75 C = 0.0055 C.

            Therfore Since Twet = 0.0055 C we have in the above equation CO2 max effect = 0.175 C + (.9 * 0.0055 C ) = ~ 0.18 C. As I said before; this will increase as the level of CO2 increases, but we have had 68 years of heavy fossil fuel burning and this is the absolute maximum of the effect of CO2 on global temperature.
            So how would any average global temperature increase by 7C or even 2C, if the maximum temperature warming effect of CO2 today from DWIR is only 0.18 C? This means that the effect of clouds = 85%, the effect of water vapour = 13.5 % and the effect of CO2 = 1.5%.

            Sure, if we quadruple the CO2 in the air which at the present rate of increase would take 278 years, we would increase the effect of CO2 (if it is a linear effect) to 4 X 0.18C = 0.72 C Whoopedy doo!!!!!!!!!!!!!!!!!!!!!!!!!!

          • While your calculated climate sensitivity to 4x CO2 is reassuring, I still call ‘bs’ on the whole premise. Switch the date to the late 30s or 1940-41, and then there has been no statistically significant warming in spite of a huge increase in CO2. Set the starting point back to the end of the Roman Republic or the Minoan Civilization, and there has been a huge cooling inspite of the doubling or more of CO2.

            It would be awesome if someone could get funding for an experiment to finally probe things one way or the other. Say at least 2 large corrals or compounds, with 30m or more high walls (made with plastic sheeting probably), with different levels of CO2. CO2 is heavier than air and should stay in the corral, the high wall preventing winds from mixing things up with the outside air. One compound with 400ppm for control, the other at at least double.

            Maybe telephone poles would be tall enough to support walls tall enough to keep the CO2 at the right concentration.

            I’m sure someone here has a better, more creative idea for a definitive experiment, better than air in jar with heat lamps, bit I throw my idea out there to start the discussion.

          • “This slight warming is for reasons other than clouds” This should read
            This slight warming is for reasons other than just clouds.

          • Alan, I do not think that NZ say that DWIR does not exist. They say that it’s not as important as we believe. I think Stephen Wilde put it best: atmospheric pressure allows the radiative effects to work as they do.

            Don132

          • My posting did not state that 0.18C was the actual climate temperature effect of CO2. What it did state was that 0.18C is the maximum possible effect of CO2 at 410ppm. The effect may well be ZERO C. My conclusions of a local temperature effect were derived and built upon from Thayer Watkin’s article. If Thayer is wrong then I am wrong. However my conclusions are from a local analysis. They do not conflict with either Ned Nikolov’s theory or the general GHG theory of the greenhouse effect of an atmosphere. I simply took the observation of a maximum observed effect of clouds of 11C and calculated the maximum possible effect of CO2 at today’s levels of 410ppm. The real effect of CO2 may be ZERO but at least I have shown that the maximum effect possible is 0.18C.

            However there is another side to this whole scare. At the present rate of increase of net CO2 of 0.5 % , this represents that CO2 will exceed the UK workplace saftey limit of 5000 ppm in 500 years time. This does bother me because if the increase of net CO2 in the atmosphere does increase at that rate, then we can’t ignore that. If it was 5000 years, I wouldn’t worry about it but 500 years is a different matter. HOWEVER the rate of net increase of CO2 in the atmosphere goes up and down every year. The rate of change over the last 60 years has been 0.423 % calculated as a geometric average or 0.48% calculated as an arithmetic average. this may well level off to ZERO in the future or it may continue. If it does continue then we DO have a problem in 652 years at the geometrical rate of increase of 0.423 %. I am a total skeptic of temperature changes and of drowning in rising sea levels, but the possible choking to death on CO2 levels is a nagging problem in ~ 600 years.

      • Air raising takes energy away from the surface. Air descending brings energy back to the surface. Radiation takes energy away from the surface. Back radiation brings energy back to the surface. Neither process creates any energy, neither can result in any net energy increase.
        

    • You’re not missing anything, Marcus. That’s the point. Once the pressure stabilizes, there are no more temperature effects.

      I don’t know why everyone else didn’t see this immediately. Yes, there was high temperature from the energy of the condensing of the planet and the atmosphere, but it was a temporary phenomenon. After things got stable, it would have cooled off to equilibrium.

    • Clyde Spencer December 31, 2018 at 9:58 am said

      “The message here is that, yes, compressing air will cause it to heat up as per Charles Law”

      This is incorrect. Charles law does not predict the amount of adiabatic heating when a gas is compressed.

      Classical Charles’ Law The volume of a given mass of gas, held at constant pressure, is proportional to the absolute temperature. It is incorporated in the formua pV=nRT which appears to be widely misunderstood on this site.

      More at Wikipedia(which actually gets this sort of stuff right)

      https://en.wikipedia.org/wiki/Gas_laws

    • Of course. Both points of view are right and legitimate. They are in fact complementary. In the standard atmosphere model, this observation results in the lower layers of atmosphere having a temperature higher than the upper ones. The gradient of temperature being derived from the variation of pressure with altitude dp/dh=-𝜌h and pressure being linked to temperature by the perfect gas law P=𝜌RT.

      At the level of the ground, there is no radiation equilibrium, only 1/3 of the heat flux (approximately) is evacuated by IR radiation, 2/3 are evacuated by convection and as sensible heat (water vapour).
      The effect of the presence of “greenhouse gases” is that the radiation equilibrium happens not at the surface of the earth, but at a higher altitude where temperatures (according to the standard atmosphere) are colder.

      There is no easy way to determine the mean altitude of radiation equilibrium. The atmosphere itself not being a black body, the equilibrium altitude is not the same for every IR wavelength. Actually the temperature of the ground is determined by the position of the “transparent IR window” through which 1/3 of the heat evacuated by the ground leaks to space. The “edge” of the transparent window varies slightly when “greenhouse gases” (water vapour, carbon dioxide and others) concentrations increase, leading to a slight increase in the radiation temperature of the ground. The effect varies from place to place, instant to instant, and with the cloud coverage, so that, up to now, it has been impossible to hint its average value with mathematical models.

      • But we can calculate the maximum temperature effect of CO2 locally, which will also be its maximum effect everywhere. See my above post.

    • Hmm, I fill up wheelchair tires all the time, some up to 110psi. Never been burned by a hot valve stem, never even felt warmth, to be honest.

  4. Does this mean that pressure has no effect or just that it is less than they predict ? I always thought gases got colder when compressed ?

    “According to Charle’s – GayLussac’s Law, the volume of a fixed amount of gas maintained at constant pressure is directly proportional to its temperature.
    or simply,

    V
    T
    =
    c
    o
    n
    s
    tan
    t

    When the gas is compressed it means that the volume decreases. As Charle’s – GayLussac’s Law states, we could predict that the temperature of the gas would also decrease.”

    • Marcus, gases actually get warmer when compressed, not colder. However, the part that Nikolov and Zeller (N&Z) don’t understand is that this is not a constant on-going process that can lead to a permanently higher temperature.

      Best regards,

      w.

        • EdB, it doesn’t matter what their theory is. My proof shows that NO compression, pressure or gravity based theory can work in the absence of greenhouse gases.

          As to quotes from N&Z, take a look at The Mystery of Equation 8.

          w.

          • Willis, what you say is impossible in spite of the math.
            In the absence of GHGs, a warmed planetary surface must warm (via conduction and convection) an atmosphere composed of N2 and O2 with the same pressure as ours, and that warmth must be concentrated near the surface (ie, the average kinetic energy of a volume of atmosphere [“temperature”] MUST be higher with greater pressure simply because there are most molecules per unit volume.) Furthermore, this heat wouldn’t be radiated away by the atmosphere. There is no violation of any physical law in any of this. Therefore pressure does not cause heating, but it allows heat to be retained– something like how GHGs work.
            Don132

          • Having reviewed (but not read every reply), I’ll offer a couple of observations for the next flare-up of this debate.

            What I have not seen in this discussion are the terms Path Function and State Function. The error of much of this discussion is confusing the two. A gas equation of state of the form PV = f(nT) is a State Function (the ideal gas law being the most popular form) and can be arranged to predict the tempeature of a closed system of gas at a given P,V,n. What is overlooked is that for a given slice of the atmosphere near the surface, the current combination of PVT is a Path Function becasue the system is not closed (hot air can move in/it can move out, heat is radiated in/out, heat is conducted in/out, etc., etc., etc.).

            Thus, your perferred equation of state can only be used to predict the change in temperature from State 1 to State 2. One might be tempted to use the (relatively) constant (averaged?) condtions of outside the atmosphere (State 1) to predict a ground-level State 2; however, because your selected PVn slice of atmosphere is not a closed system, the prediction is only transiently correct. The discussion around filling scub tanks (with and without the water bath) illustrate the problem exactly. Consequently, it is an improper use of thermodynamics to attempt to predict surface temperature from PV work alone.

            As many have pointed-out, the N&Z work is not a thermodynamic prediction. It is rather an attempt at heat transfer prediction. We don’t all freeze to death when the sun goes down becasue the earth’s atmosphere is an insulating system.

            In engineering, heat transfer rate (Q) is generally writen in the form:

            Q = U x f(T1,T2)

            There are many forms of the equation: U can be modeled by a thermal conductivity; the temperature difference can be a linear difference, a difference of squares, a difference of 4th power (common in radiation transfer), log-mean difference, and others. Generally, engineers only model the coeficient U from first principals (like thermal conductivity) in very narrowly defined and simplistic systems. The N&Z work spiffys-up the general heat transfer equation:

            Q = f(P, other stuff) x f(T).

            Perform a heat balance (Qin = Qout) and pick a reference temperature and one has a predictive equation for air temperature based on heat transfer. Here’s the rub, if you look at Equation 8, it has squishy parameters and a numeric coefficient. Consequently, it’s curve fitting as Willis has explained.

            Now, in N&Z’s defense, curve fitting has a long and distinquished career in heat transfer. In the general equation above, U is rarely derived from first principals: real engineering systems are seldom sufficiently neat/simple. Consequently, we measure/estimate/guess a simple numeric coefficient and pair it with the form of tempature difference (linear, square, etc.) that provided the best fit over the narrow range of temperature for which we’ll accept this approximation. Useful tool.

            However, as has been discussed on this site numerous times, curve-fitting parameters is at best sketchy proof that the parameters so-fitted rise to the exalted state of first principals. The greater the number of fitting parameters in the equation, the more dubious the conclusion. The dimensional analysis is a good way to avoid terms for your fit that are a priori incorrect (eg: P/V for energy); but, it is in no way proof that the term is a proper element of the model. In the jargon, a necessary but not sufficient condition.

            So, of your kindness, please lay down your thermodyanmic clubs and take up your heat transfer clubs. The discussion may now resume.

          • Don said: “Willis, what you say is impossible in spite of the math.
            In the absence of GHGs, a warmed planetary surface must warm (via conduction and convection) an atmosphere composed of N2 and O2 with the same pressure as ours, and that warmth must be concentrated near the surface (ie, the average kinetic energy of a volume of atmosphere [“temperature”] MUST be higher with greater pressure simply because there are most molecules per unit volume.) ”
            There is no contradiction there. The temperature gradient results from the hydrodynamic pressure of the gas column. What changes in a transparent atmosphere (without GHG) is that the radiative equilibrium must take place at the level of the ground when it takes place at different altitudes depending on IR wavelengths with GHGs.
            As a result, the radiative temperature equilibrium takes place higher in the atmosphere and, thanks to the temperature gradient of a normal atmosphere, the surface is warmer.

            What actually determines the temperature “at the level of the ground” is the wavelength of the edge of the atmospheric windows which depends mostly on water vapor and a little on carbon dioxide concentrations.

          • What actually determines the temperature at the level of the ground is the amount of KE released within descending air masses.

            Any radiative imbalances are neutralised by convective adjustments.

            It is established science that convective adjustments can stabilise or neutralise radiative imbalances

            http://www.public.asu.edu/~hhuang38/mae578_lecture_06.pdf

            “Radiative equilibrium profile could be unstable; convection restores it to stability (or neutrality)”
            and:
            Note that the hydrostatic equation depicts the vertical balance of force for a piece of fluid at rest. The balance is between the upward pressure gradient force and downward gravitational force.
            The hydrostatic equation is the vertical component of the momentum equation (Newton’s equation of motion) for the fluid parcel when the forces are in perfect balance and the net acceleration = 0.”
            Readers should study that lecture since it explains the concept of hydrostatic balance within atmospheres.
            It appears that those climate scientists who apply the radiative gases theory of climate change have overlooked the means by which convection neutralises radiative imbalances.

          • Paul says, in reference to GHGs:
            “As a result, the radiative temperature equilibrium takes place higher in the atmosphere and, thanks to the temperature gradient of a normal atmosphere, the surface is warmer.”

            I’m modifying my position to say not only has atmospheric heat been concentrated toward the surface by pressure, but also that density caused by pressure allows the atmosphere to absorb heat from the surface, and hold it there. I change my position because of the thinking I’ve gone through that shows me that my understanding of NZ, Wilde, and Holmes was incomplete in that I didn’t realize (explicitly) that an atmosphere without GHGs must be able to absorb energy, which is the only way to resolve Willis’ hypothetical planet riddle. Stephen has been saying this all along.

            So if pressure is doing something, is radiation doing something on top of that? Or are the radiation calculations arbitrarily designed to make up the difference for surface T versus incoming, because we assume that pressure plays no role? Radiative theory is self-consistent within its own paradigm; we’d expect that. But are the underlying assumptions of the paradigm correct?

            In the view that we count down from emissions height, pressure is just a bystander, waiting on the sidelines to make equations come out correctly but not doing anything.

            Don132

      • Willis, “gases actually get warmer when compressed” = logic, but when a gas is released into space, does it take the heat with it ? I’m so confused….(and it has nothing to do with my overindulgence on N.Y. Eve.) lol ..D’OH !

      • Willis,

        I think I’m on your side on this, but cannot gravity be considered a “constant ongoing process”?
        It doesn’t stop when the compression is ‘complete’ even if convection is acting in the opposite direction

        This is hard for my brain, so please be generous in your response.

        • Mothcatcher, gravity cannot do constant work. If it could we’d just harness it for a perpetual motion machine. It is a force, not energy.

          w.

          • That’s why my brain hurts. It’s a force, it’s not energy. Agreed. But it’s still a force. Doesn’t stop being a force when it has captured an atmosphere.

          • Willis, I still don’t understand your proof. The atmosphere doesn’t have to do work. (You have proved above that it does not.)

            However, your thought experiment does deviate from an ideal blackbody. I believe the addition of an atmosphere (with no GHGs) does change the radiative physics in your thought experiment. [Even using an atmosphere that cannot radiate energy.]

            As another person stated the problem:

            “If the planet without an atmosphere has temperature T1 and you were to magically add an atmosphere, let’s say with no GHGs that cannot radiate at all in IR wavelengths, according to the N-Z theory the temperature at the surface should rise to T2.

            But if it does rise, surface radiation going out to space should increase, which would not be captured by the atmosphere; this would create a state of disequilibrium.”

            I do not believe this is correct, because the thought experiment planet significantly deviates from an ideal blackbody in the distribution of energy it is radiating.

            In the initial thought experiment planet (no atmosphere), the bands between 30N and 30S of the planet will be absorbing the bulk of the incoming solar radiation. This area would be far hotter than the poles, and would be re-radiating a massive amount of infrared energy back out to space. After the planet reached thermal equilibrium, the outgoing radiation necessarily must equal the incoming radiation. However, the equatorial band is going to be blazing hot and will be radiating out the bulk of the energy budget for the planet. T1 is the integral of the temperature of the planet.

            Now consider the second planet with a magically introduced atmosphere (with no greenhouse gases including no water vapor). Once again, the bands between 30N and 30S will be receiving the exact same amount of incoming solar radiation (since our atmosphere is effectively transparent). However, in this scenario, the atmosphere is warmed by conduction from the heated surface of the planet. A heat engine now begins to operate as some of the atmospheric warmth is transported to the poles. The net effect is that the near equator area is partially cooled by some process other than radiation. The poles are also warmed to some degree by their contact to a warmer atmosphere .

            Consider that the S-B equation states that the amount of heat a surface radiates is proportional to the fourth power of its temperature. In our thought experiment, the radiation at the equator would decline by a 4th power function of the equilibrium temperature decrease due to the atmospheric transfer of heat. The amount of outgoing radiation from this particular part of the planet will drop substantially, based on how much the temperature can be reduced by conduction to the planetary atmosphere.

            The bands from 30N-90N and 30S-90S could warm substantially while only moderately increasing their outgoing infrared radiation. It would therefore be possible for T2 (as the integral of the temperature) to be higher on this planet since these bands cover double the surface area. Average outgoing infrared radiation will exactly balance the incoming solar radiation. However, the distribution of the outgoing radiation will obviously be much different relative to the planet with no atmosphere.

            The S-B equation assumes outgoing energy is uniformly radiated from the spherical body. This is certainly not the case for our thought experiment planets. The equatorial band will be the hottest part of the planet by far, and will radiate a massive portion of the energy budget. Any drop in temperature of the hottest portion of the planet due to atmospheric heat transport will make the equatorial band a much less efficient radiator of thermal energy due to the 4th power rule.

            The “average” temperature of the planet with an atmosphere can now be higher, even with the exact same amount of outgoing infrared radiation.

          • Willis

            Gravity + Solar energy can do constant work, the water cycle is a prime example. Atmospheric density plays an important part in the cycle. You can’t say that density is not important to temperature.

        • mothcatcher. Like any other problem in statics, movement stops when forces equal. Compression is “complete” when the pressure from the internal kinetic energy (the “temperature”) balances out the compression from gravity. Of course you have to look at each altitude separately, which is a basic calculus problem: the higher the altitude the less stuff is on top of each molecule and the lower the pressure. (Of course all bets are off it the air isn’t at thermal equilibrium and starts convecting!)

      • Willis i’m not understanding where the free energy comes from, if the gas when released is same temperature as before being compressed

        A , You compress a gas and it warms, then cools via radiation or conduction.

        That warming and cooling was a transfer of some of the gases energy to the outside environ from the gas inside the pressurised environment.

        The temp of both environs is equal after cooling as per the gas bottles example is that right.

        So the gas when released must be colder when released it doesnt contain the same amount of energy per molecule as it did before pressurisation.

        Well thats how it comes over to me, but i’m asking, not telling as these things aren’t intuitive.

        Or was the force required to compress the gas, as in mechanical energy transformed into the heat.

      • Gravity IS constantly working. And gravity as an attribute of every matter works as force only on cosmic/planetary scales so any comparison to an experiment with air in a bottle is by definition an unfitting allegory or even completely meaningless.

        The dis-/approval of the NZ theorem can therefore only come from more data about rocky planets. So long I will enjoy my popcorn watching this debate.

      • Willis, you are usually pretty sharp, but you have completely missed the boat on this one. A column of gas in a gravitational field isolated from its environment is NOT isothermal. RGB’s counterexample is fundamentally flawed, so don’t try to rely on that. The basics are simple. Here they are:

        Gas molecules in a column are moving. Any object that is moving up or down in a gravitational field is constantly trading off kinetic energy against potential energy. That includes molecules. Molecules high up in the column have a lot of potential energy, relative to the gravitational field, but they gain that at the expense of kinetic energy, like anything else. So molecules lower down have less potential energy, and more kinetic. The problem that I suspect you are running into is that you are confusing temperature with energy, but temperature doesn’t measure ALL energy – only the kinetic part. So the column is isoENERGETIC, yes, but not isoTHERMAL.

        No laws of thermodynamics are being violated here, and no, you can’t turn such a column into a perpetual motion machine no matter how hard you try. And no, the result does not depend on work being done on the system such as in a bicycle pump. Also you will be badly confused if you try to rely on the Ideal Gas Law, because it doesn’t apply to real gases.

        Note that gravity is not magically “heating up the system” or any such thing. It is merely applying a gradient of force, which results in moving molecules rearranging themselves according to their distribution of kinetic and potential energies, which changes as they move around and bounce off each other.

        Please get this right, because you are confusing poor Anthony… and now he’s giving you credit for a wrong result. I am embarrassed for both of you.

        You don’t have to believe me, just try the experiment. Apparently some Germans have done it, and verified the obvious result. Richard Feynman has also apparently explained this, probably better than I can, and doubtless more than once, but the physics are really not that hard.

        • Steve Keppel-Jones,
          What you’ve shown is that an atmosphere with a pressure gradient can’t be isothermal, but you haven’t shown how it gets extra KE to raise surface temp above BB.
          If only so much KE comes from surface conduction, then how do we get extra?
          Don132

          • Don, as best I can tell, there is no “extra”. PE and KE are distributed throughout the atmospheric column, in what would be a smooth gradient if there were no other factors, and therefore somewhere in the middle is the average – which has to be the BB temperature in order to maintain radiative equilibrium (more or less). It would be very surprising if the average were to be found either at the top or the bottom.

            Of course I am not trying to say that there is no surface warming effect from radiant greenhouse gases, or surface conduction, tidal compression, etc., so that changes things up a bit in the real atmosphere. But I suspect not by more than a few degrees. And radiant gases have cooling effects higher in the atmosphere too, so the whole thing is quite complex.

            (I haven’t tried to calculate the relative contribution ratio of atmospheric pressure vs. radiant heating on the surface temperature, I’ll leave that to more dedicated and capable individuals such as N&Z. But it definitely isn’t either 0 or 1. I would suspect upwards of 0.8 in favour of atmospheric pressure.)

          • Steve Keppel-Jones:
            “PE and KE are distributed throughout the atmospheric column, in what would be a smooth gradient if there were no other factors, and therefore somewhere in the middle is the average – which has to be the BB temperature in order to maintain radiative equilibrium (more or less).”

            In a GHG-free atmosphere only the surface is radiating.

            In a GHG-free atmosphere, the molecules can’t absorb any radiation from the surface; they can only conduct with the surface, and there’s a net KE that can be conducted. Molecules go up, become PE, come down, become KE. Surface radiates at BB temp, and molecules at the surface have the KE that reflect that BB temp. The surface can’t conduct more KE than is present at the surface. The lapse rate then goes from surface to tropopause. I fail to see how the temperature at the surface can be anything more than the BB KE allows.

            Don132

          • “In a GHG-free atmosphere only the surface is radiating.”

            Don, that’s not quite right, that atm. would radiate less of course but since the remaining atm. has mass, the GHG-free atm. radiates in addition to the surface.

          • @Trick
            A GHG free atmosphere would radiate VERY little. Radiation by N2 & O2 in the IR is exceedingly low (as is IR absorption). N2 and O2 can radiate in the UV, but where on Earth is it sufficiently hot for that to occur?

          • N2 and O2 have mass Don, so they radiate at each temperature and at all frequencies since you can plug any temperature and any frequency into the ideal Planck formula and obtain a non-zero irradiance on the surface from such an atmosphere.

          • Mass does not permit IR radiation. Gases like N2 and O2 are permitted to radiate ONLY in permitted quantum energy jumps of the involved bond. Because N2 and O2 have quite strong bonds, these quantum jumps, which release or absorb energy, occur in the UV, not IR

          • Stephen:
            “If the surface is at BB then there is no KE available to maintain convection. It has to be higher than BB and I’ve told you how it works.” But here you don’t re-state what you say and force me to look for it. So, here it is:

            “The energy initially required to provide the PE in the atmosphere is drawn from energy that would otherwise have radiated to space.” Again, I think you mean KE, even though the PE comes from a molecule lower down losing KE.

            So the energy (the extra KE you need) is from radiation? Even in a GHG-free atmosphere? How does that work?

            Is everyone agreed on the issue that a radiating molecule loses kinetic energy? Because I’m confused on that point. Can radiation and conduction happen at the same time? I’ve always thought they could.

            Don132

          • Don,
            The KE one needs is from conduction.

            Radiation and conduction can occur at the same time but the same unit of KE cannot be simultaneously radiated and conducted.

            So, a surface at 288k can radiate 255k to space with the other 33k being conducted.

          • “Gases like N2 and O2 are permitted to radiate ONLY in permitted quantum energy jumps of the involved bond.”

            No, when that photon is emitted, the molecule is moving thus a doppler shift in the frequency away from the line occurs, this is what is known as doppler line broadening in a gas. There are also other independant broadening processes for which the observed irradiance of any gas specie spectra is smoothed like that from a solid, these were discovered by experiment and subsequently explained. Better more sensitive photon detectors like CCDs have been developed since the originals were done on less sensitive photographic plates with long exposure times.

          • Stephen:
            “The energy initially required to provide the PE in the atmosphere is drawn from energy that would otherwise have radiated to space.”

            So how does that work, such that we end up with the extra KE needed for thermal enhancement? Initially, that is: how do we initially get the extra KE? I don’t care about atmospheric circulation at this point.

            Just the bare-bones statement of where the extra KE comes from, in the most concise and precise way you can state it.

            Don132

          • Atmospheric circulation is the cause so I can’t exclude it. It is perfectly clear in my original narrative.
            A discrete zero sum circulation requires a kinetic energy store at the base to maintain it. Zero sum does not mean zero energy.

          • “Atmospheric circulation is the cause so I can’t exclude it. It is perfectly clear in my original narrative.
            A discrete zero sum circulation requires a kinetic energy store at the base to maintain it. Zero sum does not mean zero energy.”

            I don’t mean to be stubborn but OK, atmospheric circulation is important. What I want to know is where the extra KE comes from for surface thermal enhancement.

            Sorry to be dense. It’s got to be crystal-clear for me. So please just state the mechanism for the extra boost of KE that raises temp above BB. I’m just not understanding the mechanism. If you’ve already stated it, can you please show me exactly where? In your original narrative, for example? I don’t have much time to spend on this so right now I can’t afford to go searching for it, even in the narrative; please post excerpt or exact link to location, or tell me which paragraph, etc.

            Don132

          • Last try, because I have better things to do and we are in the company of trolls.

            It comes from the recirculating atmosphere.
            Once the circulation completes the first ‘tour’ it feeds on itself because what goes around comes around in a zero sum loop.
            Meanwhile the sunlight continues at full strength so that gives you minimum surface temperature of 255k
            Additionally , you have 33k going up at the same rate as 33k is coming down so there is a constant extra 33k at the surface all the time.

            If you don’t get it now, I give up.

          • Stephen: “What matters is that there is a temperature difference between the S-B prediction and the reality.
            It is downward radiation or it is KE released from descending mass.”

            Net KE released from descending mass is the same as net KE at the surface. How do you get KE enhancement?

            “If radiative energy leaves a molecule it cools down and radiates less UNLESS the lost energy is replaced, as it is, by fresh insolation.” How does that affect anything in a non-GHG atmosphere?

            I understand pressure and the lapse rate. I don’t understand how you get KE beyond BB kinetic energy in a non-GHG atmosphere.

            “The energy initially required to provide the PE in the atmosphere is drawn from energy that would otherwise have radiated to space.” What energy initially required? To lift the atmosphere? How is that energy acquired in a non-GHG atmosphere? Does the surface stop radiating temporarily and devote energy to KE? Why? How? What mechanism forces the surface to stop radiating so much to increase KE, if that’s what you’re claiming?

            If you can’t explain it clearly and distinctly then there’s a problem somewhere. Your central problem is the acquisition of extra KE, and you say that no one understands except those who “get it.” You should be able to state how simply and clearly without referring us to things we might not have to look up and read; you should be able to state it in a sentence or two.

            “Thus you get the full effect from continuing insolation PLUS the extra energy at the surface needed to keep convection running.” What extra energy, once circulation is in place?

            “I can now more precisely describe the role of pressure.
            A non radiative cloud of gas outside a gravity field will be almost all potential energy beimg at the temperature of space.
            Applying pressure forces molecules closer together thereby converting PE to KE and the temperature rises.
            Wrap it around a rocky planet using the force of gravity and the density gradient sorts the molecules so that they are closest together at the base.
            Pressure at the base squeezes KE out of PE to generate heat.
            The more pressure, the more KE can be derived from the gas at the surface.
            The density gradient then determines the angle of the lapse rate slope and the lapse rate slope inevitably induces convection which prevents the KE at the bottom from dissipating by constantly renewing in a recycling process.”
            None of that explains how you get the extra KE.

            Don132

          • Don, it does get more complicated when you add incoming radiation to heat the surface, and therefore convection to produce a convective (not just molecular-kinetic) lapse rate, but still leave out the greenhouse gases. That’s not Earth, of course, nor my isolated column of gas, so I’ll defer to Stephen Wilde on that scenario. On that planet, maybe the BB temperature would be at the surface? But still warmer than the BB temperature of a planet with no atmosphere, because the kinetic energy required to keep the atmosphere from condensing has to be balanced by a higher surface temperature? I think that’s what Stephen W is saying. In any case, my explanation was only to point out the error of Willis’s statement, namely that an isolated column of gas in a gravitational field must be isothermic. I did not include incoming or outgoing radiation (or convection) to make my point, because those are more complex, and not necessary for the specific explanation I was making. But until he gets over that, he will never understand Earth’s atmosphere properly…

          • A C Osborn, if you are referring to my reference to “RGB”, that is Robert G Brown, physics professor at Duke. He tried to make a counterexample to the statement that an isolated column of gas in a gravitational field cannot be isothermal, but his counterexample is full of holes. Willis does not do himself any favours by trying to rely on it.

          • Oh right, thanks for that tip, A C. It’s hard to argue with experimental results, but that doesn’t stop people from trying, apparently!

        • Steve Keppel-Jones:

          Willis, you are usually pretty sharp, but you have completely missed the boat on this one.

          Mr. Eschenbach and Dr. Brown did not forget that kinetic energy converts to potential energy with altitude. Instead, they remembered that lower-velocity molecules are culled from the gas as it ascends, so the temperature remains the same. The Coombes & Laue paper I cited nearby explains that; here’s a summary.

          Suppose that at some altitude z the number n_0(E) of upward-traveling molecules per joule per meter whose vertical component of translational kinetic energy is E is distributed in accordance with

          n_0(E)=A_0e^{-\alpha E},

          where \alpha is a constant inversely proportional to temperature. The molecules for which Emg\Delta z at altitude z will have E-mg\Delta z at z+\Delta z, so the distribution n_1(E) at z+\Delta z is shifted from n_0(E):

          n_1(E-mg\Delta z)=A_0e^{-\alpha E},

          which means:

          n_1(E)=A_0e^{-\alpha(E+mg\Delta z)},

          or

          n_1(E)=A_0e^{-\alpha mg\Delta z}e^{-\alpha E}=A_1e^{-\alpha E},

          where A_1=A_0e^{-\alpha mg\Delta z}

          That is, the molecular density is lower at the higher altitude. But, although the molecule densities are different, the energy probability distributions are the same at both altitudes. Specifically, there are A_0/\alpha molecules per meter at z and A_1/\alpha molecules per meter at z+\Delta z, and if we divide those values into the respective distributions above we get the same energy probability distribution p(E)=\alpha e^{-\alpha(E+mg\Delta z)} for both: the temperature is the same.

          So Mr. Eschenbach and Dr. Brown are basically correct about isothermality in an equilibrium gas column subject to a uniform gravitational field. I disagree with them only in the theoretical detail that, strictly speaking, the kinetic-energy distribution is only approximately exponential. But the approximation is so good that there’s no practical situation in which that theoretical detail makes a difference.

          • It is NOT basically correct for isothermality in a perfectly isolated gas column subject to a uniform gravitational field at thermodynamic equilibrium. That max. entropy solution is the Poisson T(p) non-isothermal as the isothermal solution T(z) = constant has been shown to have less entropy therefore not yet at thermodynamic equilibrium (heat death).

            Dr. Brown, as I recall, drew a wall of insulation around his column but treated it as an isolated column mathematically for a confusing story.

          • Trick:

            I don’t think we can meaningfully discuss this.

            I don’t see how your conclusion that “It is NOT basically correct for isothermality in a perfectly isolated gas column subject to a uniform gravitational field at thermodynamic equilibrium” follows from the other things you say. (Yes, if it would be compelling that entropy is maximized for some other configuration, but your just saying it doesn’t make it so.)

            And you apparently were unable to follow my math.

            So little purpose will be served by pursuing this further.

          • Joe 7:26am, f it is of interest to you to pursue, my prose follows the entropy maximization math in a beginner’s text Bohren 1998 sec. 4.4

        • “Molecules high up in the column have a lot of potential energy, relative to the gravitational field, but they gain that at the expense of kinetic energy, like anything else.”

          You seem to assume that the molecule expended its own kinetic energy to get up there. More likely it was pushed up there and still has its kinetic energy (heat). Whatever pushed it gave up some energy and didn’t move up the column.

          The result is fewer molecules up high, but some of them will be energetic. This can produce an interesting effect such as the “thermosphere”, very high temperature at high altitude where molecules cannot give up their energy by radiation nor by collision; so they stay “hot”.

          An atmosphere of, say, nitrogen might be very hot at all altitudes, heated by ground contact but cooled by nothing. Methane, ozone and carbon dioxide cool the top of atmosphere while helping accumulate heat near the surface.

          • Michael 2, I’m not assuming anything. A single molecule could expend its own energy to gain altitude, yes, but in a gas consisting of many molecules, each one is bumping into others (and the wall of a container, if they are contained) all the time. In each collision, the total energy is conserved. So whenever any molecule is moving upward, it is exchanging kinetic energy for potential energy, and vice versa. Whether it is the same molecule that goes all the way from the bottom of a column to the top or not, is irrelevant – as long as energy is conserved at each collision.

    • The fallacy is to consider pressure to be the independent variable. The physical reality is that temperature drives volitilization and thus the amount of atmosphere. The anount of atmosphere (moles n in PV=nRT) determines pressure.

      Most gases heat when compressed. This is due to conservation of energy. The work put into the system cannot disappear. The static atmosphere is not doing work. Its primary source of energy is heat from the sun. Without that, the atmosphere would condense out and pressure would drop.

    • If you take a specific volume of gas and compress it, what you say is true… then temperature will rise. But for the global atmosphere, any air sinking and compressing (and warming) is exactly matched by an equal amount of rising air at the same altitude that is doing the opposite. There is no net temperature change.

      • There is no net temperature change.
        ==========
        Exactly. The average temperature remains unchanged. However, so long as there is adiabatic vertical circulation, the gas will be cooler at the top and warmer at the bottom.

        The vertical circulation is a result of uneven heating by the sun as the earth rotates and orbits.

        Sort of like an enormous sterling engine that cycles every 24 hours. The sun turns the shaft on the engine. One side of the engine will get hot and the other side will get cold, while the average remains unchanged.

        The hot side is the surface and the cold side is the upper troposphere, and the work to turn the engine is provided by the sun.

      • OK, maybe I’m being picky …

        If we have convection, we’re moving heat upward in the atmosphere. If we didn’t have convection, more heat would be retained at the surface. I would say that convection results in cooling.

        • commieBob December 31, 2018 at 1:52 pm

          OK, maybe I’m being picky …

          If we have convection, we’re moving heat upward in the atmosphere. If we didn’t have convection, more heat would be retained at the surface. I would say that convection results in cooling.

          Bob, you’re forgetting that what goes up must come down. For every parcel of air moving upwards and cooling, another equal parcel is moving downwards and warming … net result?

          No change.

          w.

          • Unless the environment that the air convects into is colder than the rising air, in which case the rising air parcels warm the upper atmosphere by conduction.
            This happens all day long in summer, as rising parcels of air warmed by contact with the surface rise and condense into clouds, in this case fair weather cumulus clouds, which then evaporate.
            As the rising parcels warm the layers above and thus cool down, they descend back to the surface.
            So over the course of the day the heat from the surface is distributed to altitude.
            If these parcels did not transfer heat while they were aloft, they would be unable to descend back to where they started.

          • What you’re saying is true if, and only if, the only heating and cooling are due to the ideal gas law.

            (P1 x V1 / T1) = (P2 x V2 / T2)

            At the bottom, the atmosphere gains heat from the surface and loses heat to outer space due to radiation at the top.

            That’s the simple version. Here’s a more complete version. The moisture content of the air adds a tiny bit to the complexity of the problem … LOL.

          • And in fact that the environment the rising parcel is ascending into is cooler than the rising parcel is a precondition for it to rise at all.
            If it is not cooler, the parcel will not, and cannot rise (except to the extent that a rising parcel may acquire a certain amount of momentum and overshoot the level at which it is the same temp in the environment) to begin with. How high it rises is thus a function of how rapidly the atmosphere is cooling with height…unstable air is air that has an ELR greater that the dry adiabatic rate and the moist adiabatic rate…this the rising parcel will keep rising even after it condenses into a cloud. It gets complicated though, because if the air aloft is very dry, the cloud will evaporate…
            You will not get vertical convection currents if the rising air is not shedding heat in it’s journey.

          • The lapse rate of the atmosphere is due to adiabatic expansion of rising warm air.
            Hint: adiabatic-In thermodynamics, an adiabatic process is one that occurs without transfer of heat or mass of substances between a thermodynamic system and its surroundings. In an adiabatic process, energy is transferred to the surroundings only as work.

          • Commie Bob, yes, it is a simplified version for sure.
            For the whole story, take a bunch of college level physical geography and meteorology classes.
            Or do lots and lots of reading.

          • “The lapse rate of the atmosphere is due to adiabatic expansion of rising warm air.”

            Incorrect.
            Numerous factor influence the environmental lapse rate.
            It exists even where no air is rising or has risen.
            For a simple example, in Antarctica in Winter, under a dome of high pressure, the air is descending and warming, creating a certain lapse rate. The air also contains radiative gasses, causing it to cool, which obviously is a further influence.
            Air descending on the lee side of a mountain range is heating from compression, and may also be warmed by contact with the ground surface, or cooled. Rain falling as verge may cool a part of the atmosphere, but not some other part below the point it has all evaporated.
            Etc.

          • like rhe atmosphere, a sterling engine has no net movement of gas, yet one side gets warm and the other gets cold.

            What is important is the relative phase angle between the parcels of air moving up and down.

            The phase angle allows you to determine which side of the engine gets hot and which gets hot.

            Only if the phase angle is 180 degrees is the engine isothermal.

          • “For every parcel of air moving upwards and cooling, another equal parcel is moving downwards and warming … net result? No chance.”

            This is at equilibrium in the heat engine that Ferdberple describes. So Willis is correct: there is no overall change. But that fact is not significant, neither for NZ theory nor for the radiative greenhouse theory.

            Don132

          • Don January 1, 2019 at 4:33 am

            Some folks think the greenhouse effect is due to adiabatic heating. As Roy points out, that’s bogus. My quibble is not that Roy was wrong, per se. It’s just that convection is almost never an adiabatic process. Energy is almost always added and lost.

            Willis, on the other hand was wrong because, I think, he missed my point.

          • ” For every parcel of air moving upwards and cooling, another equal parcel is moving downwards and warming … net result?”
            Oh dear, someone’s never heard of/understood entropy!

      • Roy,
        There is a net temperature change during the formation of an atmosphere suspended off the surface.
        What do you think happens to the energy required to enable ongoing convective overturning?
        If it were ever radiated to space then the atmosphere would fall back to the surface.

      • Roy,

        “Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation… …The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.”

        OK, now let’s substitute a totally non-GHG atmosphere (maybe pure nitrogen?) to 1 bar surface pressure.

        Where is the surface from which the SB calculation is to be performed?

        Is there no thermal conduction or convection and zero lapse rate?

        Regards, just asking.

        • Roy,
          I should add that I totally agree that there is a GHG effect but that there is a lot of other stuff going on that makes its net contribution very uncertain. I suspect that apparently big negative feedbacks such as evapotranspiration are not adequately studied while everyone hyperventilates over radiative effects.

          I admire your work

      • “But for the global atmosphere, any air sinking and compressing (and warming) is exactly matched by an equal amount of rising air at the same altitude that is doing the opposite.”

        It may not rise and fall at the same latitude. Think Hadley Cell, it’s drier when it falls too.

      • “If you take a specific volume of gas and compress it, what you say is true… then temperature will rise. But for the global atmosphere, any air sinking and compressing (and warming) is exactly matched by an equal amount of rising air at the same altitude that is doing the opposite. There is no net temperature change.”
        .
        No, wrong.
        Temperature in a gas is just a measure of the average kinetic energy of the particles in the gas.
        A temperature gradient/enhancement is set up in all convecting atmospheres (those >10kPa), including Earth’s.
        This is because when a gas parcel expands adiabatically, as it does when rising in a gravitational field, it does positive work – and the kinetic energy drops and so the temperature drops. However, when a gas parcel is compressed, as it is when it descends adiabatically in a gravitational field, then it does negative work, and its kinetic energy rises and so its temperature goes up.
        Why does the kinetic energy of the gas rise when descending? It’s because some of its potential energy is converted to enthalpy, so producing an increase in pressure, specific internal energy and hence, temperature in accordance with the following equation;
        H = PV + U
        Where;
        H = enthalpy (J/kg)
        P = pressure (Pa)
        V = specific volume (m³)
        U = specific internal energy (kinetic energy)
        There is no ‘greenhouse effect’ because there are no ‘special’ gases which can cause it.

        Read my paper and learn something;
        Holmes, R. I. (2018). Thermal Enhancement on Planetary Bodies and the Relevance of the Molar Mass Version of the Ideal Gas Law to the Null Hypothesis of Climate Change. Earth, 7(3), 107-123.

    • Marcus
      You have it exactly backwards! As a parcel of air is lifted orographically, it expands and cools, often producing precipitation. As the parcel of air descends on the other side of the mountain range it is compressed and heats. That’s what gives places like Death Valley their extraordinary Summer temperatures. But, radiative cooling at night allows the heated air to cool down.

    • Backwards. Compress a gas and it concentrates its energy in a smaller volume, heating up proportionately. However, it then cools off to the ambient temperature outside the compressed chamber. Release a gas from a pressurized tank and it gets frost around the exit. It, too, then warms up to match the ambient temperature.

      • Some years ago the relief valve on a large Nitrogen tank (3500psi) outside my lab burst. For a short while there was a supersonic jet of nitrogen emerging, so cold that it was condensing as liquid N2, quite impressive! Freaked out the emergency staff who turned up, had to restrain them from evacuating the whole area. Had to author a report though and come up with a design modification to the relief valve.

    • Marcus, same amount of molecules and same amount of internal energy, Q, in a smaller volume means that the temp rises.
      This can be observed during any compression process in air, or any other gas.
      Are Santa Ana winds cold? They are compressional winds.
      Does air get colder when it rises? Yes, because it is under less pressure, i.e. same amount of Q in a larger volume = lower temp.
      This can also be observed when you spray something out of an aerosol can.
      Do you have a can of compressed air for cleaning your computer?
      You have it backwards.

  5. Here we go again!

    I love this stuff because it makes me think things through. Willis may be right, and I’ll honestly give him and Spencer and everyone else credit. But … I think N-Z are correct. I don’t have time now right but look forward to responses! I’ll participate as time allows.

    But let’s just keep this a fun back-and-forth. It’s different paradigms, that’s all, and maybe some people are confused. Maybe I’m the confused one; it wouldn’t be the first time.

    As to Anthony’s objections to N-Z, number two can be remedied if people tread a little lightly and remember than it’s not personal. Avoid ad hominem attacks and stick to the facts. Regarding number three, I think that the “fake names” issue is a non-issue, as the names were so obviously fake, and so obviously really Nikolov and Zeller (spelled backwards! hello?) that it’s also obvious that they did it to prove a point: they couldn’t get published as Nikolov and Zeller.

    But to start, I’ll venture to say that the N-Z theory does NOT depend on compressional heating by the atmosphere. That’s a major misinterpretation. There is no compressional heating by the atmosphere, and N-Z never claim there is. Yes, gravity matters, but…. So right off the bat I’m sticking my neck out on the chopping block– all in good fun!

    It’s really a beautiful and elegant theory, but I think people are so used to looking through a certain paradigm that they can’t see it.

    Don132

    • Don, that’s par for the course of those who are left brain dominant; they get fixated on certain beliefs they think are unchallengeable because it’s all they know. They aren’t known for creativity or not conventional thinking because they have no balance between logic and emotion, which is necessary when attempting to progress in life.

      It’s not an attack either, it’s just how different people operate. The modern left is stuck in right brain la la Land with no attempt to employ logic. It should be obvious to any outside observer who is balanced how these polar types aren’t much different, just in approach

      • “The modern left is stuck in right brain la la Land with no attempt to employ logic.”
        Matthew,

        Are you suggesting that political tendency is a product of which side of the brain is dominant? That doesn’t seem to be a logical idea. Left- vs. right-hemispheric dominance and the association with specific traits is largely a myth, though there are some tendencies, particularly in language.

        Attempting to employ logic is not a product or determinant of political ideology. It’s the premises that differ.

        (Interestingly, there’s evidence of a substantial genetic component of political leaning – but that doesn’t mean it’s immutable, of course.)

    • I’ve never understood why people can’t accept that the answer could be: “All of the Above”, not a few personally preferred combinations..The perplexity of the atmosphere is most likely beyond our ability to understand at the moment, so i accept most concepts as “possible”, Vuk’s hypothesis being the most valid.
      Only time will tell. As a Canadian/American stuck in Canada, I hope it doesn’t colder…

      ok, rant done. lol

      • Thanks Marcus, such a fate deserves a most sincere ‘Happy New Year Greetings’ from me to you. I’ve got some close Canadian relatives, every winter they migrate to Florida for 4-6 weeks, often longer. My younger daughter exactly a year ago left balmy London, UK, to spend two weeks just outside Canadian Arctic circle. Even London so called winter I often find on depressing side, so I migrate to sunny Mediterranean for 2-3 weeks at the time.

      • There was that movie series where the immortals with swords were running about throughout history trying to cut off each others’ heads…. “There can be only one!”

        I kinda liked the movie series, but I never understood why “there could be only one”. At times there were immortals hanging out together, having a good time, not cutting each others’ heads off. Didn’t make sense. In the beginning there were scores of them (immortals), sometimes interacting, and sometimes not.

        Seemed like in the end there could have been two, or three, or even more very important immortals. They could have gotten along; maybe one of them being more important or successful than the others, but still accepting of the comradery & interaction of the others.

        Seems that the only real trouble was the one stubborn outspoken jackass, waving his sword around shouting “there can be only one!!!”. Sometimes the jackass didn’t even seem to care if he was the only one … he was just want to cause trouble by demanding that “there could be only one”. And this jackass demanded so much attention with his arrogance and attitude that the good part of the show was overwhelmed by his nuisance.

        Anyway, allowing for more than one seems like it would have been a much better story line.

        • There could be only one in order to achieve the goal of enlightenment, or whatever it was. The one left could see everything, hear everything, hear thoughts of everyone, that sort of nonsense.

    • Is the Eschenbach “proof” formulated in an equation(s)? I’m having difficulty understanding the exact meaning of the words used for this simple proof.

      • R, someone up above stated it quite clearly.

        If the planet without an atmosphere has temperature T1 and you were to magically add an atmosphere, let’s say with no GHGs that cannot radiate at all in IR wavelengths, according to the N-Z theory the temperature at the surface should rise to T2.

        But if it does rise, surface radiation going out to space should increase, which would not be captured by the atmosphere; this would create a state of disequilibrium.

        I hope that clarifies it. The only equation involved is the Stefan Boltzmann equation that relates thermal radiation and temperature. It says that when temperature increases, thermal radiation must also increase.

        w.

        • Wrong. The added atmosphere will cool the surface by conduction and resulting convection will lead to winds carrying the heat to the poles where the atmosphere will heat the surface in return and the heat will radiate away.

          • Sounds good. I think people are looking for proof of how N-Z must be wrong instead of looking carefully at what they’re saying.

            Don132

        • Temperature in a gas is the average kinetic energy of the molecules in a volume of the gas If the pressure is increased the number of molecules increase (Avogadro’s hypothesis/law). If the kinetic energy of the molecules remains the same then the temperature of that volume of gas has increased as the number of molecules has increased. This is the basis of The Gas Laws.

          The Willis approach appears to be a denial of the adiabatic lapse rates. These are the rates at which heat content is lost/gained due to the atmospheric level/pressure.

          As these lapse rates are well established this seems a rather strange position to take. Yes convection occurs when gases are warmer (less dense due to kinetic energy and speed of molecules) or colder (more dense due to reduced kinetic energy/speed of molecules).

          Given a heat source – whatever that is conduction from the surface or infrared absorption, the kinetic energy increases and the gas expands and convection raises the volume of air to a level where the adiabatic heat/volume is balanced.

          I have yet to see an experimental proof of infrared heating a water surface – it always results in increased evaporation and evaporative -latent- heat loss same with warm air over a water surface (it is why you blow on hot drinks/food). 70% of the Earth’s Surface is water another 20% is covered with transpiring vegetation. These surfaces will cool when exposed to infrared or breezes and the heat is removed as latent heat not sensible heat.

          So by all means assume that a bare rocky earth – about 15% of the surface, will warm but you cannot take S/B as a case for a water or vegetation covered surface.
          Yet the same Willis Eisenbach has many posts on here showing how the hydrologic cycle cools the surface – while at the same time claiming that it warms ???

          This is a very simple subject for experimentation – but nobody is doing it. This lack of simple experimentation implies that the answer is known but unwelcome.

        • “If the planet without an atmosphere has temperature T1 and you were to magically add an atmosphere, let’s say with no GHGs that cannot radiate at all in IR wavelengths, according to the N-Z theory the temperature at the surface should rise to T2.
          But if it does rise, surface radiation going out to space should increase, which would not be captured by the atmosphere; this would create a state of disequilibrium.”

          But the idea is that the surface temperature rises because of a warmer lower atmosphere.

        • Willis If Thayer Watkins is correct with his finding that clouds are responsible for 85% of the GHG effect then I calculated that the maximum effect of CO2 would be 1.5%. That would leave water vapour for the other 13.5%. Nikolov’s theory could work on the grand scale and Watkins theory on the local scale. Those 2 combined would take care of your disequilbrium.

          Ned Nikolov tends to forget about the local effects of clouds,water vapour and CO2. Once you calculate the maximum effect of CO2 on a local scale, that maximum is still the maximum everywhere else. If Thayer is correct about the 85% effect of clouds that would mean clouds and water vapour together account for 98.5% of the GHG effect on a local scale. With Ned’s grand scale theory there wouldnt be a disequilibrium when you combine it with the local effects . http://applet-magic.com/cloudblanket.htm

          • Alan Tomalty January 1, 2019 at 8:53 pm

            Willis If Thayer Watkins is correct with his finding that clouds are responsible for 85% of the GHG effect then I calculated that the maximum effect of CO2 would be 1.5%.

            The greenhouse effect can be measured as the percentage of upwelling surface longwave radiation absorbed by the atmosphere.

            CERES data shows that where there are no clouds, ~ 31% of upwelling LW radiation is absorbed. When we add in the clouds, ~ 38*% of upwelling LW is absorbed.

            This means that clouds are responsible for 7 / 38 = 18% of the total absorption. So I would argue that whoever Thayer Watkins is, his finding that clouds are responsible for 85% of the GHG effect is not true.

            Best regards,

            w.

          • Comparing 31% of ‘X’ to 38% of ‘Y’ needs to include the values of ‘X’ & ‘Y’.

            With clouds, the incoming radiation (‘Y’) is less; your simplification, in this case, does not appear to be invalid.

        • Willis I assume that you have read both of Ned’s papers. Do you agree with his finding that all calculations of an earth’s temperature without an atmosphere, are wrong because of Holder’s inequality?

          • Alan, Ned said:

            ===
            “Due to Holder’s inequality, one CANNOT estimate the true MEAN temperature of a spherical body from the AVERAGE absorbed radiation by that body as currently attempted.”
            ===

            I agree with that. However, I do not agree that “all calculations of an earth’s temperature without an atmosphere, are wrong because of Holder’s inequality”. For example, in my thought experiment with an even heating it can indeed be estimated.

            All that Holder’s inequality tells us is that with a given energy input to a planet, if there is any variation in temperature, the average temperature will be lower than if the heating and cooling is evenly distributed.

            Finally, there are many more roadblocks to estimating the blackbody or other temperature of some earth with changed conditions. See Dr. Brown’s post on the subject,

            w.

    • If not compressional heating, how else would high pressure in a gas lead to higher temperature (in their view)?

          • The lapse rate is a physical process observed in the troposhere and is described mathematically by gravity and height.

          • Atmospheric lapse rate is a well known physical process. It is analytically determined by the specific heat of the gas, and gravity. It is modified by phase change of water vapor from gas to ice or rain, which lowers it’s value from near 8 to about 6.5 degrees C per km. The process only requires a reasonably well mixing of the atmosphere (convection). It is due to the adiabatic compression of gas moving down, and expansion of gas rising. The process produces a temperature gradient, not a specific temperature level. The greenhouse effect require both a lapse rate and an optically absorbing atmosphere from either molecular absorption, or particles (dust, ice particles, or droplets).

          • There is something called the environmental lapse rate (ELR), which exists in the atmosphere and describes how much the air cools with height.
            It varies, and this variance is the cause for much of the weather we get, but also a consequence of it.
            Then there is the amount a parcel will cool if it is lifted into the atmosphere, whether by being forced to rise over a mountain, or by being heated above the temp of the air above it.
            If the air above the heated parcel is warmer than the parcel, it cannot rise, and will just keep getting hotter, until it finally is able to rise due to being warmer.
            When a parcel of unsaturated air rises, it cools at a certain rate called the dry adiabatic lapse rate, and if it is saturated, it cools at the moist adiabatic rate. The opposite occurs of the parcel descends.
            Also, the rate is not constant, but depends on barometric pressure and temperature, and so the graph of the rate is actually a crosshatched plot of curved lines.
            https://en.wikipedia.org/wiki/Lapse_rate#/media/File:Emagram.GIF

            So, this misunderstanding you guys are having is because you are talking about or conflating two different concepts…the ELR, and the adiabatic lapse rates.

      • Temperature in a gas is the average kinetic energy of the molecules in a volume of the gas If the pressure is increased the number of molecules increase (Avogadro’s hypothesis/law). If the kinetic energy of the molecules remains the same then the temperature of that volume of gas has increased as the number of molecules has increased. This is the basis of The Gas Laws.

        The Willis approach appears to be a denial of the adiabatic lapse rates. These are the rates at which heat content is lost/gained due to the atmospheric level/pressure.

        As these lapse rates are well established this seems a rather strange position to take. Yes convection occurs when gases are warmer (less dense due to kinetic energy and speed of molecules) or colder (more dense due to reduced kinetic energy/speed of molecules).

        Given a heat source – whatever that is conduction from the surface or infrared absorption, the kinetic energy increases and the gas expands and convection raises the volume of air to a level where the adiabatic heat/volume is balanced.

        I have yet to see an experimental proof of infrared heating a water surface – it always results in increased evaporation and evaporative -latent- heat loss same with warm air over a water surface (it is why you blow on hot drinks/food). 70% of the Earth’s Surface is water another 20% is covered with transpiring vegetation. These surfaces will cool when exposed to infrared or breezes and the heat is removed as latent heat not sensible heat.

        So by all means assume that a bare rocky earth – about 15% of the surface, will warm but you cannot take S/B as a case for a water or vegetation covered surface.
        Yet the same Willis Eisenbach has many posts on here showing how the hydrologic cycle cools the surface – while at the same time claiming that it warms ???

        This is a very simple subject for experimentation – but nobody is doing it. This lack of simple experimentation implies that the answer is known but unwelcome.

        • Ian, Solar Radiation (short wave) heats up the oceans nicely, but the heat is released gradually primarily through evaporation.

          That is the primary Green house affect in a nut shell.

        • Ian,
          that’s fundamentally incorrect. The number of moles of gas does not change because you increase pressure. That would require a violation of the conservation of mass!

          The ideal gas law PV=nRT requires that the volume must decrease if the pressure increases at the same temperature, or the temperature must rise for the pressure to increase at the same volume. For the most part, the number of moles of gas in the atmosphere is a constant. Water evaporated is about equal to water condensed. Net losses to space, outgassing from oceans and volcanoes notwithstanding, average atmospheric pressure is pretty constant.

          • I agree.
            Ian, your explanation is a jumble of mixed up terminology and incorrect statements, such as this one:
            “The Willis approach appears to be a denial of the adiabatic lapse rates. These are the rates at which heat content is lost/gained due to the atmospheric level/pressure.””
            The definition of an adiabatic process is that no energy is lost of gained during the process.
            It is impossible to tell if you simply explained what you meant incorrectly or if you misunderstand what you are talking about.
            In scientific discussions, particularly those involving disagreements, terminology and using concise and correct language is vital.
            Telling someone they are wrong and using an incorrect statement to do so does not get anyone anywhere.
            That passage I quoted is as far as I got when I wrote this.
            But even before that, it was hard to discern exactly what you were saying. I am trying to be descriptive and not judgmental, but when you say increasing the pressure increases the number of molecules, it is confusing. Typically such discussions are done using a fixed parcel of a gas. Greater density means that there are more molecules in a given volume…when all else is equal. But unless you say so, it is hard to determine exactly what you mean to say.

            Just sayin’.

        • I agree.
          While having a dense atmosphere does not make a planet warmer, it makes the surface warmer through lapse rate, all the heat that atmosphere absorbs is not evenly distributed, it is colder at the top and warmer at the bottom, the more atmosphere you have the more extreme it becomes.

      • I’ll expand EdB’s comment, a bit.

        Venus takes 243 days to rotate. Making for a very long day.

        Only Venus’s light/dark periods are 117 days long, since Venus rotates backwards causing the sun to appear to rise in the West and set in the East. Venus’s slow spin is complicated by Venus’s full rotation around the sun.

        That is a long time to absorb a much stronger level of insolation.

        • ATK: Also a long night to lose it except that strong venu-strophic winds redistribute the solar energy evenly. All that CO2 should cause night freezes if it was so good, but no….. Brett

      • Roy, it is not that high pressure leads to high temperature, it’s that high pressure leads to increased molecular density. These dense molecules conduct/convect with the surface warmed by the sun. They necessarily hold the heat conducted from the surface close to the surface, as that’s where the vast majority of the atmospheric molecules are, which in the absence of GHGs could not radiate that heat away, and this fact would NOT violate any law of physics, and would not necessarily make the earth radiate more energy than it receives, as Willis seems to claim.

        The dense atmosphere is warmed by the surface that’s warmed by the sun, and we could argue that without GHGs the atmosphere could not cool as effectively, which is maybe what Willis wanted to say. But, the atmosphere could cool through conduction with cooler molecules higher up or more toward the poles, or at nighttime with the cooling surface.

        14.7 psi at the surface isn’t a trivial amount of pressure, and makes for a very dense surface atmosphere.

        Why is the Grand Canyon warmer at the bottom? When cold air sinks?

        Well, it is New Year’s Eve and that’s all I have time for!

        Don132

        • The volume of the atmosphere is always changing. Right now the thermosphere is cooling, thus it is shrinking, assuming mass stays the same and pressure stays the same. PV =nRT where R is the ideal gas constant which itself = Boltzmann constant * Avogadro constant.

          https://spaceweatherarchive.com/2018/09/27/the-chill-of-solar-minimum/

          The Langley Space Research Centre did not receive Gavin Schmidt’s email to GET WITH THE PROGRAM. Folks This is going to destroy the CAGW meme quickly. In the link they go on to say

          “The thermosphere always cools off during Solar Minimum. It’s one of the most important ways the solar cycle affects our planet,” explains Mlynczak, who is the associate principal investigator for SABER.”

          THIS CANT GO WELL FOR AL GORE’S CHURCH OF CLIMATOLOGY. They measured the infrared glow of the molecules of CO2 and NO at the very top of the atmosphere.

          “We see a cooling trend,” says Martin Mlynczak of NASA’s Langley Research Center. “High above Earth’s surface, near the edge of space, our atmosphere is losing heat energy. If current trends continue, it could soon set a Space Age record for cold.”

          They developed a Thermosphere Climate Index

          As 2018 comes to an end, the Thermosphere Climate Index is on the verge of setting a Space Age record for Cold. “We’re not there quite yet,” says Mlynczak, “but it could happen in a matter of months.”

          I tried to put the graph in this post but the png format didnt seem to work.
          However if you look at the graph, they extended SABER’S 17 year data back to 1950 by using geomagnetic activity and the sun’s UV output which have been measured since 1950. This will not go well for Al Gore’s Church of Climatology and his main disciple Gavin Schmidt at GISS.
          The graph shows an ice age type of pattern with the y axis being POWER 10^11 W. There is a total variation of 5x. The graph corresponds very well with the sunspot solar cycles.

          • FOLKS IT GETS EVEN BETTER

            https://spaceweatherarchive.com/category/thermosphere/

            We now have a US government agency that is tracking the solar minimums and maximums and showing actual data of Power being emitted to space. It seems that variation is so huge that Willis; it is the SUN after all. Prepare for much colder weather in next 5 years that will be colder than in the 70’s. I will accept cold weather if it destroys Al Gore’s Church of Climatology .

          • http://www.spaceweather.com/

            I led you astray slightly. NASA seems to have decreed that they will not show the Thermosphere Climate Index. You can get it at the above link (go figure, a private site). It looks like the Langley Research Centre (LRC) in Virginia is also a Global Warming shop.
            https://www.nasa.gov/langley/overview I predict that the internal program funding will cut for SABRE.. Trump needs to fire both Gavin Schmidt (GISS) and David Bowles (LRC)

            “We are especially pleased that SABER is gathering information so important for tracking the effect of the Sun on our atmosphere,” says James Russell, SABER’s Principal Investigator at Hampton University. “A more than 16-year record of long-term changes in the thermal condition of the atmosphere more than 70 miles above the surface is something we did not expect for an instrument designed to last only 3-years in-orbit.”

            So that explains what happened. When they originally planned this program whoever was in charge realized that this would destroy Al Gore’s Church of Climatology. So they only gave it a 3 year run which is ridiculous. Don’t forget that this machinery is piggybacking onboard NASA’s TIMED satellite. However the machinery outperformed its wear date and lasted a full 16.5 years. Somehow whoever was in charge did not manage to sabotage its mission with a real best before date coding strike. So now we have another piece of the radiation puzzle which will this time rear its beautiful head and show us the reality of COLD climate like we had in the 70’s which of course will cause Al Gore’s Church of Climatology to crumble to dust like make up clouds. But this time it will be the SUN stupid.

          • Alan Tomalty January 1, 2019 at 10:46 pm

            FOLKS IT GETS EVEN BETTER

            https://spaceweatherarchive.com/category/thermosphere/

            We now have a US government agency that is tracking the solar minimums and maximums and showing actual data of Power being emitted to space. It seems that variation is so huge that Willis; it is the SUN after all. Prepare for much colder weather in next 5 years that will be colder than in the 70’s. I will accept cold weather if it destroys Al Gore’s Church of Climatology .

            Alan, I’ve never denied that the sunspot-related solar variations affect the temperature of the thermosphere. However, it’s a temperature difference that makes no difference. Why? Because the thermosphere is so thin. How thin? So thin that there are so few electrons that it won’t carry sound. It’s so thin that it’s almost empty space. The Space Station travels through the thermosphere.

            How much effect does it have on the surface? Well, the temperature of the thermosphere is on the order of 1000K, which is about 730°C, or 1,340°F … but there are so few atoms that if you could feel it, it would feel cold. For example, despite the 1,340°F temperature, the Space Station isn’t burning hot on the outside, it’s freezing cold …

            So yes, the sun does change the temperature of the thermosphere … but as near as I can tell, that makes zero difference down here on the surface.

            w.

          • However, it is one indicator that the sun must have some effect on the lower atmosphere if the total visible and IR radiation escaping to space from the thermopshere is 5 to 10 times smaller in a low sun spot cycle than a high one, Of course those calculations do not include the amount of xrays, Extreme UV, Far UV and near UV that is escaping. Those quantities may be higher which may balance out the visible and IR radiation. Nonetheless in general low sunspot activity is somewhat associated with cooler global temperatures perhaps with some type of lag mechanism. I believe that Willie Soon is working on this.

      • Please consider Roy, how energy flows down the gradient, up the Entropic, with deference to Equipartition.
        If it is less expensive to use gaseous buoyancy differences and in our case WV LH transport, and that is so, then how can all this about radiant Flux (a VECTOR force), mean as much as claimed.
        We know empirically that convection rules. We know that the gas laws Poisson Relationship means gas specie is inconsequential except for tiny mass effects. N and Z and others have come to this from several angles and the empirical solar system data make it as close as possible to incontrovertible. Radiative flux only rules above the c.0.1bar level, any world, any gas. Maxwell deduced this in the 1860s and he was a great experimentalist as well as theorist. Brett from the land of Rutherford and Popper…..

        • Brett It would help if you explained yourself in plain English scientific terms. Most of us havent got a clue of what you are saying.

    • Don – As I read it, Willis (as represented by Roy Spencer) doesn’t assume anything about N-Z, he simply shows that if the atmosphere does not interfere with radiation then the temperature can’t increase. Willis’ explanation is indeed elegant.

        • Infra red rad takes care of the cooling. The atmosphere without adsorptive- re-emittive gases are transparent to infra red going out (and shortwave coming in) If you assume an ocean, yeah huge convection because the much lighter water molecules evaporating from the water surface plus being heated transport huge volumes of heat upwards and “make” weather. With just a cold rock and, say, nitrogen “weather” isn’t much in evidence.

        • Conduction and convection transport energy. and then it stops if the transported energy is not removed (you can’t accumulate the energy, it would make the higher level hotter than below, and conduction and convection would reverse). Without radiation to space you can’t remove the solar energy.

    • Don
      There is decompression in rising air and compression in descending air each of which comprise half the atmosphere at any given moment.
      The extra surface heating develops during the initial formation of an atmosphere and convective overturning can never be prevented due to uneven surface heating.
      As long as convective overturning continues the extra surface heating will be retained.
      My description of the mechanics of the process is supplemental to the N-Z findings

      • You’re saying that there is a primordial reservoir of excess heat maintained in the atmosphere so long as the sun continues to supply energy to drive convection?

    • Berthold Klein and Konrad Hartmann are two who have shown that N and Z are right, by physical experiment. Nasa’s solar system atmospheric probe readings do too. Allmendinger and other gas engineers show that all gases do radiate in both Light and Raaman spectroscopics. Others just have not looked hard enough, taking’expert’s’ words for it. Nand Z are two of many, but blindness seems to prevail, and doubling down on failed hypotheses. Very Feinmannesque/Popperesque.
      Weathermen shoud consider how much radiative theory figures in building the Standard Atmosphere. Or how little Hoyt and Hottel and all Process Engineers care for the magic powers of CO2.

    • Don, there were perfectly good reasons for their jape, mainly to do with the dishonesty of warmista including reviewers etc.. Ask Peter Ridd and so many other sceptics.The interesting thing is how Willis and Anthony jumped on it and took the warmista line, and harshly. Including being blind to real Physicists’ findings. Starting with Poisson and Maxwell also Wood. Not in a pleasant manner either. However I don’t give up on them so long as mutual human respect is shown all around, we will get there.
      Which in Science is often someplace we never imagined – that’s the beauty of it. Brett

  6. Actually, I did manage to rebut Willis’s alleged ‘proof’ at the time but just as I got to the point where he would have had to back down he went off at an irrelevant tangent and became somewhat shouty.
    Since this has come up again I must address it again and as a starting point I refer to my description of the conductive / convective process involved here:

    https://tallbloke.wordpress.com/2017/06/15/stephen-wilde-how-conduction-and-convection-cause-a-greenhouse-effect-arising-from-atmospheric-mass/

    One can readily see that the excess surface heat cannot be radiated away to space so long as a conducting and convecting atmosphere is held off the surface in hydrostatic equilibrium since that excess is being constantly recycled in and out of potential energy (which is not heat and does not radiate) within ascending and descending columns of atmospheric gases.

    The same parcel of energy in the form of surface heat cannot be in two places at once so energy that is being constantly recycled between KE and PE within convective overturning is simply not available for radiation to space.

    It follows that due to the conversion of surface heat to potential energy aloft as air rises there can never be an isothermal atmosphere as Roy Spencer proposes and the inevitable existence of a lapse rate slope even in a completely non radiative atmosphere would be the necessary proof.

    There is no breach of any law of thermodynamics in my description and it is fully compliant with the gas laws.

    The problem with an upward facing IR thermometer is simply that it will measure a temperature at the height where atmospheric density triggers the sensor. Thus if pointed at a clear sky it will register a low temperature high up in the atmosphere but if clouds or particulates increase density so as to trigger the sensor at a lower height then it will register a warmer temperature. The reading provided by such a thermometer just shows the temperature of the point along the lapse rate slope where density triggers the sensor. That is therefore not a proof of downward radiation in place of compressional heating since it is consistent with both.

    The reality is that downward radiation is neutralised by conduction and convection as it moves down along the lapse rate slope so that the surface effect at the surface becomes zero.

    Stands back and waits for chaos to ensue 🙂

    • As a layman, I thoroughly enjoy reading the comments for exactly these comments mr. Wilde, as well as the debate that ensue

      Thanks all for your input and effort. It helps me learn slowly the science I don’t understand.

      • You and me too. I love these threads. I read them and change my mind back and forth until I’m all messed up. Then I go to bed 🙂

        I learn tons on sites like this. Sadly they are few and far between where real discussions can be carried on politely (for the most part).

    • I’m not seeing the logic in this.

      If the planet without an atmosphere has T1 and you were to magically add an atmosphere, lets say with no GHGs that cannot radiate at all in IR wavelengths, according to the N-Z theory the temperature at the surface should rise to T2. But if it does rise, surface radiation going out to space should increase, which would not be captured by the atmosphere; this would create a state of disequilibrium.

      You say “excess surface heat cannot be radiated away to space so long as a conducting and convecting atmosphere is held off the surface in hydrostatic equilibrium since that excess is being constantly recycled in and out of potential energy.” My recollection of heat transfer says that this is wrong. A body radiates only according to it’s present temperature. If its temperature goes up, it must radiate more; conduction and convection cannot stop a surface from emitting more radiation if its surface temperature rises.

      Similarly, you cannot cause temperatures on a surface to rise at all if there is always a theoretical “hydrostatic equilibrium” between the surface and the atmosphere since the exchange of equal amounts of heat changes the temperature of neither body. Your “hydrostatic equilibrium” theory itself contradicts the N-Z theory.

      • Kurt,
        Are you not suggesting that heat can be radiated away and conducted/convected away simultaneously?
        You need the same parcel of energy to be in two places at once.
        At hydrostatic equilibrium the net energy exchange is indeed zero but you need an injection of energy to get the atmosphere to hydrostatic equilibrium in the first place and that slug of energy is then recycled up and down indefinitely as long as the atmosphere remains in place. That slug of energy heats the surface but cannot radiate to space.
        A body only radiates according to its temperature if in a vacuum i.e. no ongoing non radiative processes. The S-B equation refers to a vacuum.

        • Of course heat can be simultaneously conducted, convected, and radiated away. But radiation from a surface always increases when its temperature increases according to the fourth power of its temperature. What you are saying is that a surface can two different temperatures, radiating the same at each of those temperatures. That’s not possible.

          You’re missing the entire thrust of Willis’ proof. You start with a planet having no atmosphere, and that planet is going to have an equilibrium temperature. Then ask yourself whether the addition of an atmosphere having no GHGs would increase that equilibrium temperature. Willis’ proof shows that it would not.

          Your “slug of energy” explanation has no relation to how heat transfer and equilibrium actually work. Ask yourself where that slug of energy into the atmosphere comes from, and what happens to the body that sends that slug of energy into the atmosphere so it can heat itself to achieve equilibrium with the surface.

          What would really happen if you add an atmosphere to an otherwise barren planet is that the surface, already in equilibrium with the incoming radiation from space would rapidly cool since it now can conduct and convect quite a bit of its incoming heat into the atmosphere. But once the surface reaches thermal equilibrium with the atmosphere as you envision it, the surface temperature has to have risen right back to the same temperature it was before the addition of the atmosphere, since its net exchange with the atmosphere is zero, and it is still getting the exact same amount of incoming radiation from the sun.

          • Willis does not show that the surface will be warmer. He ignores the surface heating the atmosphere through conduction thus cooling the surface below his SB temperature.

          • Kurt
            Conduction and convection can of course occur at the same time as radiation but cannot both involve the same unit of surface energy. Once a unit is radiated away it is gone and cannot also be conducted.
            You have to view the planet with an atmosphere from outside the atmosphere for S-B to apply. Viewed from space the planet drops below S-B whilst the atmosphere forms and returns to S-B when the atmosphere is in place but then has a surface above S-B. The excess above S-B is the greenhouse effect (non radiative, mass induced) and is constantly recycled up and down in ongoing convection.
            Where else would you place the energy required for ongoing convective overturning?

          • “Viewed from space the planet drops below S-B whilst the atmosphere forms and returns to S-B when the atmosphere is in place but then has a surface above S-B. The excess above S-B is the greenhouse effect (non radiative, mass induced) and is constantly recycled up and down in ongoing convection.”

            I’m trying to make some sense out of this, but I can’t. A temperature is not something that can be recycled, or moved around. Heat can; but if your theory is that there is some amount of stored atmospheric heat in constant transport up and down in the climate system that never gets a chance to be radiated by the surface, then I can just ignore it since it has no effect on the temporal equilibrium temperature of the surface, which receives a certain heat flux (Joules per second per square meter) and has to radiate a flux over that same time interval that sheds the energy it got. Whatever heat exchange you are contemplating between the surface and the atmosphere, in the absence of radiating greenhouse gasses, can only be a zero-sum game in the accounting that matters.

            I think of the atmosphere, in the absence of GHGs, as largely just a buffer. It can temporarily let the surface of the earth maintain a lower temperature when the sun is blasting it during daytime by dumping heat into the buffer, and it can let the surface of the earth maintain a higher temperature during nighttime when the buffer dumps heat back to the surface while the surface radiates more to space than it gets from the stars. But the heat exchange in and out of the buffer does not affect the long-term throughput of the system.

          • Kurt:

            You mistakenly assert,
            “What would really happen if you add an atmosphere to an otherwise barren planet is that the surface, already in equilibrium with the incoming radiation from space would rapidly cool since it now can conduct and convect quite a bit of its incoming heat into the atmosphere. But once the surface reaches thermal equilibrium with the atmosphere as you envision it, the surface temperature has to have risen right back to the same temperature it was before the addition of the atmosphere, since its net exchange with the atmosphere is zero, and it is still getting the exact same amount of incoming radiation from the sun.”

            Sorry, but that displays inadequate understanding. And such misunderstanding is common on all sides of this discussion. Decades ago Hans Jelbring tried to ‘cut through’ the misunderstandings but his attempt seems to have only encouraged people to entrench their views.

            I explain as follows.

            The “otherwise barren planet” does NOT have a single surface temperature for the same reason that the Moon does not have a single surface temperature; i.e. it obtains solar heating on its day side but not its night side while all its surface radiates energy to space.

            If the length of each day on the “otherwise barren planet” equals one of its years then half its surface is solar heated and its other hemisphere is not. Both hemispheres radiate to space but the not-solar- heated region only obtains heat by conduction through the solid material of the planet. Also, the planet obtains most heat in its equatorial region and little heat at its poles. And provision of any difference between the length of its year and the length of its day provides varying solar heating to each region of the planet’s surface.

            The S-B temperature of this planet is not a simple average of its surface temperatures. The S-B temperature is the effective temperature the planet would have if it were a grey body radiating an amount of energy equivalent to the solar energy the planet absorbs.

            Any alteration to the system alters the greyness of the planet and, thus, the planet’s S-B temperature.

            For example, change length of day of the “otherwise barren planet” and its actual surface temperatures all change. But radiative output is proportional to the fourth power of the absolute temperature. A reduction to e.g. its day surface temperature of say x produces a reduction of radiated output of say -y, but an increase to its night surface temperature of x provides an increase to its radiative output of LESS THAN +y (because the day surface has much higher temperature than the night surface and radiation is proportional to the fourth power of the absolute temperature of the radiating surface). This alters radiative equilibrium (i.e. the planet absorbs more heat than it radiates) so the planet’s S-B temperature rises until radiative equilibrium is re-established.

            Similarly, add a GHG-free atmosphere and solar heat absorbed by the planet’s hot regions is conducted to the atmosphere then transported to cooler regions by convection where it heats the cooler regions. This, too, alters the planet’s S-B temperature.

            Then add GHG’s to the atmosphere and the magnitude of both surface heating and heat distribution is altered some more. This also alters the planet’s S-B temperature.

            PLEASE NOTE THAT NONE OF THIS REQUIRES ANY COMPRESSIVE HEATING.

            However, Jelbring noticed something interesting.
            He observed that the S-B temperature of the Earth and the S-B of each other observable planet with an atmosphere (except Mars that has small and variable temperature) fits an equation which relates the temperature to only the plant’s distance from the Sun and the surface density of its atmosphere.

            Jelbring considered this observation to be a remarkable coincidence. So, he published a paper in which proposed that all radiative, conductive and convective effects may adjust in a planetary atmosphere as though they were determined by gravity.

            This suggestion could have been expected to be seminal but it was not. This is sad because investigation of possible ways such a coincidence could occur may have revealed much whether or not the Jelbring conjecture is true. But, instead of such investigations, some people claimed that compressive heating could not determine temperature while others claimed that it does, and they argued to defend those positions.

            Richard

            PS Happy New Year to all.

          • CORRIGENDUM

            Mars has small and variable ATMOSPHERE (not temperature).
            Sorry, but my medication does not assist me avoiding mistakes.

            Richard

          • A proper calculation of the mean physical temperature of a spherical body requires an explicit integration of the Stefan-Boltzmann equation over the entire planet surface. This means first taking the 4th root of the absorbed solar flux at every point on the planet and then doing the same thing for the outgoing flux at Top of atmosphere from each of these points that you measured from the solar side and subtract each point flux and then turn each point result into a temperature field and then average the resulting temperature field across the entire globe. This gets around the Holder inequality problem when calculating temperatures from fluxes on a global spherical body.

          • Alan Tomalty:

            Yes. You have restated my explanation but (I think) in a less clear manner and without explanation of why the procedure you suggest is required to determine S-B temperature from radiative fluxes.

            Richard

        • But doesn’t the temperature have various points where it gets warmer as it goes up? If so how does kinetic energy turn to potential energy and then back into kinetic energy etc as it goes up?

          • It only turns back into kinetic energy when it descends.
            Rising air will never heat back up simply due to rising further, unless something else is going on to add energy to it.

          • You have actual struck another hole in the proposal there is no green house effect, try and explain it 🙂

            It is actually funny watching people use classical physics to try and solve this, try looking what happens when you fire a laser into space (search laser transmission thru atmosphere) it will help you a lot 🙂

        • “A body only radiates according to its temperature if in a vacuum”

          That seems unlikely. Bodies do not know or care if they exist in a vacuum. Nothing about S-B requires a vacuum (but DOES require a blackbody; emissivity=1).

          • Michael 2 January 2, 2019 at 7:56 am

            That seems unlikely. Bodies do not know or care if they exist in a vacuum. Nothing about S-B requires a vacuum (but DOES require a blackbody; emissivity=1).

            No, it does NOT require a blackbody. Emissivity (epsilon) can be any value because it is included in the S-B equation.

            W = \sigma \epsilon T^4

            Regards,

            w.

          • I sit corrected. As commonly used in global warming arguments seems to assume the existence of a blackbody (emissivity=1) and from that starting point emanates many arguments, some of which appear in the comments on this page.

            At any rate, I observe no disagreement about the non-requirement of a vacuum. It was the first I’ve encountered that particular argument.

          • That’s odd because it appears that radiation is described as being at maximum efficiency in a vacuum.
            That implies that it somehow becomes less efficient in a non vacuum.
            Consider an extreme example of a group of molecules surrounded by solid material. In that case no radiation gets out and all energy transfer is via conduction.
            That is germane to the density issue because one would assume that if the density of the surrounding material were to decline then radiation could escape and would start to increase relative to conduction.
            It seems clear that matter placed in the path of radiative emissions leads to conduction which attenuates the radiative output. Of course conduction will only occur if the surrounding material is in contact with the source but that is the case for an atmosphere in contact with a surface.
            So, the issue is whether non radiative gases in an atmosphere will attenuate the radiation from the surface below via conductive absorption rather than radiative absorption.

      • conduction and convection cannot stop a surface from emitting more radiation if its surface temperature rises.
        ≠=========
        Kinetic energy can be radiated but potential energy cannot. Convection converts kinetic energy to potential energy and back again in sync with the rotation of the earth, which delays the radiation to space.

        • Fred – show that on a water surface where the increase in energy results in evaporative cooling of the surface as it loses latent heat of evaporation. Do remember that at least 70% of the surface of the Earth is water/transpiring plants.

      • Kurt December 31, 2018 at 11:05 am

        If the planet without an atmosphere has T1 and you were to magically add an atmosphere, lets say with no GHGs that cannot radiate at all in IR wavelengths, according to the N-Z theory the temperature at the surface should rise to T2. But if it does rise, surface radiation going out to space should increase, which would not be captured by the atmosphere; this would create a state of disequilibrium.

        Absolutely. You got it in one.

        Stephen Wilde says that the heat is “conducted/convected away” … but “away” in this case means “to the atmosphere”, which makes no sense. You cannot continuously pump heat into the atmosphere. As soon as the atmosphere reaches the temperature of the surface, no more heat will flow into the atmosphere … so perforce it must radiate to space.

        But as you say … “this would create a state of disequilibrium”, so it’s not possible.

        Thanks,

        w.

          • Ian W December 31, 2018 at 1:40 pm

            Willis,
            So all your posts on hydrologic cooling of the Earth’s surface by thundershowers are incorrect?

            Say what? My thought experiment involves a blackbody planet with no GHGs, which includes water vapor.

            Why would this have something to do with thunderstorm cooling the surface?

            w.

          • You invent a virtual world unlike Earth then claim on the basis of that the atmosphere of Earth that is full of latent heat, must behave like your virtual world?

            Your dry rock virtual world can be claimed to follow S/B – but a water world cannot. You have oversimplified your argument.

          • Ian, it’s called a “thought experiment”. Einstein was famous for using them. They are invaluable for understanding things when we cannot do real experiments.

            Now, N&Z claim that their theory does NOT require GHGs to raise the temperature of the surface of a planet above the S-B temperature. My thought experiment proves that their claim is not possible. Without GHGs the only way for the planet to lose energy is radiation from the surface … and it cannot radiate more than it is receiving.

            Does this apply to earth? Nope, nor was it intended to do so. It applies to the N&Z claim, and it shows that their claim violates the laws of thermodynamics. Q.E.D.

            w.

          • Ian, I support your view. Fynman commented that if your guess does not conform to reality then it is wrong. W uses a non physical model. It is not real. Einstein started with a physically real thing, that the speed of light as measured in many experiments was constant. W is misrepresenting E’s model.

        • Would not a much more dense atmosphere have greater laten energy than a less dense atmosphere simply because of convection of heat from the surface?

        • It doesnt really matter whichever theory is correct because temperatures are determined locally via clouds,water vapour and non condensing GHGs. Sure there is some basic reason that raises the non atmosphere moon temperature from 197.3K to the earth temperature of 287.6K , but since in the end we are trying to rid this world of the CO2 scam, it is the effect of CO2 that we need to know.

          http://applet-magic.com/cloudblanket.htm

          Clouds overwhelm the Downward Infrared Radiation (DWIR) produced by CO2. At night with and without clouds, the temperature difference can be as much as 11C. The amount of warming provided by DWIR from CO2 is negligible but is a real quantity. We give this as the average amount of DWIR due to CO2 and H2O or some other cause of the DWIR. Now we can convert it to a temperature increase and call this Tcdiox.The pyrgeometers assume emission coeff of 1 for CO2. CO2 is NOT a blackbody. Clouds contribute 85% of the DWIR. GHG’s contribute 15%. See the analysis in link. The IR that hits clouds does not get absorbed. Instead it gets reflected. When IR gets absorbed by GHG’s it gets reemitted either on its own or via collisions with N2 and O2. In both cases, the emitted IR is weaker than the absorbed IR. Don’t forget that the IR from reradiated CO2 is emitted in all directions. Therefore a little less than 50% of the absorbed IR by the CO2 gets reemitted downward to the earth surface. Since CO2 is not transitory like clouds or water vapour, it remains well mixed at all times. Therefore since the earth is always giving off IR (probably a maximum at 5 pm everyday), the so called greenhouse effect (not really but the term is always used) is always present and there will always be some backward downward IR from the atmosphere.

          When there isn’t clouds, there is still DWIR which causes a slight warming. We have an indication of what this is because of the measured temperature increase of 0.65 from 1950 to 2018. This slight warming is for reasons other than just clouds, therefore it is happening all the time. Therefore in a particular night that has the maximum effect , you have 11 C + Tcdiox. We can put a number to Tcdiox. It may change over the years as CO2 increases in the atmosphere. At the present time with 409 ppm CO2, the global temperature is now 0.65 C higher than it was in 1950, the year when mankind started to put significant amounts of CO2 into the air. So at a maximum Tcdiox = 0.65C. We don’t know the exact cause of Tcdiox whether it is all H2O caused or both H2O and CO2 or the sun or something else but we do know the rate of warming. This analysis will assume that CO2 and H2O are the only possible causes. That assumption will pacify the alarmists because they say there is no other cause worth mentioning. They like to forget about water vapour but in any average local temperature calculation you can’t forget about water vapour unless it is a desert.
          A proper calculation of the mean physical temperature of a spherical body requires an explicit integration of the Stefan-Boltzmann equation over the entire planet surface. This means first taking the 4th root of the absorbed solar flux at every point on the planet and then doing the same thing for the outgoing flux at Top of atmosphere from each of these points that you measured from the solar side and subtract each point flux and then turn each point result into a temperature field and then average the resulting temperature field across the entire globe. This gets around the Holder inequality problem when calculating temperatures from fluxes on a global spherical body. However in this analysis we are simply taking averages applied to one local situation because we are not after the exact effect of CO2 but only its maximum effect.
          In any case Tcdiox represents the real temperature increase over last 68 years. You have to add Tcdiox to the overall temp difference of 11 to get the maximum temperature difference of clouds, H2O and CO2 . So the maximum effect of any temperature changes caused by clouds, water vapour, or CO2 on a cloudy night is 11.65C. We will ignore methane and any other GHG except water vapour.

          So from the above URL link clouds represent 85% of the total temperature effect , so clouds have a maximum temperature effect of .85 * 11.65 C = 9.90 C. That leaves 1.75 C for the water vapour and CO2. CO2 will have relatively more of an effect in deserts than it will in wet areas but still can never go beyond this 1.75 C . Since the desert areas are 33% of 30% (land vs oceans) = 10% of earth’s surface , then the CO2 has a maximum effect of 10% of 1.75 + 90% of Twet. We define Twet as the CO2 temperature effect of over all the world’s oceans and the non desert areas of land. There is an argument for less IR being radiated from the world’s oceans than from land but we will ignore that for the purpose of maximizing the effect of CO2 to keep the alarmists happy for now. So CO2 has a maximum effect of 0.175 C + (.9 * Twet).

          So all we have to do is calculate Twet.

          Reflected IR from clouds is not weaker. Water vapour is in the air and in clouds. Even without clouds, water vapour is in the air. No one knows the ratio of the amount of water vapour that has now condensed to water/ice in the clouds compared to the total amount of water vapour/H2O in the atmosphere but the ratio can’t be very large. Even though clouds cover on average 60 % of the lower layers of the troposhere, since the troposphere is approximately 8.14 x 10^18 m^3 in volume, the total cloud volume in relation must be small. Certainly not more than 5%. H2O is a GHG. Water vapour outnumbers CO2 by a factor of 50 to 1 assuming 2% water vapour. So of the original 15% contribution by GHG’s of the DWIR, we have .15 x .02 =0.003 or 0.3% to account for CO2. Now we have to apply an adjustment factor to account for the fact that some water vapour at any one time is condensed into the clouds. So add 5% onto the 0.003 and we get 0.00315 or 0.315 % CO2 therefore contributes 0.315 % of the DWIR in non deserts. We will neglect the fact that the IR emitted downward from the CO2 is a little weaker than the IR that is reflected by the clouds. Since, as in the above, a cloudy night can make the temperature 11C warmer than a clear sky night, CO2 or Twet contributes a maximum of 0.00315 * 1.75 C = 0.0055 C.

          Therfore Since Twet = 0.0055 C we have in the above equation CO2 max effect = 0.175 C + (.9 * 0.0055 C ) = ~ 0.18 C. As I said before; this will increase as the level of CO2 increases, but we have had 68 years of heavy fossil fuel burning and this is the absolute maximum of the effect of CO2 on global temperature.
          So how would any average global temperature increase by 7C or even 2C, if the maximum temperature warming effect of CO2 today from DWIR is only 0.18 C? This means that the effect of clouds = 85%, the effect of water vapour = 13.5 % and the effect of CO2 = 1.5%.

          Sure, if we quadruple the CO2 in the air which at the present rate of increase would take 278 years, we would increase the effect of CO2 (if it is a linear effect) to 4 X 0.18C = 0.72 C Whoopedy doo!!!!!!!!!!!!!!!!!!!!!!!!!!

      • G’ Day Kurt, there is no such thing as a gas that cannot radiate in the IR spectrum. All matter radiates Black Body radiation in accordance with SB’s law. I think you are proposing an atmosphere that does not absorb at any of the BB frequencies that the surface radiates. Cheers Bruiser

        • The SB equation does not describe gas emissions. They depend upon quantum mechanics and CO2 has multiple ways to absorb photons and emit them. Nitrogen by contrast is almost unable to absorb and radiate heat.

          • Nitrogen by contrast is almost unable to absorb and radiate heat.

            This appears a rather novel assertion. Are you suggesting that if we were able to measure the temperature of individual components of the atmosphere they would have different temperatures, such that, at any given altitude, nitrogen which has a different temperature to that of CO2?

            If that were the case, we ought to be able to see great fluctuations in temperature as CO2 levels vary during the course of the day, or where CO2 is being out gased.

            If nitrogen cannot be heated (according to you, it cannot absorb heat), how do you explain the following table which shows its conductivity at temperatures between -200 deg C to 1300 degC?

            https://www.engineeringtoolbox.com/docs/documents/2084/Nitrogen%20thermal%20conductivity%20pressure%20C.png

          • Richard, you’ve got to learn to read between the lines. He means NO2 is unable to absorb and radiate longwave thermal radiation. Nothing to do with conduction or convection.

            w.

        • Bruiser December 31, 2018 at 1:29 pm

          G’ Day Kurt, there is no such thing as a gas that cannot radiate in the IR spectrum. All matter radiates Black Body radiation in accordance with SB’s law. I think you are proposing an atmosphere that does not absorb at any of the BB frequencies that the surface radiates. Cheers Bruiser

          Bruiser, this is widely believed but is not true. All SOLIDS both absorb and emit blackbody (thermal) radiation, but not all gases. That’s why we divide them into greenhouse gases (CH4, CO2, H2O, etc) and non-greenhouse gases.

          To absorb the thermal radiation energy, it must be converted into mechanical motion within the molecule. It does this by stretching or flexing or scissoring the atomic bonds that hold the atoms of the molecule together.

          But monatomic gases like argon, neon, zenon, and the like do not have atomic bonds, so there is no way for them to either absorb or radiate thermal energy.

          Regards,

          w.

          • Willis you add an atmosphere to a planet, that atmosphere is going to absorb heat, the same amount as the planet, the bigger the mass of atmosphere the bigger the heat, so the temperature should stay the same and it does, But not evenly, this is where lapse rate screws everything up.
            The t1 t2 is not changed overall but it is changed at the bottom of the atmosphere,
            Even Loschmidt or Boltzmann/Maxwell could not agree on lapse rate, I favor Loschmidt.

          • Why “thermal radiation energy”. It is all just electromagnetic radiation, from near infinite wave length to near infinite frequency, is it not? Other than the particular absorption./emission spectrum of any particular substance there isn’t any difference in the radiation beyond frequency and amplitude, is there?

            There is a device whose name I unfortunately can’t recall at the moment. I think it is something different than a plasma torch. Some particular radio frequency EM is transmitted via an appropriately designed antenna into a stream of gas. Electrons in the gas atoms are raised to a higher quantum level. Passing out of the transmission field, the electrons fall back down to their ground state, releasing the energy they absorbed. Extremely high temperatures can be achieved. Does this only work with non-monatomic gases?

          • AndyHce January 1, 2019 at 1:24 am

            Why “thermal radiation energy”. It is all just electromagnetic radiation, from near infinite wave length to near infinite frequency, is it not? Other than the particular absorption./emission spectrum of any particular substance there isn’t any difference in the radiation beyond frequency and amplitude, is there?

            Andy, the term “thermal radiation” is a generally used synonym for “longwave radiation”. It specifically refers to the radiation from things at earthlike temperatures.

            w.

        • And my understanding is that even even diatomic molecules like N2 and O2 radiate at much higher temperatures than IR. So in order for any other gasses than GHGs like CO2, water vapor, methane, etc. in the atmosphere to radiate to space, the atmophere’s temperature would first have to rise to temperatures so high that the atmosphere wouldn’t be able to absorb enough energy from the surface to sustain such temperatures.

          • The satellite temperatures measures are of microwave emitted by O2 and that is mainly at a much lower temperature than the earth’s surface

    • Stephen, winter temperature inversion falsifies the theory. The atmosphere cools from the bottom up, akso neasured in daily observations during the Koorin expedition

      Clarke, R. H.; Brook, R. R. The Koorin Expedition: atmospheric boundary layer data over tropical savanna land. In: Canberra: Department of Science and the Environment; 1979.

      • Hans,
        That is a local short term exception, not a falsification. It is the ground that cools faster than warmth from compression can be supplied from above, indeed the inversion blocks the descent from above. In due course an inversion always dissipates.

    • Stephen Wilde December 31, 2018 at 10:22 am

      Actually, I did manage to rebut Willis’s alleged ‘proof’ at the time but just as I got to the point where he would have had to back down he went off at an irrelevant tangent and became somewhat shouty.

      Without a link to back up your nonsense that’s just an ad hominem attack. So let’s set that aside and take a look at your current argument. You say:

      One can readily see that the excess surface heat cannot be radiated away to space so long as a conducting and convecting atmosphere is held off the surface in hydrostatic equilibrium since that excess is being constantly recycled in and out of potential energy (which is not heat and does not radiate) within ascending and descending columns of atmospheric gases.

      I don’t understand this. Let me restate the experimental situation. We have a blackbody planet with an atmosphere which does NOT absorb or emit thermal radiation. Argon will do nicely. The surface is evenly heated from all sides by thousands of suns. It gets up the to Stefan-Boltzmann corresponding temperature, where it radiates exactly as much energy as it receives.

      In this system, the surface radiation is the only way that the planet can lose heat to space—the atmosphere cannot radiate.

      Now IF by some unknown method the surface is heated above the Stefan-Boltzmann temperature, perhaps involving “a conducting and convecting atmosphere which is held off the surface in hydrostatic equilibrium since that excess is being constantly recycled in and out of potential energy”, or perhaps by some other method, then again by Stefan-Boltzmann, the surface perforce will be radiating more energy. It has to radiate more because it is warmer and there is no place else for the excess heat to go.

      But if that is the case, then the surface is radiating more energy than it is receiving … which is a violation of the Laws of Thermodynamic.

      As a result, Stephen, it doesn’t matter what your explanation is of how the surface might be warmed. If the atmosphere doesn’t contain greenhouse gases, then if the surface is warmed by whatever atmospheric or pressure-based means, it will have to radiate more energy than it is receiving and that can’t happen.

      Best of the New Year to you,

      w.

      PS—a comment to you from my original post containing my proof, from Dr. Robert Brown, a brilliant guy who actually teaches this stuff at the college level:

      Robert Brown January 15, 2012 at 8:51 am

      By constantly restraining the propensity of molecules to fly off into space when they are energised by an external heat source such as the sun.
       
      I am puzzled that so many far better qualified contributors than me seem to be unaware of that.
      Gravity works ceaselessly as long as there are molecules with any energy at all attempting to escape its embrace.
       
      That is why one can balance an object in a so called ‘permanent’ near Earth orbit so that it neither crashes to the surface nor flies off to space. It is a well established principle but not here it seems.

      Seriously, you are starting to cause me actual physical pain. Gravity does no work on an object in a circular orbit, and this isn’t a useful description of how gravity binds molecules in a gas at an equilibrium temperature.
       
      Stephen, I don’t want to discourage you — contributing is good and a good way to learn. But you need to either take a course in introductory physics or else study it on your own in some detail. You can visit my website and under the toplevel “Class” heading there are two semesters worth of intro physics textbook. You can learn how gravity and orbits work (among other things) there. I’ll try to put back the thermo chapters soon as well — I removed them for my classes this last year as we omitted thermo.
       
      rgb

      What he said …

      • A body heated on all sides by thousands of suns will heat up until it reaches the temperature of those thousands is suns.

        • EdB December 31, 2018 at 11:57 am

          A body heated on all sides by thousands of suns will heat up until it reaches the temperature of those thousands is suns.

          Nope. Depends on how far away the suns are … for example, every star in the sky is a sun, so the earth is heated by thousands of suns …

          w.

          • Nope. The universe is dominated by mass that is not a burning sun. Your model is not correct. Try considering molecule surrounded by hot molecules.

          • Sigh

            Willis, now repeat your experiment with a water word like Earth with evaporative cooling of the type you also write about with a powerful hydrologic cycle.

          • Ian W December 31, 2018 at 1:17 pm

            Sigh

            Willis, now repeat your experiment with a water word like Earth with evaporative cooling of the type you also write about with a powerful hydrologic cycle.

            Sorry, but my experiment specified no greenhouse gases, so I can’t “repeat” it with GHGs.

            w.

          • I disagree with add Spencer’s assertion that W has refuted NZ. Using a non real model of a body surrounded by suns is not a refutation.

          • So Willis your ‘experiment’ is not valid for Earth and is therefore not applicable to Earth’s climate. As such claiming that another experiment that was intended for Earth is invalid due to your experiment on a virtual world unlike Earth seems to be stretching a point – would you agree?

          • Ian and EdB, it’s called a “thought experiment”. Einstein was famous for using them. They are invaluable for understanding things when we cannot do real experiments.

            Now, N&Z claim that their theory does NOT require GHGs to raise the temperature of the surface of a planet above the S-B temperature. My thought experiment proves that their claim is not possible. Without GHGs the only way for the planet to lose energy is radiation from the surface … and it cannot radiate more than it is receiving.

            Does this apply to earth? Nope. It applies to the N&Z claim, and it shows that their claim violates the laws of thermodynamics.

            w.

      • I can’t figure out if Mr. Eschenbach’s proof is too simple or too complicated for me to understand.

        Start with the simplest experiment to measure radiation. A heated iron sphere is suspended (by a perfectly insulated material) within a glass vacuum cylinder located in a room (of infinite size) with an air temperature of 70 degrees. We all agree that the sphere will radiate energy until the temperature of the sphere comes into equilibrium with the temperature of the room. 100% of the energy transfer from the sphere would be due to radiation.

        Now consider a second experiment. Same situation, except the cylinder is now filled with nitrogen. IMO, the sphere will now reach equilibrium with the surrounding room temperature more rapidly – the sphere can now transfer energy via radiation, conduction, and convection. The “atmosphere” around the sphere does not act as an insulator. In this situation, I believe that Mr. Eschenbach’s proof would hold true.

        However, the second experiment does not match the situation of a hypothetical earth with no greenhouse gases. Everyone keeps talking about the lapse rate in the troposphere. However, no one is discussing the incredibly hot temperatures in the thermosphere (up to 3,600 F). This area is directly heated by the sun due to the absorption of UV, visible light, and high energy gamma rays.

        I believe it is possible to create a set of conditions in my “room” experiment wherein the temperature of the iron sphere matches the actual observed temperature of the earth – with the surrounding room being set at the temperature of interstellar space. One experiment would use CO2 in the cylinder surrounding the sphere and have a hot thermosphere separating the glass cylinder from “space”. The thermosphere/atmosphere system would certainly retard the heat loss from the sphere into space.

        However, we would also set up a second experiment using N2 in the cylinder. I believe this system would also retard the heat loss from the sphere into space – without the use of any greenhouse gas in the cylinder.

        I believe the heat and density of the thermosphere in the second experiment (for the same equilibrium sphere temperature) would have to be different than the conditions of the first experiment. However, I do not believe greenhouse gasses are required for the actual earth temperature to exceed the calculated blackbody temperature. IF TRUE, THIS DOES NOT DISPROVE THE GREENHOUSE GASSES THEORY. HOWEVER, IF TRUE, THE FACT THE EARTH’S TEMPERATURE EXCEEDS THE BLACKBODY IS LIKEWISE NOT PROOF OF A GREENHOUSE EFFECT.

        [I am certainly not a physicist, and the hypothetical experiment is simplified. However, I don’t understand the requirement for greenhouse gasses in the much more complicated real-world situation.]

        • Pillage
          You said, “However, no one is discussing the incredibly hot temperatures in the thermosphere (up to 3,600 F).” The temperature of the gas molecules (will determine the distribution, with respect to wavelength, of energy radiated. However, what I think that you are missing is that the total energy radiated is directly related to the number of molecules radiating per unit volume, which is small for that rarefied region of the atmosphere. So, yes, there is radiation coming from the thermosphere, but the quantity is small.

          • I agree that the amount of energy is quite small.

            I do not understand how this layer, plus a pure nitrogen atmosphere, would not raise the temperature of the earth above the theoretical blackbody earth temperature.

            Is the answer that the measured temperature increase would be infinitesimal?

        • “However, I do not believe greenhouse gasses are required for the actual earth temperature to exceed the calculated blackbody temperature.”
          So what else? Here is a simple version of Willis’ energy balance:
          1. The surface receives about 240 W/m2 solar, on average. Solar is the only overall energy source here (geothermal is tiny). The mass of the atmosphere is not a sustainable energy source.
          2. The surface, from S-B and its temperature, emits about 396 W/m2. With no GHG’s to obstruct it, that heat would be lost to the Earth. And then, how can the surface temperature be maintained, with a nett loss of 156 W/m2 and no energy source of its own?
          The answer of course is that some of the outgoing radiation is intercepted by GHG and returned, mostly as down IR, restoring the balance. What else?

          • Why are you ignoring conduction and convection which leads to winds, thus completely changing the temperature distribution, starting with a cooler equator?

          • “Why are you ignoring conduction and convection . . . ?”

            Because conduction and convection cannot transport heat into space.

            Conduction and convection can only store heat from the surface temporarily when the surface is warmer than the atmosphere, and return it when the surface is cooler than the atmosphere. It’s like a buffer in a computer system that stores data, but is not the source of it. Since the atmosphere cannot create heat and provide it to the surface on a sustained basis, the only thing that can heat the surface from its black body equilibrium temperature is having an atmosphere that captures heat that the surface would otherwise have emitted directly to space and radiate a portion of that back to the surface.

          • The new year celebrations at work, Nick.
            On reflection you might like to correct your post.
            The surface receives 240 solar and 156 IR back radiation which is just recycling the 240 W/m2. It is not new energy.
            The 240 coming in is the 240 going out, there is no extra 156 of extra energy.
            The GHG and their accompanying atmospheric gases do heat up purely to get the energy to the effective emission level to our 240 back into space from the higher effective level.
            There is no balance to restore, the earth never could lose 156 extra energy, it never had it to lose in the first place.

          • The new year celebrations at work, Nick.
            On reflection you might like to correct your post.
            The surface receives 240 solar and 156 IR back radiation which is just recycling the 240 W/m2. It is not new energy.
            The 240 coming in is the 240 going out, there is no extra 156 of extra energy.
            The GHG and their accompanying atmospheric gases do heat up purely to get the energy to the effective emission level to our 240 back into space from the higher effective level.
            There is no balance to restore, the earth never could lose 156 extra energy, it never had it to lose in the first place.

          • 1)The surface doesnt get 240 W/m^2.
            77W/m^2 is absorbed by the atmosphere before it has a chance to get to the surface.
            2) Nick since you are combining the energy balance numbers from a real earth and transposing them to a fictititious earth, your attempt at balancing doesnt make sense.

            However let us stick to the real earth AND Before figuring out the DWIR, let us calculate the absorptions and emissions 1st. Since only 163 gets to the surface , 114 of that hits the oceans (70%)and 49 hits the land(30%).
            Of the 49 that hits the land, 10% of 86.4 (total evapotranspiration) =(transpiration) = 8.64
            is emitted back to atmosphere. that leaves ~40.4 left. Another emission is 18.4 conduction that leaves 22 left to be emitted to atmosphere from land.
            From the oceans we have the rest of the evaporation which is 86.4-8.64 = ~ 77.7 So subtract that from the oceans that leaves you 36.3. Add this to the amount left to be emitted from land 36.3 + 22 = 58.3 BUT satellite measurements show a window of 66W/m^2 from surface direct to space NOT 40 as Trenberth originally wrote. To quote Cementafriend “Prof Trenberth wrote us that he knows this. But but he kept his 40 disregarding measurements”

            If it really is 66 then there would already be a minus 8 W/m^2 to be emitted from surface. SOMETHING DOES NOT COMPUTE. We don’t have any IR left for the DWIR.

          • Alan Tomalty January 2, 2019 at 11:17 pm

            However let us stick to the real earth AND Before figuring out the DWIR, let us calculate the absorptions and emissions 1st. Since only 163 gets to the surface , 114 of that hits the oceans (70%)and 49 hits the land(30%).

            Sorry, but that makes no sense, and it indicates that you truly don’t understand what you are talking about. Both the land and the ocean receive the same amount of 163 W/m2. It is a PER SQUARE METRE amount, whether the square metre is land or sea.

            w.

        • “Same situation, except the cylinder is now filled with nitrogen. IMO, the sphere will now reach equilibrium with the surrounding room temperature more rapidly – the sphere can now transfer energy via radiation, conduction, and convection.”

          If I understand your experiment correctly, it doesn’t quite fit what happens with the Earth. Your sphere starts with a fixed amount of heat in it that slowly dissipates into surrounding air, first by radiating to a glass cylinder that then conducts and/or convects to surrounding air. You modify that to fill the vacuum with a radiatively non-absorbing gas and say that the fixed amount of heat in the sphere can now be transmitted to the glass more effectively via the gas, which then conducts/convects to the surrounding air at the surface of the glass.

          But the Earth is a system where the surface is surrounded by air, which is in turn surrounded by a vacuum. The vaccum of space isn’t surrounded by anything and can’t be filled by gas. Gas can surround the earth, but can’t act as a conductive conduit to something outside the Earth. And rather than just having an initial charge of heat to dissipate, the Earth (your cylinder) is constantly heated by an external source – the Sun. So in the real world, the atmosphere won’t help the surface of the Earth conduct or convect to something outside the boundary of the atmosphere, as is the case in your example. And since the surface of the Earth is constantly receiving an energy flux from the sun, convection and conduction can’t do anything to affect the equilibrium temperature that the Earth has to maintain against its surrounding vacuum.

          • “convection and conduction can’t do anything to affect the equilibrium temperature that the Earth has to maintain against its surrounding vacuum.”

            They do create a potential energy store that constantly returns to the surface as heat over half the surface and which then travels to the base of the next region of uplift where the extra heat has to be added to continuing solar input which raises surface temperature above S-B

        • Pillage,

          However, the second experiment does not match the situation of a hypothetical earth with no greenhouse gases. Everyone keeps talking about the lapse rate in the troposphere. However, no one is discussing the incredibly hot temperatures in the thermosphere (up to 3,600 F). This area is directly heated by the sun due to the absorption of UV, visible light, and high energy gamma rays.

          Three points. First, don’t forget that the Earth – and its atmosphere – is in a vacuum. In the overall scheme, only radiative energy can leave the system, there’s no air out there to convect into. Second, don’t confuse temperature with heat energy, which is temperature multiplied by thermal mass. The thermosphere is hot, but not dense; high temperature with little total energy.

          Finally, note that with the addition of an atmosphere, the radiative surface of the iron sphere isn’t the surface of the iron any more, it’s the surface of the gas, subject to the transmission characteristics of that gas. The entire system will be at an equilibrium temperature where the total radiated power is equal to that received; anything below the radiative surface can be at a higher temperature (or perhaps lower, if the gas has a low enough emissivity).

          • Finally I see someone talk about the emissivity of the atmosphere. As an engineer I know the emissivity is proportional to the partial pressures of the SO2, CO2 and H2O. So the higher the atmospheric pressure the more the “green house” gases will absorb and reradiate. This is how pressure comes in to the equation.

      • Willis’ proof makes no sense.

        If you have an argon atmosphere surrounded by thousands of suns, then the planet will radiate what it radiates, AND the near-surface temperature of the atmosphere will be significantly warmer than the atmosphere 10 km up. It would have to be, as there are more molecules of argon nearer the surface which have conducted with the very hot surface, and far fewer argon molecules 10 km up which are not conducting with the very hot surface. The molecules MAY contain the same kinetic energy above as below, but we measure atmospheric temperature not by individual molecules but by the average kinetic energy of a volume of gas; hence, all else equal, the temperature of a thinner atmosphere MUST be less than that of a thicker atmosphere. Such a situation violates no physical laws. We can’t make any assumptions about what “target” temperature that planet’s surface will be, but we do know that whatever it is, no physical laws are violated.

        If you add GHGs the planet will still radiate what it radiates and violate no laws of physics, and the near-surface atmosphere will still be warmer than the atmosphere 10 km up.

        Don132

        • “we measure atmospheric temperature not by individual molecules but by the average kinetic energy of a volume of gas”

          That statement may have a latent ambiguity, but it seems at odds with the ideal gas law:

          PV=NkT -> T=(P/N)(V/k): The temperature of a given volume of an ideal gas is proportional in accordance with the reciprocal of Boltzmann’s constant to the ratio that the volume’s pressure bears to the number of molecules that occupy that volume.

          So temperature is a measure of the kinetic energy per molecule per degree of freedom (where kinetic energy is computed in accordance with the molecular velocities with respect to gas’s center of mass).

          “hence, all else equal, the temperature of a thinner atmosphere MUST be less than that of a thicker atmosphere.”

          But what’s usually not equal in a thinner atmosphere is the pressure, and if the pressure were lower in proportion to the molecular concentration–i.e., if P/N were the same at 10 km as at the surface–then the temperature would be the same even though the number of molecules is much less.

          • Joe Born,
            Does not less pressure lead to a thinner atmosphere?

            ” Clearly, temperature has to do with the kinetic energy of the molecules, and if the molecules act like independent point masses, then we could define temperature in terms of the average translational kinetic energy of the molecules, the so-called ‘kinetic temperature’.

            “It is important to note that the average kinetic energy used here is limited to the translational kinetic energy of the molecules. That is, they are treated as point masses and no account is made of internal degrees of freedom such as molecular rotation and vibration. This distinction becomes quite important when you deal with subjects like the specific heats of gases.”

            When we speak of gas temperature we speak of the average translational energy of the molecules within a volume of gas.

            http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
            and
            http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

            Don132

    • Stephen, I totally agree with you, and that has been my belief for over 2 decades. Of course, before I retired, I was an engineer in lasers, instrumentation, and weather instruments. I learned the thermal laws and the gas laws, and understand them fully.
      But I do have one comment to add. We all know that the sun heats the surface, and the air at the surface every day. We also know that heated air rises through convection. What seems to be ignored is what happens to cause the atmosphere to cool back down at night. We KNOW it gets hot from the sun, but we don’t realize how the cooling takes effect. Hint: It is from the surface UP. The surface radiates, which cools it (ever stick your feet into sand at night?) and the air in contact with that cooled surface is cooled to the temperature of the surface. But that air does not rise – it pools as a cool layer and that layer increases in thickness during the night. Balloon measurements confirm this. Thermometers are at 2 meters to prevent measuring this cooled air at the surface. Simply stated, the atmosphere is heated mostly by the heated surface when sun is present, and it cools mostly by conduction at night. It takes LONGER to cool than to heat, which is why it is coolest JUST before the sun begins warming again. (All comments are without wind.) The surface radiates 24×7, the atmosphere near the surface is warmed only when the sun is present, and cools when it is not. The whole atmosphere is a reservoir of heat that is constantly applied to the earth as it rotates. It does not take downwelling radiation to explain any of this. Oh, and since gh gases can radiate, they also help cool the atmosphere at night, but not by much.

    • Infra red rad takes care of the cooling. The atmosphere without adsorptive- re-emittive gases are transparent to infra red going out (and shortwave coming in) If you assume an ocean, yeah huge convection because the much lighter water molecules evaporating from the water surface plus being heated transport huge volumes of heat upwards and “make” weather. With just a cold rock and, say, nitrogen “weather” isn’t much in evidence.

  7. Posted at Dr. Spencer’s blog:

    “… radiation from the atmosphere does indeed warm the surface…”

    Can I rephrase that? How about:

    “…radiation from the atmosphere does indeed result in warming of the surface…”

    Words mean things. The sun does the warming, the greenhouse gas interferes with the cooling. The result is warming.

    Dr. Spencer agreed that was correct.

    What I didn’t post over there was the notion expressed in the first quote above that back radiation warms the earth. It’s semantics. It’s easy to say CO2 warms the earth – rolls off the tongue better than slows the cooling or any other more accurate phrase does. But when you say, “Radiation from the atmosphere warms the surface.” you’re going to get jumped on by a lot of people, and for darn good reason. Because it doesn’t, it can’t – a brick of dry ice, which is pretty close to a 15µ radiating black body, isn’t going to warm anything that’s in the temperate range. It’s just that the background of space at essentially absolute zero will facilitate more rapid cooling.

    • will facilitate more rapid cooling.
      ====≠==
      One could argue the same for conduction. Instead if radiating energy to space, the surface energy can be conducted to the atmosphere such as when the sun comes up, and then this energy could be conducted from the atmosphere back to the surface 12 hours later when the sum goes down.

      However in this case the cooling would be delayed for hours rather than fractions of a millisecond as for radiation, which would appear to make conduction even more powerful than radiation at creating a greenhouse effect.

      • I agree with your model. I might add that until someone can write code to describe the interaction of clouds, convection, winds, conduction, evaporation, etc., no one will be able to tell which cooling mechanism dominates each minute of each day, to average out to what we know as the climate. It’s a fools errand. We need to take a pill and just wait and see how much if any our added CO2 causes. I still vote for very little, as I doubt we will be able to measure it for certain.

        • This is certainly a point of common ground between us, though certainly not with the alarmists. If ECS is <1.5K as the evidence implies, it doesn’t practically speaking matter if it is your zero or my 1.3. It is either of no consequence to global surface temperature or slightly beneficial. (Given the practical limits on how much more CO2 we could potentially emit, and how that limits the upper bound on CO2 concentration and thus warming if ECS is ~1.3-1.5).

          Either way, the higher CO2 concentration is beneficial to agriculture and plant life in general. The continued use of fossil fuels is the only realistic way that the poor countries will raise themselves from poverty. Even if we are selfishly only interested in the impact that using or eschewing fossil fuels would have on our own standard of living, we must be concerned about that.

          Apart from a pure love of knowledge which I don’t denigrate at all, there isn’t a practical aspect to this argument we’re having. Or maybe there is after all. Because in a democracy, it matters less what is true and more what is believed to be true. If the voting public decide that the alarmist view must be right because they mistakenly associate the skeptical view with an unscientific hypothesis that is easily discredited, then the alarmists carry the day and our standard of living crashes.

  8. FACT: Air is an insulator.

    Now please explain to me [or provide a link]: How much of the “Green House Effect” is caused simply by the atmosphere surrounding the planet?

    • Usurbrain – 10:42 am

      “Sometimes the first duty of intelligent men is the restatement of the obvious” – George Orwell.

      • all insulation is a conductor (in fact I believe ALL matter is a conductor of heat, some better than others) … “not a good conductor” is what makes it good as insulation …

    • Usurbrain
      Non-convecting air is a poor conductor. However, it does not impede radiation unless there are gas molecules that absorb at the wavelength(s) of radiation.

      • “However, it does not impede radiation ” That is not logical. The atmosphere on earth is NOT invisible to radiation. Therefore it does “impede” radiation.
        For heat transfer from a pipe in a heat exchanger or a fuel rod in a nuclear reactor to work properly the pipe must be in contact to the water. When a film of gas or even a significant number of microscopic bubbles of gas form on the pipe the temperature of the pipe can get hot enough to damage the pipe in the area where these bubbles or film develops. This can happen in a heat exchanger in a low flow area or from an eddy in the pipe from an elbow, flaw, etc. Usually, when bubbles of steam develop the microscopic bubbles can help transfer heat, however after there is a departure from nucleate boiling, the bubbles form a film of steam vapor and can cause the pipes to melt. This film is measured in fractions of inches/millimeters. When there is a departure from nucleate boiling with nuclear fuel rods they can melt.
        If a microscopic film of water vapor can act as an insulator, then several miles of air will act as ian insulator.

        • Usurbrain,
          You took half a sentence and said it is not logical, when what makes it true is the part of the sentence you cut off!
          Come on!
          WTF is going on here with this discussion?

          • If the GHG absorb/reflect the radiation they impede it. PERIOD. What logic negates that? How else would there be a lapse rate?

          • “However, it does not impede radiation unless there are gas molecules that absorb at the wavelength(s) of radiation.”

            This is what Clyde wrote.
            You then took this part:
            “However, it does not impede radiation”

            And said it is not logical.
            Taking half a sentence and arguing against it…?
            The “unless” part is what makes the first part true.

          • “unless there are gas molecules that absorb at the wavelength(s) of radiation.” You have STILL not convinced me that the gas that does NOT absorb does not impede.
            When you travel through a crowd you do not get absorbed and you do get impeded. When a neutron passes through material it can take longer to get through the material without being absorbed. Same with photons – as shown by a prism, other electromagnetic particles also “bounce around”.

          • Yes, the speed of light through a gas is slower than the speed of light through a vacuum.
            But it just gets where it is going a little slower.
            Radiation outbound from the surface will be in space in a matter of a tiny fraction of a second.
            Going slower will not make enough difference to matter for the purposes of this discussion.
            Your disagreement did not seem to be one of semantics, but maybe I was wrong.

        • Usurbrain
          You are confusing conduction in a heat exchanger with radiative transfer in the atmosphere or a vacuum.

          • Repeating – If a microscopic film of water vapor can act as an insulator, then several miles of air will act as an insulator.

          • Userbrain
            Both “insulator” and “conductor” are imprecise terms with approximately opposite meanings. To be more precise, one should quote the quantitative properties, because the ‘insulating’ properties of a given thickness of material are the same as that for a substance of twice the thickness with twice the conductivity. Everything except an absolute vacuum will have some conductivity. The decision to call something an insulator or conductor depends on whether the conductivity is high or low, and to some extent on the application.

          • Perhaps this report will fill some gaps in your knowledge.
            http://www.sfu.ca/phys/346/121/lecture_notes/lecture33_heat_loss.pdf
            Pay special attention to the section on “Windows: Convective/conductive layer.” This also happens to the Earth, the reason that the weather instruments are at four to five feet above ground. And the reason the ground stays warmer longer than the air above four feet.
            A Stagnant layer prevents and impeded conduction, the air itself still has some insolation. That are an awful lot of books are wrong.

  9. I don’t believe compression or GHG explain why a planet with an atmosphere is warmer than one without.

    What explains the SURFACE warming is the lapse rate. This warms the surface while cooling the upper atmosphere, while the average temperature remains unchanged, matching the S-B prediction.

    Thus, if you can explain the cause of the lapse rate you can explain why the surface is warmer than predicted by S-B.

    I do think it is important to note that the equation for the lapse rate is not dependent on the greenhouse effect.

    Rather the lapse rate would appear to be a result of the work performed by the vertical circulation of the atmosphere driven by solar radiation, in a gravity well.

    It is thus likely the work performed by the vertical circulation that transfers energy from the upper atmosphere to the lower atmosphere, creating a lapse rate, heating the surface, and cooling the upper atmosphere.

    Otherwise the atmosphere would be isothermal. The same temperature at the surface as at altitude.

    • Ferd,
      The lapse rate slope follows the decline in density with height and so is a product of increasing compression as one descends through an atmosphere.
      Moving air up or down moves it along that lapse rate slope so the degree of compression changes and so does the temperature as per the gas laws.
      The greenhouse effect is a product of compression and not of radiation.

      • Stephen, likely the GHG effect and the lapse rate are two different names for the same thing, because they both predict the surface to be 32C warmer than the average temperature of the atmosphere.

        And equally the GHG effect would occur even without any CO2 because conduction and convection in an atmosphere are no less efficient than radiation at transferring energy.

        Conduction and convection are simply slower than radiation, but since the GHG effect is due to slowing the cooling, conduction and convection are if anything better suited than radiation at creating a GHG effect.

      • The greenhouse effect is a combined cause of radiation absorption in the atmosphere and the lapse rat. Nothing else. The lapse rate exists even with no absorbing gas, but is a gradient, not a level, and the surface cannot warm (on average) unless there is radiation absorption. Willis hit the nail on the head about conservation of energy prohibiting heating above the direct balance with the surface unless there is radiation absorbing gas (or aerosols)..

        • Leonard has it right. The lapse rate will exist even without any GHGs. However, without them you cannot raise the temperature of the planet’s surface. Hence, the surface temperature would be the SB value based on the energy received.

          Adding GHGs allows more energy to be moved into the atmosphere but more importantly provides the ability to raise the height of the radiating temperature above the surface. This allows the lapse rate to provide additional warming of the surface.

          You’ve got to have GHGs to do the radiating.

          Where I disagree with the current theory is that I think a given lapse rate will always have a maximum radiating temperature. Since the lapse rate is a function of the mass of the atmosphere and the gravitational field, it will be a related to the density/pressure of that atmosphere. I think this is why Z-N found the relationship they found.

          Every planet they examined has GHGs. Hence, they all will allow energy to be moved from the surface. This will allow the elevation of the radiating temperature due to the lapse rate.

          Basically, the mass of the atmosphere plus the mass of the planet define a unique lapse rate. Given almost any amount of GHGs the height of the radiating temperature will then depend uniquely on the amount of energy received. Adding more GHGs will have no effect.

        • If the greenhouse effect were a result of radiative effects (not denying that these exist, just denying that they are as important as everyone believes) then why are there no terms for radiative effects in lapse rate equations? But there are most certainly terms for pressure in lapse rate equations.

          Don132

    • Fredberple. Rather “equation for the lapse rate IS dependent on the greenhouse effect – by a small factor“. See the quantitative thermodynamic development of standard atmospheric lapse rate by RH Essenhigh using S-S integral equation method:
      Essenhigh RH. Prediction of the standard atmosphere profiles of temperature, pressure, and density with height for the lower atmosphere by solution of the (S− S) integral equations of transfer and evaluation of the potential for profile perturbation by combustion emissions. Energy & fuels. 2006 May 17;20(3):1057-67.
      Abstract

      This analytical solution, believed to be original here, to the 1D formulation of the (1905−1906) integral (S−S) Equations of Transfer, governing radiation through the atmosphere, is developed for future evaluation of the potential impact of combustion emissions on climate change. The solution predicts, in agreement with the Standard Atmosphere experimental data, a linear decline of the fourth power of the temperature, T4, with pressure, P, and, at a first approximation, a linear decline of T with altitude, h, up to the tropopause at about 10 km (the lower atmosphere). From these two results, with transformation using the Equation of State, the variations of pressure, P, and density, ρ, with altitude, h, are also then obtained, with the predictions again, separately, in substantial agreement with the Standard Atmosphere data up to 30 km altitude (1% density). The analytical procedure adopts the standard assumptions commonly used for numerical solutions of steady state, one dimensionality, constant flux directional parameter (μ), and a gray-body equivalent average for the effective radiation absorption coefficient, k, for the mixed thermal radiation-active gases at an effective (joint-mixture) concentration, p. Using these assumptions, analytical closure and validation of the equation solution is essentially complete. Numerical closure is not yet complete, with only one parameter at this time not independently calculated but not required numerically for validation of analytical closure. This is the value of the group-pair (kp)o representing the ground-level value of (kp), the product of the effective absorption coefficient and concentration of the mixed gases, written as a single parameter but decomposable into constituent gases and/or gas bands. Reduction of the experimental value of (kp)o to values of k for a comparison with relevant band data for water and CO2 shows numerical magnitudes substantially matching the longest wavelength bands for each of the two gases. Allowing also for the maximum absorption percentages, α°, of these two bands for the two gases, respectively, 39% for water and 8.5% for CO2, these values then support the dominance of water (as gas and not vapor) at about 80%, compared with CO2 at about 20%, as the primary absorbing/emitting (“greenhouse”) gas in the atmosphere. These results provide a platform for future numerical determination of the influence on the T, P, and ρ profiles of perturbations in the gas concentrations of the two primary species, carbon dioxide and water, and it provides, specifically, the analytical basis needed for future analysis of the impact potential from increases in atmospheric carbon dioxide concentration, because of fossil-fuel combustion, in relation to climate change.

      The greenhouse effect enters as the small “value of the group-pair (kp)o representing the ground-level value of (kp), the product of the effective absorption coefficient and concentration of the mixed gases, written as a single parameter but decomposable into constituent gases and/or gas bands.”
      Essenhigh’s development was extended above the troposphere by:
      Kolan, S., 2009. Study of energy balance between lower and upper atmosphere (Doctoral dissertation, The Ohio State University).

  10. Marcus says that he thought that gases got colder when compressed. I thought that it was basic school physics that gases heated up when compressed. There is a type of engine that was invented by a guy named Diesel that relies on air becoming hot when compressed to work. My car is equipped with this type of engine and seeing as it always gets me where I want to go, I suspect that basic school physics got it right.

  11. “The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.”

    Traditionally invoked? If we invoke it then it must exist?

    How about if we prove the existence of the ‘greenhouse theory’ rather than just invoke it to explain away a problem. If this ‘greenhouse’ property exists, then it must manifest itself on Mars (95% CO2 atmosphere), even if close to negligible. Why haven’t we measured it?

    Isn’t it interesting that the Stefan-Boltzmann equation is used to determine that the ‘greenhouse theory’ exists which has no equations itself. We’re using a deterministic theory to prove the existence of a non-deterministic theory.

    Measuring the ‘greenhouse theory’ would go a long way to proving its existence.

    Do Celestial Spheres exist because they were introduced to support a scientific theory? The Geo-centric theory could not explain planetary orbits so Celestial Spheres were ‘invoked’ to explain away the issue. Therefore they exist, right?

    • The claim is that the Earth is 33C above the temperature derived from the Stefan-Boltzmann equation.

      What value does the Stefan-Boltzmann equation give for Mars? Is there ‘excess’ heat on Mars as well?

      • The “excess heat” due to the greenhouse effect on Mars is manifested by a surface temperature excess of about 5K. The greenhouse effect on Mars , despite its 95% CO2 atmosphere composition is affected by the much lower pressure, the lower solar input and the effect of dust storms which have a pronounced anti – greenhouse effect .
        The following discussion aid for science teachers contains Trenberth type heat budget diagrams for both Earth and Mars and you can compare the downward longwave radiation for both planets :
        https://www.scienceinschool.org/content/planetary-energy-budgets

        • mikewaite: [ The “excess heat” due to the greenhouse effect on Mars is manifested by a surface temperature excess of about 5K. ]

          Would you show your work on how you arrived at “about 5K”? I’d like to see the equation, what science did you apply? What assumptions are used to derive your answer? “About 5K” is not exact but rather implies this value falls within some range, is that range as large as +-5K? How are you setting your boundaries?

      • >>
        What value does the Stefan-Boltzmann equation give for Mars? Is there ‘excess’ heat on Mars as well?
        <<

        The equations and procedure are not very complicated. You can solve it for your self.

        Jim

        • Jim Masterson – “The equations and procedure are not very complicated. You can solve it for your self.”

          Thanks. I’m not asking if the equations and procedures are complicated or simplistic, I’m asking you to reproduce them here and now. What assumptions are required before applying those simplistic equations and procedures?

          • First we need the TSI. The formula for TSI is a modified version of the Stephen-Boltzmann law:

            \displaystyle TSI=\sigma \centerdot T_{S}^{4}\centerdot \left( \frac{R_{S}^{2}}{R_{S}^{2}+R_{P}^{2}} \right),

            where σ is the Stephen-Boltzmann constant, Ts is the Sun’s surface temperature, Rs is the radius of the Sun, and Rp is the planetary distance. If sigma = 5.670373e-8 W/(m^2 K^4); Ts = 5,778K; Rs = 6.96392e5 Km; and Rp = 1 Astronomical Unit (AU) or 1.496e8 Km; we get: 1,369 W/m^2–which is in the ballpark.

            To obtain the surface temperature of the Earth, we use the Stephen-Boltzmann law solved for temperature, or:

            \displaystyle T=\sqrt[4]{\frac{TSI}{\sigma }}

            But our computed TSI is too high. The logic goes like this: the Earh is a sphere, it captures the solar radiation in a circular area, and because it rotates, it spreads this radiation “evenly” over its surface. We can compute this as follows:

            \displaystyle \frac{Area\ of\ circle}{Area\ of\ sphere}=\frac{\pi \centerdot {{R}^{2}}}{4\centerdot \pi \centerdot {{R}^{2}}}=\frac{1}{4}

            And we also have to take into consideration the planetary albedo. The Earth’s albedo is about 0.30, or it reflects about 30% of the incoming radiation back to space. So now we can solve for temperature:

            \displaystyle T=\sqrt[4]{\frac{\frac{1369\ \frac{W}{{{m}^{2}}}\centerdot (1-0.30)}{4}}{5.670373e-8\ \frac{W}{{{m}^{2}}{{K}^{4}}}}}=255K

            If we do the same thing for Mars, we get about 590 W/m^2 for the TSI at Mars (since we were using AU for Rp, the Martian AU is 1.523679–we increase Rp by that factor). The Martian albedo is about 0.25. Solving for the Martian surface temperature, we get 210K. Considering that the average surface temperature for Mars is from 208k to 210K, there’s not much “excess” to play with. Of course, you can “play” with the numbers as you like.

            Jim

          • Thanks, Jim, clearly stated.

            I note that you correctly say:

            Solving for the Martian surface temperature, we get 210K. Considering that the average surface temperature for Mars is from 208k to 210K, there’s not much “excess” to play with.

            In that regard, note that Ned Nikolov simply made up a Martian temperature of 180K so it would fit with his bogus “Miracle Equation” … oooh, very, very bad boy …

            I note that Stephen Wilde and his other defenders here won’t touch that fact with a 10 metre pole …

            w.

          • Jim Masterson – Thanks for the response, that’s excellent.

            [But our computed TSI is too high. The logic goes like this: the Earth is a sphere, it captures the solar radiation in a circular area, and because it rotates, it spreads this radiation “evenly” over its surface.]

            I don’t believe the sun’s radiation is ‘spread evenly over the Earth’s surface’, do you? That’s a bad assumption that directly impacts the result.

            [The Earth’s albedo is about 0.30]

            “About 0.30” is still the value used? Climate science has had a tremendous amount of time and computer processing power and there has been no improvement on this value which directly impacts the result?

            Are your derived values, based entirely upon these bad assumptions, the only evidence that the ‘greenhouse gas’ property exists? That is truly pathetic!

          • >>
            Thanks for the response, that’s excellent.
            <<

            Thanks, I appreciate compliments.

            >>
            I don’t believe the sun’s radiation is ‘spread evenly over the Earth’s surface’, do you? That’s a bad assumption that directly impacts the result.
            <<

            You didn’t ask me initially what I thought–you wanted to know how climatologists possibly make the calculations. This calculation ranks as a back-of-the-envelope type; because the equations fit on the back of an envelope, and the answer is available in a few minutes. If you really want an more “correct” answer it will take a lot of work. From first principles you’ll need trigonometry, differential and integral calculus, and lots of analytical geometry. The result will probably be an unwieldy, non-linear equation that needs to be integrated (to compute the average) and has no analytical integral. That means it will have to be integrated using limit theory and (horrors) a computer. But by all means, you go ahead–I’m content with the equations and assumptions I used.

            However, let’s say the 255K answer has an error of 10%. (I don’t think it’s anywhere that big.) Ten percent is 26K or ±26K. It then ranges from 229K to 281K. You still can’t get rid of that last 7K; and it could be as bad as 59K.

            >>
            “About 0.30” is still the value used?
            <<

            Roughly. I think it’s decreasing slightly.

            >>
            Are your derived values, based entirely upon these bad assumptions, the only evidence that the ‘greenhouse gas’ property exists? That is truly pathetic!
            <<

            It’s only pathetic, if you’re trying to get rid of the GHE. I think one exists. Ever spent time in a desert? A tropical forest? I have. That water vapor makes a big difference in temperature ranges.

            Jim

  12. ..I’ve been waiting for this discussion all year. Good timing for it. I really want to know, is it 10% possible, 40%, 60% ? Way beyond my “pay grade” to understand BUT, I do understand that the possibility cannot be 0%…IMHO

  13. “The same parcel of energy in the form of surface heat cannot be in two places at once so energy that is being constantly recycled between KE and PE within convective overturning is simply not available for radiation to space.”

    Eh?
    Steven a parcel of air has a temperature …. and therefore radiates. To space.

    “The problem with an upward facing IR thermometer is simply that it will measure a temperature at the height where atmospheric density triggers the sensor. ”

    Steve, an IR thermo is measuring LWIR photons that have entered thermo HAVING downwelled from the atmosphere. It isn’t measuring a height. Those photons have come from many heights tho chiefly from below the level of effective ratitive cooling (-18C).

    As Clyde said (beat me to it) – the “bike tyre” is sufficient debunking of the “theory”.
    In order for atmospheric density to be the cause of the excess 33C above S-B then the compressional heating contributed by the atmosphere due to it being at an average 1013mb at the surface MUST be kept up continually. By that I mean constantly be compressed and decompressed (which is zero-sum anyway)
    Otherwise it is a violation of the 1st LoT.
    Perpetual free energy!
    Hypothetically, were we able to take a model airless Earth and suddenly introduce our atmosphere under gravity, then yes there would be compressional heating BUT it will then cool to space.
    This is where the fallacy falls down.
    It is not the fact that the atmosphere is in a permanently compressed state that gives the compressional heating.
    It is the ACT of compressing it.
    An action – the reaction – conservation of energy.
    Then THAT’S it.
    Your bike tyre doesn’t stay perpetually hot because it’s at 80 Bar!
    It heats on the act of getting compressed to 80 bar.
    Then it cools, because the heating action has stopped.
    The answer to our energy problems if it did.

    Incidentally gravity works on the atmosphere to create the LR via the relation -g/Cp.
    Which is then further modified by the GHE and LH release aloft.

    • Same for Compressed Air bottles used for divers and firemen. I helped refill the bottles when I was a volunteer fireman. We placed them in a farm water trough/tub of water to help cool the tanks as we filled them. They still got rather warm to the touch. Next day they were all at room temperature.

  14. Although I’ve long since lost patience with Nikolov and Zeller, I remain receptive to a theory, which Luboš Motl discussed at https://motls.blogspot.com/2010/05/hyperventilating-on-venus.html, that can easily be confused with theirs.

    The theory is that beyond a certain point a planet’s surface temperature depends more on its atmosphere’s thickness than on its greenhouse-gas content.

    Perhaps that theory is wrong, but I haven’t seen a compelling refutation.

    • Yup, exactly what I have been saying for many years too. I suspect the profile of an atmosphere in a gravitational field will define a lapse rate AND an average radiating altitude independent of the amount of GHGs (you just need enough to radiate away the incoming energy).

      This is what Z-N found. They didn’t understand it and hence tried to invent something else to explain their finding.

      • “independent of the amount of GHGs”

        I think I agree with you and that you agree with Dr. Motl’s (explanation of Mr. Heller’s) theory, but that quoted phrase is not quite correct, at least as I understand Dr. Motl’s theory.

        As I understand that theory, the surface won’t radiate more power than that of the (virtually all solar) incoming radiation at the top of the atmosphere, no matter what the atmosphere’s mass is, unless the atmosphere includes at least some greenhouse gases. So according to Dr. Motl it’s not true that the surface radiation is completely independent of greenhouse gases.

        But, as the atmosphere’s greenhouse-gas-imparted infrared opacity increases, the surface radiation’s sensitivity to greenhouse-gas concentration falls, and its sensitivity to lapse rate increases. When the resultant opacity becomes high, the surface radiation’s sensitivity to greenhouse-gas concentration therefore becomes negligible, and the integral of the lapse rate with respect to altitude becomes the variable that principally determines the surface radiation.

        As (I believe) you say, this may be the effect that caused Nokolov & Zeller to arrive at their theory. (Or maybe not; I found their exposition confusing.)

    • That was yer man Pablo Miller, Skripal’s MI6 handler, since served with a Gov’t D-notice. Maybe ye need to check some more?

  15. My thanks to both Dr. Roy Spencer, one of my scientific heroes, and Anthony Watts, another of the same, for pointing out my proof that gravity or pressure cannot cause a permanent elevation in planetary surface temperature. Ned Nikolov’s nonsense has more lives than a cat.

    For another look at the kind of goofy claims that Nikolov believes are valid, see my post entitled “The Mystery of Equation Eight“.

    w.

    • Your proof is not valid. Your model is non physical. A body surrounded by suns as you describe would heat up to match the suns mean radiative temperature. Your explaination using the cold universe is false, as the non radiative mass in the universe keeps the mean universe temperature near absolute zero.

      I derived the parameterized equations NZ used and I think they are on to something. I await some better probe data from new source moons to verify their work.

      • So much wrong with that statement .. where to start.

        The lack of any molecules is what makes space cold because in the whacky world of classical physics you define temperature as roughly the average kinetic energy of being struck by a molecule. Under classical physics you then end up with a strange plausable fate of the universe called a heat death
        https://en.wikipedia.org/wiki/Heat_death_of_the_universe

        In that lovely end to the universe space is still cold even though the universe has died from heat (because of the lack of molecules) … strange hey.

        The lesson here is be very careful when evoking classical physics on the universe as all teh theories usually drop into a very very big hole.

  16. Does this same proof disprove the idea that adding GHGs to the atmosphere beyond what is needed to completely capture surface radiation, nonetheless further increases temperatures at the surface by raising the theoretical escape level of emission in the atmosphere, thereby raising surface surface temperatures due the lapse rate (what I have often heard referred to as the “enhanced greenhouse effect”) ?

    I ask this because of the post by Stephen Wilde above. It seems to me that both he and the proponents of the enhanced greenhouse effect are making the same logical error – they both simply create this theoretically-unbounded equal exchange of heat between the atmosphere and the surface to get as much of a surface temperature increase as you want.

    Don’t mistake me here. I completely agree that an atmosphere that traps any portion of radiation emitted from the surface that otherwise would have escaped directly to space would cause surface temperatures to rise. It’s a textbook feedback effect. What I’m questioning is whether you can get a further increase in temperature at the surface by having a top layer of the atmosphere intercept what was emitted outward by a bottom layer of the atmosphere, and cause the bottom layer’s temperature (and the air temperature at the surface) to rise due merely to the pressure gradient that already exists in the atmosphere. That theory has always been where I jump off the greenhouse theory bandwagon.

    • Kurt,
      Read my linked description.
      You can only raise the surface temperature by enough to produce such an upward pressure gradient force as will offset the downward force of gravity.
      There is no logical error.

      • “You can only raise the surface temperature by enough to produce such an upward pressure gradient force as will offset the downward force of gravity.”

        That doesn’t even begin to make sense. The downward force of gravity is the same in Phoenix on a bright summer afternoon as it is in Anchorage on a clear winter night. The surface temperatures at these locations differ vastly, and that difference has nothing to do with gravity. Gravity does not change over the course of a day or a year, yet temperatures do vary significantly over the these intervals.

    • “What I’m questioning is whether you can get a further increase in temperature at the surface by having a top layer of the atmosphere intercept what was emitted outward by a bottom layer of the atmosphere, and cause the bottom layer’s temperature (and the air temperature at the surface) to rise due merely to the pressure gradient that already exists in the atmosphere. That theory has always been where I jump off the greenhouse theory bandwagon.”
      Kurt:
      Don’t see why you would question that.
      And the “pressure gradient” has nothing to do with it (if I understand you correctly)
      It is simply a furtherance of the affect you accept.

      The GHE is a function of path-length of terrestrial IR through the atmosphere to space. (Beer-Lambert Law).
      https://www.britannica.com/science/Beers-law
      The longer the path the more GHG molecules photons encounter exiting to space.
      It’s like a mist/fog into which you shine a torch beam – you will see the fog particles intercept the light and reflect (insert back-radiate for LWIR in the GHE) back to you. The more powerful the beam the further back through the fog they will travel and have more particles in their path.
      At the level of effective emission to space (where more photons escape up and out to space than get back-radiated (this is at a height of -18C – Earth’s S-B equilibrium temp) though, emitting molecules are colder and so less efficient at the job of emission to space than are the molecules lower down.
      It is this level that rises as concentrations of GHGs increase – BOTH increasing the path-length (more intercepting molecules AND a colder effective emitting level).

          • Anthony – Sherwood’s analysis doesn’t count. It is unreliable because it uses wind data as a proxy for temperature. Christy et al challenged this in 2010, and the IPCC (referring inter alia to Christy) gave this method a “low confidence” in AR5 as follows:

            “Atmospheric winds are driven by thermal gradients. Radiosonde winds
            are far less affected by time-varying biases than their temperatures (Gruber and Haimberger, 2008; Sherwood et al., 2008; Section 2.7.3). Allen and Sherwood (2007) initially used radiosonde wind to infer temperatures within the Tropical West Pacific warm pool region, then extended this to a global analysis (Allen and Sherwood, 2008) yielding a distinct tropical upper tropospheric warming trend maximum within
            the vertical profile, but with large uncertainty. Winds can only quantify
            relative changes and require an initialization (location and trend at that location) (Allen and Sherwood, 2008). The large uncertainty range was predominantly driven by this initialization choice, a finding later confirmed by Christy et al. (2010), who in addition questioned the stability given the sparse geographical sampling, particularly in the
            tropics, and possible systematic sampling effects amongst other potential issues. Initializing closer to the tropics tended to reduce or remove the appearance of a tropical upper tropospheric warming trend maximum (Allen and Sherwood, 2008; Christy et al., 2010). There is only low confidence in trends inferred from ‘thermal winds’ given the relative immaturity of the analyses and their large uncertainties.”

            Please Anthony, no more references to Sherwood. It will not resolve anything.

          • Jordan:
            This study is not by Sherwood ….
            https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/grl.50465

            “Using these approaches, it is shown that within observational uncertainty, the 5–95 percentile range of temperature trends from both coupled‐ocean and atmosphere‐only models are consistent with the analyzed observations at all but the upper most tropospheric level (150 hPa), and models with ultra‐high horizontal resolution (≤ 0.5° × 0.5°) perform particularly well.”

          • Anthony, your alternative paper resolves nothing. It says

            “Nevertheless, the models still exhibit more warming than the observations in the upper troposphere (above ∼250 hPa), and the upper most level (150 hPa) of model simulated temperature trends is not consistent with observations over the 5–95 percentile range.”

            OK, we’re no further forward than Christy’s 2010 conclusion that predicted scaling ratio (indicating a hot spot) is not evident in the observational data.

            If you cannot provide conclusive evidence, why toss-in references to articles that contribute nothing to the discussion?

          • “If you cannot provide conclusive evidence, why toss-in references to articles that contribute nothing to the discussion?”

            Because it has.
            That is your interpretation.
            I beg to differ.
            OK?

          • Come back to EdB’s question “So you predict a hot spot but yet it does not happen. Thus your model must be deficient”
            You have tried Sherwood (nope) and then another reference. With two shots, you added nothing to make a dent in Christy’s 2010 conclusion that there is a significant discrepancy between the models and observations on the measure of scaling ratio (predicted structure of warming due to GHGs) . EdB raised valid point and your responses fail to address it. OK.

          • “So you predict a hot spot but yet it does not happen. Thus your model must be deficient”

            I have addressed it.
            With that study.
            It has been predicted and it has been found.
            That denizens here naysay that is a self-fulfilling prophecy.
            Yes, the model is deficient (at that close-up detailed part of the atmosphere).
            Are you saying that there is no global warming at all?
            Because it would be there with any kind of warming it is not dependent on the GHE

            Again from the abstract…

            “Using these approaches, it is shown that within observational uncertainty, the 5–95 percentile range of temperature trends from both coupled‐ocean and atmosphere‐only models ARE CONSISTENT with the analyzed observations at all but the upper most tropospheric level (150 hPa), and models with ultra‐high horizontal resolution (≤ 0.5° × 0.5°) perform particularly well….”

            So correct (within uncertainties) other that the topmost level.
            Of which they say “Other than model resolution, it is hypothesized that this remaining discrepancy could be due to a poor representation of stratospheric ozone or remaining observational uncertainty.

            No one is saying that models are perfect, especially when zooming into that amount of detail.

            That level is obviously hard for the models to resolve being just under the Tropopause with the stratospheric O3 just above
            That without the observational difficulties inherent at that level.

            It seems to be a case of it’s not perfect so it’s completely wrong.
            We don’t know everything – so we know nothing.
            Now where have I come across that before.
            Oh yeah.

      • The idea that the enhanced GHG effect is dependent on lapse rate (temperature and pressure of a gas are related by P is equal to kVT) is commonly proffered as an explanation as to why surface temperatures increase as the optical depth of the atmosphere increases. See these links:

        http://www.realclimate.org/index.php/archives/2010/07/a-simple-recipe-for-ghe/

        https://atmos.washington.edu/2007Q1/211/Notes/old_notes/Section4.pdf

        The Beer-Lambert law only deals with the depth at which radiation from the Earth’s surface can be absorbed, and only tells you that as the concentration of GHGs increase, the atmosphere gets more efficient at absorbing the radiation from the surface, intercepting closer to the Earth’s surface or intercepting more of it of some of the surface radiation was escaping to space. But the atmosphere can’t capture more than what the Earth throws up at it.

        GHG molecules don’t reflect energy, like your fog example. They absorb it and then kinetically transfer the heat absorbed to the remainder of the atmosphere, which can’t directly absorb radiation. Thus, the GHG molecules’ temperature is locked to the temperature of the bulk atmosphere surrounding them. GHGs also radiate in proportion to their temperature, but because their temperature is locked to the non-GHGs surrounding them, the heat GHGs radiate comes from the bulk atmosphere. The common perception that GHGs capture radiation and re-radiate it is wrong; you have to analytically separate the absorptive properties of GHGs from their radiative properties since absorption and radiation by GHGs in an atmosphere have completely separate mathematical behaviors.

        My question remains unanswered: once all the radiation emitted to space comes from the atmosphere at thermal equilibrium because the atmosphere absorbs everything from the surface, how can the temperature of the atmosphere increase from top to bottom while maintaining thermal equilibrium? If it radiates more, where does the additional heat that it radiates first come from, and what cools to provide that heat?

        • I agree that GHGs virtually do not reflect imparted IR photons, like a tennis ball. Thousands of thermalizing interactions with N2, O2, etc, happen first. Thus the net effect of more CO2 is merely to reduce the average distance a photon travels before being absorbed. So what if that is reduced from say ten meters to five? The action of convection and conduction shifts a bit but is all averaged out within minutes. The only temperature change I see is a result of ‘friction’ in the system,ie, heat transfer is less than instantaneous and ideal.

        • Kurt, I believe the claim is that the atmosphere absorbs more radiation at the wings of the CO2 absorption band. So, it hasn’t absorbed it all yet.

          • That’s certainly part of it. Not only is there more radiation at the sidebands of CO2 that water vapor does not capture, but in dry, cold regions there is not enough water vapor to capture all of the radiation from the surface to space. I’m not arguing that there is no more warming to be done by adding GHGs to the atmosphere. What I am arguing is that the amount of warming is overstated because the IPCC and other warmists think that even over areas of the Earth where water vapor and other GHGs already capture all of the emitted radiation, adding GHGs in such regions still increases surface temperature by lifting the effective altitude of emission, raising the temperature aloft which propagates downward due to the lapse rate. It’s only this part of the theory that I jump ship on.

  17. If gravitational energy is converted into heat, then the planet will slowly lose mass.

    Energy will be conserved, and there is no violation of Thermodynamics.

    I’m no supporter of Zeller-Nikolov theory, but suspect that it does not violate the 1st Law as supposed.

    • Pat
      Gravity in a star causes heat – that’s how stars ignite by fusion above a certain size. If this heating per se is associated with mass loss, that’s a very strange and unfamiliar nuclear reaction. I think you’ll find that if pressure-temperature from gravity cause mass loss, the universe would have lost all its baryonic mass long ago.

      • Tasfay Martinov
        BUT, stars radiate energy — rather spectacularly! One might say that they are stellar performers.

      • Tasfay, gravity causes compressional heat in a star by the conventional PV=nrT.

        My understanding of the surmise here, is that gravitational energy is converted into heat energy. Loss of gravitational energy requires loss of mass, however that might happen. There’d be no violation of the first law.

  18. I’m confused by the whole thing. The average temperature of the planet is something like 1500°C. Black body nor anything else I’ve seen here applies.

    • If you mean the average temperature including the core, it’s irrelevant. You’re forgetting the insulating characteristics of rock, which is what keeps us from getting roasted by magma. The heat leakage through the crust is relatively minor in the climactic scheme of things (barring another Deccan or Siberian Trap episode!).

      What matters is the balance between energy received from the Sun and energy radiated by the earth’s surface and upper atmosphere. The temperature that’s important to us, at the surface and in the lower kilometer or so of the atmosphere, depends on how much the atmosphere above it absorbs or passes IR radiation. See my rather lengthy post elsewhere in these comments.

  19. The atmospheric lapse rate does in fact result in a temperature gradient (increasing temperature as you approach the surface) even with no greenhouse gases. However this is a gradient, not a specific level of temperature. One more piece of information is needed to set the surface level. With no greenhouse gases, the radiation from the surface has to match (on average) the absorbed solar radiation, so Willis is correct. It is the fact that with greenhouse gases, the average location of the source of radiation balance between incoming and outgoing radiation is well above the surface (near 5 km for Earth and about 50 km for Venus) that results in those locations having the required temperatures to cause the balance. With the temperature set at this average altitude to obtain balance, it is in fact the lapse rate time the average altitude that determines the surface temperature increase over the no greenhouse gas case. N & Z confuse a gradient with a temperature level.

    • “With no greenhouse gases, the radiation from the surface has to match (on average) the absorbed solar radiation…”

      At the same time, the GHG-free atmosphere MUST retain some heat conducted from the surface and it cannot radiate that heat away, with no violation of any physical law! Maybe we’re missing something?

      I think we’re throwing globs at the problem in order to dismiss NZ.

      Don132

  20. One thought I have here: Given the surface temperature predicted by S-B, corrected for albedo, IR emissivity, etc., given the amount of warming expected from greenhouse gases, given an expected lapse rate, the thickness of the troposphere can be roughly predicted.

  21. Anyone who resorts to a “proof” based on Leibniz’s conservation of force (yes, not energy) should check Helmholz who made a complete fool of himself refuting Weber’s electrodynamics.
    He is the template for the sheer unimaginative sterile consensus. As Dr. Bohm said, “impossibility proofs” are only proof of the lack of imagination, a Kan’tian disease (See J.S. Bell Unspeakable in QM). It takes a poet like Edgar Allan Poe, or Heinrich Heine to sent obscurantist rubbish out the window. 3 References available for the brave.
    According to the adored 2nd Law, all life would not exist, nor WUWT!

  22. What happens in the center of a star when the fuel runs out?

    What happens in the center of a gas giant planet after it has condensed?
    Does it stay just as hot as it started out after 4.5 billion years have elapsed?

  23. I’ve always had the nagging suspicion there was a simpler proof that the Zeller-Nikolov theory was wrong, but I could never put my finger on it.

    If one considers a complex non-equilibrium system with thermal interchanges based on conduction, convection, and radiation emission/absorption, then it would be astonishing if changing one parameter didn’t have an effect on the system as a whole. The important questions are how much, how fast, when, where, what happens next if all other inputs don’t remain the same, etcetera.

    Of course, the above arguments constitute no formal proof or refutation of anything at all. But a little bit of scientific experience of how the universe usually works can take you along way when needing to wade through so much material which often turns out to be ill-informed, wrong, or just plain BS. That is the real purpose of peer review. It is just a filter, not a guarantor of anything.

    So we return to the usual. Some people on both sides are very good at arguing around the houses. But I’ve also ‘won’ arguments I should have not have won in the bar. It’s physical evidence that eventually wins in science, and that means properly testable predictions. Nobody has won anything noteworthy at all in climate-science by that metric. They just have models of varying degrees of plausibility.

    • Agreed. After all these years and billions the computer models do not correctly predict the temperature on Venus. NK is the only one?

      • That is what intrigues me about NZ. Their equation PREDICTS the surface temperature on these celestial bodies. I have seen zero predictive formulas from any greenhouse gas theory proponents, just models and conjecture based on other equations. If GHGs can do what the proponents claim, develop an equation to describe it. NZ have done this and I have seen nobody that can dispute the correctness of the equation. As more celestial bodies are explored, I think the NZ will eventually get the Nobel Prize.

        • ” If GHGs can do what the proponents claim, develop an equation to describe it. ”

          OK

          dF = 5.35 ln(C/Co)

          Where ‘dF’ is the radiative forcing in Watts per square meter, ‘C’ is the concentration of atmospheric CO2, and ‘Co’ is the reference CO2 concentration.

          There you go.

          • dF == 5.35 In(C/Co)

            Does that apply universally for all planetary atmospheres? When we plug it in for Mars what do we get?

            Don132

          • You have not shown your working for all of the planets, please do so.
            And while you are at it show the Surface Temperature of the Moon according the S& B calculations.

  24. There are so many “Unknown, Unknowns” about our universe, that we, as a Human race, are blindingly jumping off of the cliff of stupidity.

    • A good place to start is to get all of the “known knowns” straight, and then clear out all of the “known but ain’t so’s”.

  25. In all of the discussions of earth’s temperature I have yet to see a note about the internal temperature of the earth.

    “The heat of the Earth is replenished by radioactive decay at a rate of 30 TW.[17] The global geothermal flow rates are more than twice the rate of human energy consumption from all primary sources.”

    https://en.wikipedia.org/wiki/Geothermal_gradient

    • Roy, total heat flow from the earth is estimated at 44 Terawatts constant flux. Divide that by the area of the earth and you get about 86 milliwatts per square metre … on a planet where downwelling total radiation averages about half a kilowatt per square metre.

      Since geothermal heat is only about two-hundredths of one percent (0.02%) of total incoming energy, it is usually ignored in energy balance calculations.

      w.

      • That’s cool Willis, I calculated the heat flow from the earth a few years ago with information in the 50th edition of the CRC Handbook on Chemistry and Physics. I got 88 milliwatts/sq meter. Nice to see corroboration. Thanks for all your writing. A Prosperous and Happy New Year to you and yours, and all who contribute here while I’m at it.

  26. As long as we are going to look at the fundamentals, we should agree at the start on proper terms and definitions. Things are missing and some are confused. I see several problems, and they are rooted in the errors in the arguments commonly used to claim that if the GHG’s were removed from the atmosphere, the temperature of that atmosphere (for arguments sake, 2 m above the surface) would be very low, like the average temperature of the surface of the moon.

    It is always based on a calculation of GHG back radiation, and absent that back radiation, the argument goes that the surface will radiate directly to space as if the planet had no atmosphere even if it has one. That’s silly. Why? Because it has one!

    In the example the IPCC uses, the planet has an atmosphere, but it has no GHG’s. The claim made is that absent GHG’s, the atmosphere will cool until it is the same temperature as the surface would be in the absence of any atmosphere.

    The argument presented in the article above, supposedly invalidating something, approaches this from the opposite side: It claims that a planet without any atmosphere will be temperature X (average about -18C) and that adding an atmosphere will cause no change to the surface temperature, argued on the basis that if are no GHG’s there is no back radiation so therefore there is nothing to increase the (average) surface. Too many aspects of reality are ignored, including the physical presence of an atmosphere in contact with the surface.

    Huh? If there is no back radiation, there is still convective heating of the atmosphere and the surface will cool against the air. The arguments in both cases ignore the fact that the surface heats the air whether there are GHG’s or not. That is a pretty big omission in something claimed to be a proof or a disproof.

    There are two sources of heating of the atmosphere (surface heating and GHG’s), and two for cooling it (radiation to space or cooling against the surface). Convective heating from the hot surface lowers the daytime surface temperature. GHG back radiation re-heats the surface if there are GHG’s present. Absent the GHG’s, the atmosphere is still heated by the surface, and that heat will drive vertical circulation patterns. There is no need for GHG’s to drive convective circulation of air over a hot surface. Without this air circulation over the surface, the surface would be about 200 C during the day. In fact it is about 70 so there is 130 C of cooling of the surface, energy transferred to the air. No GHG’s need be involved in this. The “disproof” implies this heating does not occur.

    Obviously such a GHG-free atmosphere cannot cool by radiation in the temperature range we might expect. The air would be heated day by day until the system was in thermal equilibrium. At what temperature will that happen? It will be a heck of a lot higher than the average -18 C. If the incoming radiation equals outgoing radiation from the surface and an atmosphere without any GHG’s is present, the temperature of the air 2m above the surface will be what? 50 C? 100 C?

    At this point we have to move beyond “-18C average temperature” and look at the peaks, because the system rotates and is a globe. The surface temperature in the daytime at the equator might be over 100 C and so will the air above it. At night the surface can cool but the air cannot as it does so poorly against a cold surface below.

    The Nikolov-Zeller claims are not valid because the have failed to describe the system properly. They implicitly accept that there is convective heating (because there is a vertical temperature profile) but ignore such heating in their explanation. Further, they do not understand the absorption, emission and refraction of IR.

    Willis’ disproof also ignores convective heating and its influence in the presence or absence of GHG’s. There are flips in the text from surface temperature to air temperature, with and without an atmosphere, but narry a mention of the influence on the air temperature from its contact with the surface – something that continues with or without GHG’s. A portion of all heat reaching the surface from above or below heats the air directly – if an atmosphere is present.

    Gavin Schmidt’s “explanation” of the GHG effect correctly shows that the back radiation drops to zero in the absence of GHG’s but completely ignores the convection heating component of the energy paths. He too claims that the air temperature will drop to -18C. Even that is incorrect: it is an over-simplification using the “moon” example because it speaks of average, not actual temperature. It is convenient for his argument in that if there was no convective heating, averaging gives the same answer. Which is to say, ignoring a portion of reality gives an answer – just the wrong one.

    From the article above
    “In other words, without the inclusion of the greenhouse effect (which has downward IR emission by the atmosphere reducing the net loss of IR by the surface), the atmospheric pressure hypothesis of Zeller-Nikolov cannot explain surface temperatures above the Stefan-Boltzmann value without violation of the fundamental 1st Law of Thermodynamics: Conservation of Energy.”

    This is simply untrue. The presence of any atmosphere will limit the surface temperature during the daytime. In the absence of any greenhouse effect, the air temperature will rise (a lot) because it will be cooling the daytime surface. The “In other words” explanation is incorrect. It also violates the 1st Law of Thermodynamics by failing to consider convective heat transfer as well as radiative heat transfer. That doesn’t make the Nikolov-Zeller hypothesis correct, but it is an incomplete disproof.

    The awful implication of the correction for the influence of GHG’s is that in their absence, the air temperature would rise because it cannot cool radiatively. GHG’s not only heat, they cool. When it comes to the temperature of the atmosphere, its radiative cooling from convective heating has to be part of the explanation. It is missing.

    • Add any of a number of other factors, not the least of which is clouds, and accurate modeling becomes intractable.

      In reality, it has been warmer with more CO2 and it has been cooler with more CO2. It’s also been warmer and cooler with less CO2. It simply is not possible to definitively say what the climate will do without uncertainty.

      • Yes. The key word is “tractable”.
        Edward Lorenz gave some valedictory lectures which MIT archived a few years ago. (They were just non-searchable images of text when I looked at them.)

        He went out of his way to caution later generations of meteorologist and climate-scientists to only study problems that are tractable. It seems to me they have ignored his advice completely in the pursuit of funding. It is a broken science.

    • Nicely put. I might add that the atmosphere is moving heat by wind to take the heat to locations where it is cooler, ie, the poles. This is not a 100% efficient process, so the actual temperature profile on the surface will deviate from the ideal.

      • EdB

        We do not have to invoke the wind and distribution until we have agreed that the surface heats the air directly. That is the first stepping stone. If the surface heats the air, then it has be appear in each expression. Next, we have to agree that GHG’s cool the air, and again this must appear in each expression.

        For example, the cooling by radiation to space exceeds the total heating by GHG’s and IR direct from the sun. Why? Because cooling has to include atmospheric heating by the surface, heating that is not even mentioned!

        We do have to invoke the diurnal surface temperature because the air convects heat so poorly downwards. In other words, it is heated easily and carries the heat away, but does not give it back easily. Not at all. Check the effectiveness of heating an upper plate by electrically heating a lower plate, using air as the transfer medium, then trying to heat the lower plate by electrically heating the upper one. Bi-i-i-ig difference in the heat transfer rate.

        Without doing any math at all, it is intuitively clear that without GHG’s the air will be hotter than the average surface temperature. When using “average insolation and average temperature”, this salient fact is obscured.

        I don’t expect everyone to catch onto all the ramifications of this immediately. This “backward calculation to what the temperature would be if…” is so badly handled in the “formal” climate science community, it requires, as in the case of Lucy Van Pelt where Linus has to unlearn everything she taught him, some stern organisation.

        Zeller started off with a misunderstanding (a common one) wherein temperature and energy were confused. It is confusing because an albedo and a temperature can equal an energy gain or loss rate, which is power. But temperature is an intensive metric and energy is quantitative. They are tossed around willy-nilly in the hypotheses with no proofs emerging at all.

        Even the concept of a global average temperature is very misleading. To make a meaningful quantification one has to consider the humidity at the time each temperature was recorded to make an effort to get the enthalpy of the atmosphere. It is trivial to demonstrate an increase in energy in a parcel of air at a lower temperature. Global warming implies an increase in enthalpy, a calculation not possible from a temperature set alone.

        This whole GHG warming story is very, very screwed up.

        • Screwed up? Yes, beyond belief screwed up. The only sensible thing to do is ignore the ‘experts’ and watch the UAH graph. Over the next 50 years we should know how much warming will occur. My bet is that natural factors will dominate any CO2 effect.

    • “Obviously such a GHG-free atmosphere cannot cool by radiation in the temperature range we might expect. The air would be heated day by day until the system was in thermal equilibrium. At what temperature will that happen? It will be a heck of a lot higher than the average -18 C. If the incoming radiation equals outgoing radiation from the surface and an atmosphere without any GHG’s is present, the temperature of the air 2m above the surface will be what? 50 C? 100 C?”

      I don’t know where on earth you could have gotten that idea.

      An atmosphere (N2 and O2 only) and without GHGs would be transparent to LWIR.
      And there would therefore be no impediment to its escape to space.
      The Earth’s surface would be at the S-B BB equilibrium temp in such a case.

      Some convection and turbulent mixing would still occur due to DeltaTs created by diurnal and latitudinal SW heating of the surface.
      (DeltaTs create DeltaPs create winds/turbulence).

      “the temperature of the air 2m above the surface will be what? 50 C? 100 C?””
      No it would be at -18C the S-B equilibrium temp (given a BB ) or therabouts.

      • Anthony Banton

        “An atmosphere (N2 and O2 only) and without GHGs would be transparent to LWIR.
        And there would therefore be no impediment to its escape to space.
        The Earth’s surface would be at the S-B BB equilibrium temp in such a case.”

        The statement misses the point that the air (N2 and O2 only) would be heated by that hot surface, cooling it, storing heat in the atmosphere. This component of atmospheric heating is missing from the “LWIR” argument. Trenberth 2009 acknowledges direct heating to be 168 W/m^2 with GHG’s and 336 in their absence (I think he underestimates it but that is a different discussion).

        In the next paragraph you agree there is heating of the air – immediately after implying there is not. Your conclusion therefore cannot be correct. You cannot heat a parcel of O2-N2 and have its temperature rise, and then at night, have it cool to the temperature of the surface 1 or 2 km below. That cannot happened because it cannot cool radiatively and it is unlikely to impinge on the radiating surface. Once warmed, the air would remain warm, considering of course the adiabatics.

        I have already covered the rest of the explanation.

    • “The argument presented in the article above, supposedly invalidating something, approaches this from the opposite side: It claims that a planet without any atmosphere will be temperature X (average about -18C) and that adding an atmosphere will cause no change to the surface temperature, argued on the basis that if are no GHG’s there is no back radiation so therefore there is nothing to increase the (average) surface.”

      I think you are misunderstanding the proof of this post. It requires no position on the presence or absence of back radiation heating the surface. The N-Z theory is that an atmosphere alone heats the surface beyond the black body temperature that would otherwise exist, and that therefore not all heating comes from GHGs. To test this, you just hypothesize an atmosphere without GHGs, such that the atmosphere cannot radiate energy OUTWARD into space, and that all radiation out into space has to come from the surface of the planet. Since the surface of the planet is at a first temperature at equilibrium with space without an atmosphere, it follows that the atmosphere per se cannot not heat the surface (e.g. by it’s mere existence independent of GHGs) because if it did, equilibrium would not be maintained at the boundary of the planet’s atmosphere with space. The surface temperature would rise and more radiation would escape into space than what is coming in.

      • Not true. We are using averages. The equatorial area will be cooled and the poles will be warmed from conduction, convection, winds. When overall thermal balance is achieved, we will have an average temperature T . Double the density of the atmosphere, and we get T2.

        There is no way around it. Density changes the average temperature, without GHGs

        • The temperature of a substance only reflects the amount of heat it is storing, proportional to its heat capacity. What you’re describing is the atmospheric science equivalent of a Ponzi scheme; you think that the process of moving heat around within an enclosed system will over time increase the amount of heat that the system stores.

          • No, the average temperature reflects the SB fact of T4 radiation. The heat loss rate varies with the density since the temperature distribution is different with the two densities.

      • To test this, you just hypothesize an atmosphere without GHGs, such that the atmosphere cannot radiate energy OUTWARD into space, and that all radiation out into space has to come from the surface of the planet. Since the surface of the planet is at a first temperature at equilibrium with space without an atmosphere, it follows that the atmosphere per se cannot not heat the surface (e.g. by it’s mere existence independent of GHGs) because if it did, equilibrium would not be maintained at the boundary of the planet’s atmosphere with space. The surface temperature would rise and more radiation would escape into space than what is coming in.

        Not true. If the atmosphere is actually transparent to IR (and visible), than it no more blocks outgoing radiation than it does incoming. Thus the radiative surface of the body becomes the solid surface and its temperature will assume the S-B balance (taking into accounts its emissivity). The atmosphere will not be heated or cooled except by convection from the solid surface, so once it reaches thermal equilibrium it may be discounted totally. Of course not even pure N2 is completely transparent to all frequencies and all matter, even gasses, above absolute zero radiates something.

        • Paul Blasé

          “The atmosphere will not be heated or cooled except by convection from the solid surface, so once it reaches thermal equilibrium it may be discounted totally”

          Quite correct. Thank you for understanding and agreeing with my main point which is that this process affects the temperature of the atmosphere just above the surface.

          The point is not to show that the energy incoming and the LWIR outgoing (plus reflections) are in balance – we already know that from black-boxing the system. The important point is what the temperature of the air is under different conditions. Several correspondents, some just above, claim that the air temperature will be the same as the surface when there is no air. Extraordinary! Even NASA doesn’t get it right.

          The whole point of the exercise is to speculate on the temperature of the air near the surface where we live in the presence or GHG’s – not so? Having make the incorrect claim that the air temperature without any GHG’s would be the SB temperature of the surface, they go on to claim that any heating of the air above the SB temperature is caused by greenhouse gases. Clearly, if in the absence of GHG’s, the surface has been heated to “equilibrium” as you called it, then the addition of GHG’s does not account for all the difference between the SB temperature -18 C and the current +15 C.

          GHG’s can only account for a portion of it. I hold that the addition of the first few ppm of GHG’s cools the atmosphere (a lot). GHG’s cool radiatively. They also add back radiation to the surface. The new equilibrium in the presence of GHG’s will have a different air temperature and a different surface temperature.

          If the IPCC cannot get the most fundamental aspects of atmospheric heating correct, how can the other speculations tell us something about the nature of the real world? Read what they say about GHG heating of 33 C. It is silly because it ignores the heating of the air by the surface prior to accounting for the GHG effect. Remember, the GHG effect is cooling direct from the atmosphere and back-radiating, not just the latter.

    • Crispin in Waterloo December 31, 2018 at 11:57 am

      Huh? If there is no back radiation, there is still convective heating of the atmosphere and the surface will cool against the air. The arguments in both cases ignore the fact that the surface heats the air whether there are GHG’s or not. That is a pretty big omission in something claimed to be a proof or a disproof.

      Not true. There will only be convective heating of the atmosphere only until such time as the lowest layer of the atmosphere is the same temperature as the surface. After that, since the two are at the same temperature there will be no heat flow.

      From the article above
      “In other words, without the inclusion of the greenhouse effect (which has downward IR emission by the atmosphere reducing the net loss of IR by the surface), the atmospheric pressure hypothesis of Zeller-Nikolov cannot explain surface temperatures above the Stefan-Boltzmann value without violation of the fundamental 1st Law of Thermodynamics: Conservation of Energy.”

      This is simply untrue. The presence of any atmosphere will limit the surface temperature during the daytime.

      I guess you missed the part about how the planet is evenly heated from all sides so there is no day or night.

      w.

      • Ah, yes, the non physical model as proof. Nope. There is no such thing as a thousand suns giving uniform heating. We only find spinning planets on orbits around a sun. It’s time to bin this non physical concept.

        • ECB, it’s called a “thought experiment”. Einstein was famous for using them. They are invaluable for understanding things when we cannot do real experiments.

          Part of Einstein’s genius was his ability to think things through using just his imagination. These so-called gedankenexperiments (“thought experiments”) yielded many of his insights in formulating the theory of general relativity, which focuses on gravity’s effects.

          Among the more famous examples is one focusing on an imaginary elevator in space. Someone inside would be unable to distinguish a gravitational field from acceleration — the downward pressure you normally feel from Earth pulling at you could just as easily be the elevator accelerating ‘upward’ toward you in zero gravity. Stuck inside the elevator, with no windows, you couldn’t tell the difference.

          Should we “bin that non physical concept” of an elevator in space as well? Nope. Thought experiments are very useful.

          Now, N&Z claim that their theory does NOT require GHGs to raise the temperature of the surface of a planet above the S-B temperature. My thought experiment proves that their claim is not possible. Without GHGs the only way for the planet to lose energy is radiation from the surface … and it cannot radiate more than it is receiving.

          Does this apply to earth? Nope. It applies to the N&Z claim, and it shows that their claim violates the laws of thermodynamics. Q.E.D.

          w.

          • OK if you want a more realistic thought experiment let’s try a revolving atmosphere less planet with the same properties as the moon. At noon on the equator it will have a temperature ~390K at dawn it will be ~133K and at dusk ~163K. Add an atmosphere and the noon temperature of the surface will drop and the temperature on the nightside will rise due to conductive and convective heat transfer. Because the only mechanism of heat loss to space is radiation and the first law of thermodynamics the total heat loss rate is equal to the insolation. Consequently the average T^4 will be the same, the average T will be slightly different due to Holder’s inequality.

      • Willis:

        That is a most creative way to avoid discussing the omitted direct heating of the air by the surface. The examination of the Zeller hypothesis should be conducted in a thought experiment which has day and night.

        Kurt:

        “To test this, you just hypothesize an atmosphere without GHGs, such that the atmosphere cannot radiate energy OUTWARD into space, and that all radiation out into space has to come from the surface of the planet.”

        Correct – that it an essential part of any claim to be assessing the air temperature near the surface, with or without GHG’s. You will have noticed by now that NASA et al do not include it.

        “Since the surface of the planet is at a first temperature at equilibrium with space without an atmosphere, it follows that the atmosphere per se cannot not heat the surface

        That is true only if there are no GHG’s.

        “…(e.g. by it’s mere existence independent of GHGs) because if it did, equilibrium would not be maintained at the boundary of the planet’s atmosphere with space.”

        Now you stepped off the pier. GHG’s function in exactly the same manner as a half-silvered mirror. If you put a half silvered mirror around an infrared it increases the temperature inside the box until the output equals the input. That will only happen (equilibrium) once the temperature inside has risen. That is the “greenhouse effect”.

        “The surface temperature would rise and more radiation would escape into space than what is coming in.”

        Still true as long as there is no “half-silvered mirror”. All you have argued is that without GHG’s there is no greenhouse effect. We already knew that. As soon as your hot surface atmosphere bare planet gains at atmosphere (supposed pure argon) the “air” would be heated by the surface during the daytime and could not cool at night. The next day it would heat again and not cool. Et cetera.

        I will post a refutation of Zeller separately.

    • “The awful implication of the correction for the influence of GHG’s is that in their absence, the air temperature would rise because it cannot cool radiatively. GHG’s not only heat, they cool. When it comes to the temperature of the atmosphere, its radiative cooling from convective heating has to be part of the explanation. It is missing.”

      Sorry that’s incorrect.
      Without GHGs, then the atmosphere would be completely transparent to LWIR exiting space.
      Zero attenuation.
      It would cool entirely by radiation from the surface.
      Convection would not be needed.

      • “It would cool entirely by radiation from the surface”

        No, it would cool ~partly~ by radiation from the surface. The other parts would be by convection and conduction. Are those parts negligible? I think not.

        Suppose all the wind on the planet suddenly stopped and the atmosphere became a horrifying stillness… The temperature would rise very quickly, both the atmosphere and the ground.

        Most of the energy in the atmosphere is moved around by the wind/convection, not radiation. Changing the radiative properties of the atmosphere by increasing the CO2 from 0.03% to 0.05% is simply not going to make any difference to those winds. At least, that’s my 2c of understanding.

        https://wattsupwiththat.com/2016/09/10/wind-an-important-forgotten-or-ignored-weather-variable/
        https://wattsupwiththat.com/2018/05/15/bad-news-for-wind-power-globally-winds-are-slowing/
        https://wattsupwiththat.com/2018/12/05/study-global-wind-speed-dropping-wind-farms-victim-of-atmospheric-stilling/

        • “The temperature would rise very quickly, both the atmosphere and the ground.”

          You neglect the night side. Or if rotating, the night period.
          At night the surface cools to space by radiation (convection stops) and winds still due frictional drag and stratification.
          Come morning as the sun heats the ground it then has to warm out the surface inversion (cold air) that has formed overnight. Without the destabilisation of heating created by GHGs (back-radiated heating of the surface), then it would take just as long to warm out that inversion and hence allow convection, as it did to cool it … and then the surface cools again as the next night occurs.

          The atmosphere would still have winds due to latitudinal deltaT (differential heating).
          And hence some turbulent mixing.
          But surface convection?
          No, I don’t think so.

          • Yes, there is a night side which cause some things to happen. But, you are totally missing the point. I’m not talking about what causes winds and whether there would be any or not.
            I’m talking about what the wind/convection does. Suppose there was no convection AT ALL (stopped somehow) ->the Earth would warm dramatically. The wind is a major factor in the distribution of heat around the planet. Changing the radiative properties is not going to significantly change this fact.

  27. The ocean is The Greenhouse – captures solar radiation throughout a volume (top 100 metres)
    It has very high specific heat content – it takes a lot of energy to heat water.
    Nothing else comes close in the entire universe.

    Via evaporation from its top surface it ‘gives’ captured energy to the atmospheric gases.
    Simply = mechanical mixing

    They, oxygen & nitrogen, have not only VERY low thermal conductivities but also VERY low emissivities.
    The low emissivity means they can ‘support’, ‘have’, ‘maintain’, ‘store’, ‘be at’ elevated temperature while radiating *very* small amounts of energy.

    Where Dr Spencer goes wrong…..

    It will be apparent from the foregoing information that emissivity is a very important factor in infrared temperature measurement. Unless the emissivity of the material being measured is known, and incorporated into the measurement, it is unlikely that accurate data will be obtained.

    From here:
    https://www.omega.com/technical-learning/infrared-temperature-measurement-theory-application.html
    (Does he REALLY expect us to believe that a fluffy white cloud, at (say) 2000 metres high in a blue sky is at a temperature of 41 degC? What happened to Lapse Rate – is he saying that the ground directly beneath that cloud is at 60+ degC?)

    It goes on:

    As a rule of thumb, most opaque, non-metallic materials have a high and stable emissivity in the 0.85 to 9.0 range; and most un-oxidized, metallic materials have a low to medium emissivity from 0.2 to 0.5, with the exception of gold, silver and aluminum which have emissivities in the order of 0.02 to 0.04 and are, as a result, very difficult to measure with an IRT. While it is almost always possible to establish the emissivity of the basic material being measured, a complication arises in the case of materials which have emissivities that change with temperature such as most metals, and other materials such as silicon and high purity, single crystal ceramics

    And the emissivity of oxygen/nitrogen is vanishingly small, like that of silver or aluminium – see my highlight in the above.
    Where does that leave your Watts/sqm Boltzmann power calculations?
    The temperature is high but the power is low. Very low

    This finding reveals the true colour of the roles of carbon dioxide. Although it absorbs thermal radiation from the Earth, it emits more. Carbon dioxide is in thermal deficit in terms of radiative balance. Nitrogen and oxygen constantly feed CO2 with heat so that it maintains a temperature higher than its radiative equilibrium

    From here:
    http://tech-know-group.com/papers/JCao_N2O2GreenGases_Blog.pdf

    IOW, CO2 would have a cooling effect, if any.
    They were right the first time, back in the 70’s.

    • Ammonia has a higher specific heat than water, as does liquid lithium, and helium.
      Hydrogen has far higher SH.

        • I was responding to this statement:

          “It has very high specific heat content – it takes a lot of energy to heat water.
          Nothing else comes close in the entire universe.”

          Recall that this is, at it most basic level, a science site.
          The statement was wrong.
          Just sayin’.

    • Does he REALLY expect us to believe that a fluffy white cloud, at (say) 2000 metres high in a blue sky is at a temperature of 41 degC? What happened to Lapse Rate – is he saying that the ground directly beneath that cloud is at 60+ degC?

      The temperature of the base of the cloud is the temperature of the Lifted Condensation Level (LCL) and it is what it is. You should not presume to know what the height of the cloud is. Also, BTW, it is 41 deg Fahrenheit not Celsius.

  28. If in case this may help.

    In simpleton argument, “green house effect” is wrongly conceived… or so do I consider it, as at this point in time. 🙂

    Officially it consist strictly as in the consideration that RF and “radiation effect outcome” (like either warming or cooling)
    in climate happens to be or is binary or a bipolar relation structure.

    And it clearly seems not to be that way or the case in hand…
    It is or it seems to be more like a Tri-Polar relation in the reality, actually.
    Where RF contributes to the radiation imbalance,but it is not the only contribution to radiation imbalance.
    The other one, which has no name to be addressed as yet, is a radiation potential contributing to the radiation imbalance… due simply of the fact, of the atmospheric thermal expansion or atmospheric thermal variation, as a result of the atmosphere’s volume and surface expansion, or variation…
    due to the thermal variation .

    The “green house effect” the radiation effect in climate depends in both these factors, RF and thermal expansion of the atmosphere, a Tri-Polar relation so to speak, or claim.

    The radiation effect it will contribute to add on in warming or a gain in heat content in the system, only if both factors contribute to it…in synchronicity.

    You have one of them only contributing when the other is not, completely outside the clause of synchronicity among;
    then the “green house effect” in this case means loss of heat content from the earth system…
    Where wider the departing from this synchronicity, higher the thermal loss from the system.

    In this explanation given here, about the GH perception, in a Tri-Polar relation, the radiation imbalance could very well trigger a significant thermal heat loss from the system, if it happens to increase solely due to only one of the factors, which ever that be, either RF,,, or the thermal expansion (or thermal variation of atmosphere)…

    Simply put, the increase of “sunshine potential” aka what we consider as GH effect, could and would lead to a
    condition of a significant Earth’s negative energy balance, when only influenced by one of the factors that
    contributes to it (ether that being the RF or the thermal variation of the atmosphere)… where GH effect increasing, would lead to loss or cooling, not a gain or warming.

    Tri-Polar structures or Tri-Polar functions work and behave in a given system, in far much more complex and very much different ways than the bipolar ones…usually.

    Sorry if this a bit long, and hopefully the point made may be understood, regardless of it being subject
    to be wrong, or found wrong.

    Thank you Anthony…and happy new year to you…and any one else… 🙂

    cheers

  29. Enter citizen scientist Willis Eschenbach, a frequent contributor at Wattsupwiththat.com, who back in 2012 posted there a “proof” that Nikolov was wrong. The simplicity of the proof makes it powerful, indeed. I don’t know why I did not notice it at the time. My apologies to Willis.

    Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation (the Stefan-Boltzmann equation). Conceptually, …

    This is already unnecessarily complicated.
    What needs an answer first before anything else is this really simple question.
    Zeller and Nikolov state simply that the surface atmospheric temperature on all planets can be calculated from atmospheric pressure (mass of the atmosphere) and gravity (mass of the planet) alone.
    IS THIS TRUE?
    Or not.
    It’s really simple – three columns of numbers.
    Does anyone have the answers this?
    Any discussion without starting at this question is a waste of time and a distraction.

    • If it is true, then atmospheric and planetary mass alone explain surface atmospheric temperature. (Distance from the sun also presumably plays a role.)

      Thus there is no role for atmospheric composition, it doesn’t matter if it is nitrogen or ammonia or CO2 or whatever.

      Also there is no role for radiative effects which are then shown to always equalise and come out in the wash.

      It’s game over. Zeller and Nikolov are correct.

          • Yes, about half the names here are fake. I’ve also posted as:
            phlogiston
            belousov
            Tatonka Chesli (very briefly)
            phil salmon (my actual name)
            ptolemy2
            Tasfay Martinov

            Just a bit of fun.
            First amendment anyone?

          • Tasfay Martinov January 1, 2019 at 1:52 am

            Yes, about half the names here are fake. I’ve also posted as:
            phlogiston
            belousov
            Tatonka Chesli (very briefly)
            phil salmon (my actual name)
            ptolemy2
            Tasfay Martinov

            Just a bit of fun.
            First amendment anyone?

            I can understand you not having the balls to post under your own name. But don’t try to pass off posting under a half-dozen names as “a bit of fun”. It is a slimy trick intended to deceive. It allows you to post things and then not take responsibility for them, which is a cowardly act.

            You just canceled your vote with me.

            Bye …

            w.

          • Willis
            Your response to my transparency is to call me slimy and a coward. Fine. But denying what is in reality a very thin web anonymity would haves chilling effect on free speech. As you can see I don’t hide who I am to anyone interested. Call me what you like, but web anonymity is a choice that for now is backed by law and something that many find valuable.

            Try to rely more on force of argument and less on bullying and coercion. It’s what you say, not who you are, that should matter.

            Phil.

          • And the “compression heating” quote in the lead is deliberate fake news, a CNN specialty, or more like Spiegel just this week.
            Yet it goes back to Aristotle the poisoner, a long tradition….

          • Tasfay Martinov
            January 1, 2019 at 1:52 am
            ————–
            I do like your choice of “ptolemy2”, really 🙂

      • Nick
        I said “if”. I don’t have the numbers to hand. I get the impression that Willis and others are not disputing Z&N’s simple mathematical proposal but engaging in a debate about mechanisms and explanations. See my post below about Popper and deduction / induction.

      • Unfortunately it is not true and easy to prove wrong and there are a hundred ways to skin this cat because it is “not even wrong”.

      • “It’s game over. Zeller and Nikolov are correct.”

        did you check the data? like the data they used for the moon ( actually amodel)
        or the data used for the earth ( not correct as well)
        or the data they ignored?

    • Tasfay Martinov

      Consider what the temperature of Venus would be if it were located beyond the orbit of Pluto. I cannot imagine that it would be as warm as it is close to the sun. The heat has to come from somewhere, and the inverse-square law says that a body close to a heat source will receive much more heat than one at a great distance.

  30. Sorry, I’m just a dumb high school guy plus a few years of life so I can only think in simple terms. Help me out.
    Some where I heard about PVT. Would converting liquids and solids (oil, coal, limestone to cement) into gasses add heat to the atmosphere? Does this increase volume? Is the volume limited by gravity? Does it expand as it gets warmer? Are these materials not made with energy from the sun then conserved until burned?

    In any case I got a kick out of that linked article: Elect more Democrats or we are all doomed.

    • I think the answer to all of your questions is yes, except for perhaps there are many exceptions to the last question.

  31. It is only a proof to someone who understands basic physics. You cannot explain heat and material balances to a dog.

    • Tom
      I’ve explained heat and material balances to my dog many times. She watches me intently the whole time. But, I can tell by her body language that what she is thinking is, “When do I get the treat?”

  32. I am not sure if this will add to the argument, but I did an experiment with my physics classes a couple years back to support (or refute) Willis’ claims. Perhaps there is something I am missing about this experiment.

    I wanted to simulate a vertical column of air molecules. Since all the horizontal motion cancels, I only needed to worry about vertical motion. I set up a small airtrack (near frictionless sliders on a linear track) on a very slight incline, and placed a series of sliders on the track representing molecules. I gave each a small amount of energy at random positions and allowed them to bounce around. Once the system was in equilibrium, the molecules at the bottom of the track moved faster than the ones at the top.

    Next, I put more sliders on the track, put them in the same relative positions (basically increasing the density of sliders), and then allowed them to bounce around. When equilibrium was reached, the sliders at the bottom were moving faster than before, and the height that the top slider reached was higher than in the first experiment. However, when I repeated this by placing sliders at the bottom (with no initial gravitational energy), I did not see the corresponding increase in velocity at the bottom, and height at the top.

    Next, I tried to simulate the column of air being energized from the bottom by using a drill with an irregular shaped spool at the bottom, to strike the lowest slider with small amounts of “random” energy, 10 seconds on, 10 seconds off (day and night). There are small frictional losses in the sliders, which may represent energy losses to space. I used one slider, four sliders, then 8 sliders to see if there was any difference. With around the same amount of power being added to the system, the more sliders I added, the more speed the “atmosphere” molecules had at the bottom, and the higher the top slider would bounce. This was true if I started all the sliders at rest on the spool or if I started them in random positions along the slider (starting them off with gravitational potential energy).

    Now, to me, this suggests that the mass of the atmosphere would impact the temperature at the surface, independent of GHG. Compression also does not need to be invoked to explain this either. And yet, the oceans also behave as a fluid. Why do the oceans not exhibit a lapse rate? It would seem that my experiment should also be valid for molecules of a vertical column of liquid, but they don’t.

    Any insight would be appreciated. I’m having a hard time puzzling out my results.

    Thanks

    • Water is incompressible, so it does not undergo changes in volume as the pressure changes, at least not enough to make much difference.
      It is not that air is a fluid that causes compressional heating, but that it is a gas.
      Same number of molecules in a smaller volume with the same total internal energy means they must move faster and are thus hotter.

      • I have a degree in Chemical Engineering and have taken graduate thermo, and of course undergrad PCHEM. This is a about the apparent temperature changes with height in a column of fluid, not the temperature of the entire batch. Sorry to have confused you, my description above was brief.

        • I am not in the least bit confused.
          You asked why the ocean, being a fluid, does not have a lapse rate like the atmosphere.

  33. Basically, N&Z have made the grade school error of postulating a perpetual motion machine. Compress some gas, use the heat created, but the heat is still there! Great!

  34. Stephen Wilde December 31, 2018 at 11:22 am

    A body only radiates according to its temperature if in a vacuum i.e. no ongoing non radiative processes. The S-B equation refers to a vacuum.

    As far as I know this is simply NOT true. If there are ongoing non-radiative processes (conduction/convection), they simply lower the object’s temperature … but whatever the lower temperature resulting from conduction/convetion might be, the S-B equation accurately calculates the radiation coming from the object at that temperature.

    w.

  35. If the temperature was pressure related, wouldn’t the temperature be even all over the earth? Why then are the poles cold and the equator hot?

    Also, if the temperature was pressure related, why does the air cool when a cloud goes overhead?

    • No, the incident radiation is less at the Poles because of the angle it hits the earth. Equator maximum and poles minimum

  36. Very informative article. I unlearned something I thought I knew and while I may not be any smarter, I think I am now less ignorant. WUWT is always a must read.

  37. If I read that right, there is no need for freon-based air conditioning is a Zeller-Nikolov world, as it just doesn’t work.

  38. A quick glance at comments tells me we seem to be talking at cross-purposes.

    Why would an atmosphere that absorbs heat from the surface from conduction/convection with the surface (and not, note, by “compressive heating”) necessarily lead to more radiation from the surface? Atmospheric heat isn’t adding heat to the surface, is it, if it isn’t radiating to the surface? Might it be slowing radiative heat loss by the surface … kinda like, ummm, let’s see… GHGs?

    I’m happy to see supporters of N-Z.

    Glad to see everyone is staying civil. It’s a slippery slope once we start calling names. We can all just have little fun with this and try to puzzle it out without assuming that the person who doesn’t understand us is an utter ass and doesn’t know jack.

    I’ll have more to say when I have time to read carefully.

    Happy New Year, All.

    Don132

  39. Referring to the Dutton/Brune Penn State METEO 300 chapter 7.2: These two professors quite clearly assume/state that the earth’s current 0.3 albedo would remain even if the atmosphere were gone or if the atmosphere were 100 % nitrogen, i.e. at an average 240 W/m^2 OLR and an average S-B temperature of 255 K.

    That is just flat ridiculous.

    NOAA says that without an atmosphere the earth would be a frozen ice-covered ball.
    That is just flat ridiculous^2.

    Without the atmosphere or with 100% nitrogen there would be no liquid water or water vapor, no vegetation, no clouds, no snow, no ice, no oceans and no longer a 0.3 albedo. The earth would get blasted by the full 394 K, 121 C, 250 F solar wind.

    The sans atmosphere albedo might be similar to the moon’s as listed in NASA’s planetary data lists, a lunarific 0.14, 390 K on the lit side, 100 K on the dark. (Nikolov & Kramm)

    And the naked, barren, zero water w/o atmosphere earth would receive 25% to 40% more kJ/h of solar energy and as a result would be 20 to 30 C hotter not 33 C colder, a direct refutation of the greenhouse effect theory and most certainly NOT a near absolute zero frozen ball of ice.

    https://www.linkedin.com/feed/update/urn:li:activity:6466699347852611584
    https://www.linkedin.com/feed/update/urn:li:activity:6457980707988922368
    https://sos.noaa.gov/Education/script_docs/SCRIPTWhat-makes-Earth-habitable.pdf

    With 30 % albedo: 957.6 W/m^2, 360.5 K, 87.5 C, 189.5 F
    With 14% albedo: 1,176.5 W/m^2, 379.5 K, 106.5 C, 223.8 F
    With 0% albedo: 1,367.5 W/m^2, 394.0 K, 121.0 C, 250.0 F

  40. I’m a layman in this subject.
    I understand how force applied to a gas, say in a pump, will heat it and gravity is a force.
    I also understand how some gases react to IR radiation by absorbing and emitting it.
    I can’t see how the two theories discussed here are mutually-exclusive.
    I’m probably wrong though.

  41. A planet w/o an atmosphere will have one side very hot and the other very cold, unless it spin rapidly by respect of its heating star. Since SB equation is to the fourth power, the hot side will radiate a lot. So it is logical that w/o an atmosphere, a planet will radiate much more for the same globally averaged temperature than one with an atmosphere that will smooth the min max temprerature.

  42. Has anyone ever plotted the average global air pressure with time? How does that correlate with the average temperature?

      • Not for the atmosphere, no.

        The atmosphere is not a homogeneous entity contained in a box.
        It’s T, P and density vary in 3D throughout it

        Additionally Charles’s law (which comprises the Ideal gas law), states that, for a given mass of an ideal gas at constant pressure, the volume is directly proportional to its absolute temperature, assuming in a closed system.
        The atmosphere is not closed.
        It is free to expand into space. (V can change)
        It can exchange mass into/out of the system.

  43. Then why is it possible to calculate the temperature of a point on the Earth’s surface based on incoming UV radiation and absorptivity/emissivity properties only, with no reference to downwelling IR radiation? How then is it possible to calculate the temperature profile of the atmosphere again with no reference to downwelling IR? If there is the claimed downwelling IR energy that is in excess of the energy received from the sun and which heats the solid and liquid surface of the earth, why can’t we recover it for nice free energy? Why is it that lines of constant temperature are also approximately isobars (snow line), why Jericho is warmer that Jerusalem and death valley warmer than everywhere else in the UK (based on elevation/pressure?). When I can see why, I’ll accept that the Greenhouse effect is correct and the atmospheric effect incorrect, I hope that somebody can help me.

  44. Significantly, Willis pointed out that if atmospheric pressure is instead what raises the temperature above the S-B value, as the Zeller-Nikolov theory claims, the rate of energy loss by infrared radiation will then go up (for the same reason a hotter fire feels hotter on your skin at a distance). But now the energy loss by the surface is greater than the energy gained, and energy is no longer conserved. Thus, warming cannot occur from increasing pressure alone.

    Wrong – this WADR is dysfunctional epistemology and a corrective dose of Karl Popper is needed.

    You are confusing and mixing the conjecture with its mechanistic explanation. The conjecture is the conjecture. The explanation is something else.

    Z&N’s conjecture is:
    “Atmospheric surface temperature can be simply derived from (1) solar irradiation and (2) atmospheric pressure, only.”

    The Popperian test of this conjecture is simple – do the arithmetic, is it true or not – and it is risky? If it were not true it would be easily and quickly shown not to be true. A Popperian refutation.

    But there is no refutation. The maths holds up and the claimed relationship is true.

    So the conjecture has survived a true objective and risky test.

    Willis’ claimed refutation argument collapses epistemologically because it is inductive and avoids the simple deductive question of conjecture-testing. The refutation argument creates a straw man. It says, “here is the mechanistic explanation that I think Z&N propose for their observation and here’s why that explanation is false.”

    No – that radiative explanation is Willis’, not Z&N’s. It is a straw man. You can’t bring in explanation when trying to refute a conjecture. It’s much simpler and logically cleaner than that. We propose that A1.B.1/C1 = A2.B2/C2. It’s either true or not, yes or no.

    The question of explanation is a separate question from the conjecture itself. You can’t refute conjecture by saying “here’s a possible explanation for the conjure which is false”. This only shows that the refuter is wrong, not the conjecturer.

    Conjecture-refutation is deductive, explanation crosses into the territory of inductive. Popper, following Hume, showed that the truth-finding process of science can only be deductive. He went as far as to say “there are no inductive inferences”. Which is as much as to say “there are no climate computer simulations”.

    How can Z&N’s conjecture – mathematically not refuted so still in play – be explained? That is our problem. Not theirs. A “problem” for those who are curious, i.e. for true scientists.

    What Z&N have given us is an observation, an empirical mini-law. Surface gas temperature is related to solar irradiation and gravitational pressure. How can it make sense thermodynamically? Find out – if you want to achieve something worthwhile as a scientist. But don’t confuse observation with explanation, deductive with inductive.

    For example, Weggener proposed the conjecture that continents move, separating and colliding. His conjecture was opposed for the wrong (Popperian) reason. It’s rejection was inductive, not deductive. The opposing argument was in the end one of smallness of imagination and courage. It said – we can’t possibly imagine any mechanism for continents drifting, so we won’t take seriously the (albeit circumstantial) evidence and argument for it.

    Weggener was right, and acceptance of his theory which is now the foundation of geology was delayed half a century by blurred epistemology, confusing deduction with induction, and deficient imagination.

    Today, accepting a conjecture that runs counter to CAGW requires adherence to strict Popperian epistemology – is it refutable? If so, is it refuted or not? However it also requires imagination and almost unimaginable courage in the political environment of climate science.

    • There was a mountain of physical evidence for the continents drifting, e.g. that South America was once joined to Africa.
      It was not merely circumstantial evidence.

    • Popper of the Mont Pelerin Society, Aristotle’s spawn, is definitely not the rule.

      Edgar Allan Poe, another poet, knew this too – Kant of the creeping and crawling inductive-deductive method, who Can’t soar to scientific discovery – silly amphibians! (Mellonta Tauta, Eureka).
      http://xroads.virginia.edu/~hyper/poe/eureka.html
      http://xroads.virginia.edu/~hyper/POE/mellonta.html :
      Two of Aries Tottle’s disciples were Neuclid and Cant, until the Hog preached something Baconian.
      Before claiming to know the “scientific method”, have a look at Poe, Heine, and then wonder how ye missed it.

      Some fool at Paris in 1927 tried to smear Einstein as a Kant-ian – response : Chacun a son Quant-à-soi. He was the only objector to the Copenhagen gang, never gave in, even being called a antediluvian.

      Planck’s Quantum is not an amphibian “inductive-deductive” Baconian creeping and crawling – the scientific method of discovery is definitely not from jellyfish, not trilobites.

      • Quantum theory came from a straightforward deductive observation – photoelectric emitted photons had discreet, not continuous energy.

        Yes on a cake of deductive you can have inductive icing and even an inductive cherry or two.

        After all, conjectures have to come from somewhere.

        • I actually agree with your exposure of the straw dog above.
          Most mechanistic explanations make the pair-wise mistake, such as Newton’s gravitational force thought experiment involving centripetal acceleration. The magic of saying imagine the sun removed and the planet would fly off is the give away, but the real exposure then is the famous 3 body problem.
          Where is the error there? It is insidious, widespread, turning up again here.
          Conjectures do not come from the data, neither inductively nor deductively. Take Planck’s h (help) idea – nowhere in the data with a calculated horrible UV infinity (BB power spectrum) is such a tiny constant to be found nor even a discreet process. Quantum theory came from the resolution of that infinity; Einstein confirmed it later with the Photo Electric conjecture.
          DeBroglie really let the cat out of the bag with his quantum pilot waves. Bohm’s rediscovery of these waves refuted von Neumann’s “impossibility proof” showing how an insidious apparently harmless extra assumption was used as a straw dog. See J.S. Bell on that subject.

    • I agree but we need at least one more planet or moon with data to prove the hypothesis. Willis has correctly pointed out the paucity of data points to validate the NZ curve. I give them high marks for a simpler method, and I derived their parameterized equations. That’s a start for me.

  45. Not sure I understand why the slowing of radiative heat loss by atmospheric GHGs wouldn’t violate any laws, but that a slowing of heat loss through an atmospheric density that retains heat would.

    Let me rephrase one of the paragraphs in the top post:

    “Significantly, Willis pointed out that if [greenhouse gases are] what raises the [surface] temperature above the S-B value, as the [radiative greenhouse] theory claims, the rate of energy loss by infrared radiation will then go up (for the same reason a hotter fire feels hotter on your skin at a distance). But now the energy loss by the surface is greater than the energy gained, and energy is no longer conserved. Thus, warming cannot occur from increasing [greenhouse gases] alone.”

    Am I missing something?

    Don132

    • Would it not violate the laws of physics if a dense surface atmosphere did NOT absorb heat from a surface warmed by the sun?

      Where is the greenhouse effect? Where is the greenhouse? Are not the oceans significant stores of “greenhouse” energy? Would they not warm an atmosphere even in the absence of GHGs, if such a thing were possible on a water planet?

      Nothing is as simple as it seems but sometimes we assume it’s simple.

      Don132

      • The only people that seem to be assuming the atmosphere is simple are the warmistas, when they claim that CO2 is the thermostat of the Earths atmosphere.

  46. Disappointing that after so many years here at WUWT, something as simple and basic as radiative GHE is not well understood or accepted by all, and that ‘embarassing’ alternative theories still abound to be espoused here.

    The GHE is NOT warming; all warming comes from inbound solar radiation (lets skip the de minimus volcanic argument powered by radioactive decay in Earths core).
    The GHE is a transient absence of eqivalent offsetting IR cooling to space. Convection and
    conduction can move solar generated heat around, but by definition cannot shed it back to space. The most that convection can do is transport some heat above the effective radiating level (ERL) where the GHG IR scattering ‘fog’ clears sufficiently for IR to reach space. (Think towering thunderstorms).We know that ERL ‘height’ from the temperature/altitude lapse rate measured by radiosondes, and the ‘temperature’ of the escaping IR frequency as measured by satellites.

    That transient absence of radiative cooling is caused by GHG, the existence of which was experimentally shown in 1859 by John Tyndall. Transient, because in the presence of any added amount of GHG, temperature will rise until sufficient additional offsetting IR materializes.

    Dr Spencers backradiation sensor does not show that backradiation ‘warms’. It evidences the IR scattering by GHG that proves the loss of IR cooling that comprises the GHE. Hence his comment about not violating the second thermo law.

    • Greenhouse gases radiate. The question is, is their activity enough to raise the temperature of the earth’s surface above the blackbody calculation?

      No one denies radiative effects. But to me and many others, it is the atmospheric greenhouse effect proposed by NZ and Stephen Wilde and others that makes possible, or that allows for, the radiative effects to occur. But those radiative effects are not powerful enough to warm the planet sufficiently; for that to happen an atmosphere dense enough to retain heat from land and oceans warmed by the sun is required. Atmospheric density is the big player, not greenhouse gases. That is the essential paradigm proposed by NZ but bastardized by those who suppose that they’re talking about compressive heating.

      Don132

      • Hey Don, if/when you work through the actual physics of Wilde and his ilk, you will realize their errors.
        BTW, NZ actually does suppose compressive heating.

        • “Pressure by itself is not a source of energy! Instead, it enhances (amplifies) the energy supplied by an external source such as the Sun through density-dependent rates of molecular collision. This relative enhancement only manifests as an actual energy in the presence of external heating.”

          –Nikolov and Zeller

          https://www.researchgate.net/publication/309651389_Unified_Theory_of_Climate_-_Expanding_the_Concept_of_Atmospheric_Greenhouse_Effect_Using_Thermodynamic_Principles_Implications_for_Predicting_Future_Climate_Change

          Summary: the atmosphere is most dense at the surface, and thus most of the atmospheric heat is necessarily concentrated at the surface. It is so with or without GHGs. How many times are we going to accuse NZ of saying things they don’t, just so we can “prove” them wrong?

          Rud Istvan, I may be wrong. Please show me where NZ support compressive heating, such as happens when a bicycle tire is blown up. My understanding is that it’s all about atmospheric density, and a lot of people don’t seem to get it.

          Don132

          • It is amazing how many extra “harmless” assumptions are attributed and then attacked. Looks like standard practice – it is Kant in action (even if not realized).
            Kant attacked “pure reason” which does not in fact exist, then practical reason, consensus, which does.
            Any physical conjecture must conform to sufficient creative reason first. Those that Kan’t follow the Critique (colloquially straw-dog).

    • Oh great, I was just on the verge of declaring Willis the winner of this unsettled science debate and you had to ahead and throw Feynman into the equation……..

    • You do know that references to Principia-scientific are banned here?

      https://wattsupwiththat.com/policy/

      “For the same reasons as the absurd topics listed above, references to the “Slaying the Sky Dragon” Book and subsequent group “Principia Scientific” which have the misguided idea that the greenhouse effect doesn’t exist, and have elevated that idea into active zealotry, WUWT is a “Slayer Free Zone”. There are other blogs which will discuss this topic, take that commentary there.”

      • if you put in a sprinkler system , open the doors and windows mirroring the real world – what green house effect!

    • Yes PSI are supposed to be these really bad people. But oddly what they say on that page seems to make sense. Feynman seems to be talking sense.

    • Slightly skeptical December 31, 2018 at 2:22 pm

      Feynman had these ideas, sound familiar?

      https://principia-scientific.org/physicist-richard-feynman-discredits-greenhouse-gas-theory/

      No, Feynman did NOT have these ideas. However, the idiots at Principia Scientific THINK he did. They say:

      Feynman demonstrates that the conservative force of gravity does indeed do continuous thermodynamic Work upon the atmosphere (a common false argument by those who do not accept the gravito-thermal GHE theory is that gravity allegedly can’t do Work upon the atmosphere), and describes gravitational potential energy (PE) accumulated as air parcels rise/expand/cool, which is then exchanged for kinetic energy (KE) as the air parcel descends/compresses/warms, creating the temperature gradient & greenhouse effect.

      All that that shows is that the clowns over at P-S don’t understand the difference between work and energy.

      w.

    • Feynman was notorious for deriving in his own way the same physics observations/predictions as the main stream theories he was late in accepting, as the quark model or QCD . I have sat through lectures in international settings where he did exactly that, and one had to tie ones brain in knots to follow, and really not see the reason of not sticking with the earlier mainstream version. He was correct in his mathematics, being Feynman of course. I know it is not worth my effort to check carefully the overlaps between the green house model and Feynman’s version.

  47. 1) It’s just wrong

    .
    Simply dismissing it [the NZ argument] in a judgemental one liner is even “wronger”.

    2) It invariably descends into a shouting match.

    .
    I wonder why? Could it be that everyone is not convinced that “it’s just wrong”?

    3) These two guys published a paper under fake names to fool the peer-review process, which is a professional no-no.

    .
    Fooled the peer-review process how? Exactly how was the process fooled? How did simply using different names fool the process of receiving a paper and evaluating it fairly? Did a change of names somehow disable the reviewer’s mental capacity to understand what they were reading? Did it render them blind? Did it give them intestinal issues to the point that they could not sit long enough to ingest and evaluate the paper?

    Sorry, but this just seems way too unforgiving. Let’s not forget that non-popular ideas in this arena are seldom met with receptive arms, especially when those arms know the names of people putting forth the ideas, and, by knowing names, those arms can blacklist and reject the ideas and keep the ideas out of view, for no other reason than the ideas differ radically from the norm.

    “Professional no-no”? … “peer review process”? … Please. What’s professional about the atmosphere in which such a paper was presented? You call the attitude of blacklisting known divergent thinkers, “professional”? Isn’t this something that WUWT frowns upon? I would think that we would have more understanding for resorting to unprofessional tactics in this … [clear throat] … “professional” publishing arena. Such gorilla tactics are not unwarranted.

    And as much as WUWT has dissed the “peer review” process, when it comes to climate science, I would think that we would be even more understanding of this supposed “fake name” stunt.

    If lots of people know who you are, and, knowing this, they automatically reject anything you might submit, then is using a “fake name” really so unforgivable, in order to get your work seen? I think not. In any other arena, this might be a “professional no-no”. But, in this one (the climate science arena) … I dunno.

    • I’m delighted to see physicists use humor – they simply do not care about the raging climate brawl and got off-planet for further research. They have no problem with GCR’s either. And they used NASA data, imagine that!
      Now I wonder about the ~1300 exoplanets – is there enough data to check N-Z ? It looks like we only need exo-solar distance, mass and atmospheric spectra.

  48. Seems like folks still aren’t getting it. Let me see if I can simplify it even more.

    A blackbody planet with no greenhouse gases in the atmosphere has only one thing in the entire system that can absorb energy from outside the system—the surface.

    It also has only one thing in the whole system that can lose energy back to space—the surface.

    THEREFORE: the surface MUST radiate the amount that it receives, and therefore it cannot be warmed by ANY such proposed atmosphere-based process—whether said process is based on pressure or lapse rate or gravity or whatever. Over time, the surface CANNOT radiate more than it is receiving, period.

    So please, all of the explanations about lapse rates and compression of gases and conduction and convection are missing the point—the surface can only radiate the amount that it receives, not more and not less. Thus in the system I described, none of those processes can raise the average temperature of the surface.

    w.

    • “A blackbody planet with no greenhouse gases in the atmosphere has only one thing in the entire system that can absorb energy from outside the system—the surface.
      It also has only one thing in the whole system that can lose energy back to space—the surface.”

      Yep, exactly so.

      • All gases radiate at some level, just tiny compared to what CO2 can do. Otherwise, how does spectrography work?

          • It doesn’t matter what all gases do. Nitrogen and oxygen (99% of the atmosphere) do radiate infrared.

          • icisil January 1, 2019 at 6:56 am

            It doesn’t matter what all gases do. Nitrogen and oxygen (99% of the atmosphere) do radiate infrared.

            No, basically they N2 and O2 do NOT radiate IR. That’s why they are not called “greenhouse gases”. Symmetrical diatomic molecules can only absorb or radiate infrared in very special circumstances. The overwhelming majority of the time they don’t do either.

            Best regards,

            w.

        • At standard temperature and pressure, most atmospheric gases neither absorb nor radiate at visible wavelengths. It is a property that permits transparency. Anything that can emit can also absorb and the atmosphere would not be transparent.

        • “Not all gases radiate in the thermal longwave (IR) range.

          w.”

          Here’s a calculation of the infrared cooling rate of a hypothetical 1 meter sphere of nitrogen at 300K:
          https://physics.stackexchange.com/questions/163876/thermal-radiation-of-a-nitrogen-sphere

          This study finds that due to the absorption bands of O2 and N2:
          ‘for dry atmospheric situations like over the Antarctic continent the effect of O2 and N2 even reach up to 80% of the influence of CH4’
          https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012GL051409

          • Thanks, Ulric. I’ve said before that O2 and N2 are very weak absorbers/radiators of thermal infrared. They can only do that if the photo hits while they are colliding with another molecule.

            You first link merely ASSUMES that N2 is a perfect blackbody. Fail.

            The second one is accurate. It says:

            The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth’s atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm2 and due to N2 by 0.17 Wm2 . Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

            So globally, O2 absorbs/radiates A TENTH OF A WATT/M2 and N2 absorbs TWO TENTHS OF A WATT/M2.

            This is despite the fact that O2 and N2 together make up 99% of the atmosphere … like I said, they are very, very weak absorbers. As a result, they are generally ignored in greenhouse calculations.

            w.

      • Tasfay Martinov December 31, 2018 at 3:57 pm

        A blackbody planet with no greenhouse gases in the atmosphere has only one thing in the entire system that can absorb energy from outside the system—the surface.

        All gasses absorb and radiate heat energy.

        Not true. Monatomic gases (argon, neon, etc) neither absorb nor radiate thermal (longwave) radiation. And symmetrical diatomic gases (O2, N2) can only do so if the radiation strikes them just when they have been hit by another molecule.

        All gasses are greenhouse gasses.

        Oh, please. Why do you think that scientists divide gases into GHGs and non-GHGs?

        How can any gas not interact with solar radiation?

        By being a monatomic gas …

        Do some homework, please, you are embarrassing yourself.

        w.

        • Willis
          Are you telling us that the noble gases have an emissivity of zero? It is going to take a while to get my head wrapped around that. I thought that all material things above absolute zero radiated according to the 4th power of the temperature.

          • Yep, the noble gases have zero emissivity. And N2 and O2 have almost zero emissivity.

            All SOLID things above absolute zero radiate according to the 4th power law. But not monatomic gases.

            w.

        • Willis
          OK I get it.
          So the 399/400 ths of the atmosphere that are not CO2 are essentially dark matter.
          And when astronomers do absorption spectroscopy of distant stars and gas clouds, the only thing they ever detect is CO2.
          Right?

    • Willis … I won’t dispute that you are correct about NZ and pressure and all that, but … a black body ain’t earth. Specifically, the earth Is uniquely situated at a point, with an atmosphere that filters the energy, such that water exist in all three forms. Water acts as a heat capacitor. So do GHGs, but the joules of heat that can be stored in CO2 simply is minuscule because it’s absorption is limited by wavelength.

      As such, I reject the NZ model, but I also reject that the GHG theory is capable of much either if you take water out of the equation. Water is the key. Water has the capacity to store heat for longer periods of time, clouds have the ability to limit or increase solar input to any given point, water is a greenhouse gas, but because it exist in all three states here on earth, it functions very differently from a gas like CO2.

      I remember the early sun model published by the Stanford guys ….. GHGs other than water were not relevant. It’s simple as that.

    • Seems like folks still aren’t getting it. Let me see if I can simplify it even more.

      What the oversimplified explanation fails to account for is the presence of an atmosphere that is warmed primarily by moist convection, not by LWIR radiation. Thus the surface loses heat not by radiation alone and GHGs provide only an ANCILLARY means of STORING thermal energy in the atmosphere.

      That stored energy (which is NOT confined to the “radiationally active” constituents) is what raises the temperature, just as stored water behind a dam increases the pressure driving the flow-though plume of water. As long as outflow of energy balances the system inflow on a planetary basis, no violation of conservation of energy is necessary to explain the higher surface temperatures. On the contrary, positing the levels of LWIR exchange at the surface seen in popular climate cartoons requires wholly impossible power-production by the atmosphere. It’s simply not a radiation-only problem!

      BTW, surfaces being mass-less, two-dimensional entities can only pass through, but not absorb or store, energy. Let’s not carry such aphysical nonsense into the New Year.

      • 1sky1 December 31, 2018 at 4:22 pm

        Seems like folks still aren’t getting it. Let me see if I can simplify it even more.

        What the oversimplified explanation fails to account for is the presence of an atmosphere that is warmed primarily by moist convection, not by LWIR radiation.

        1sky1, it is a thought experiment. I specified no greenhouse gases … so there is no “moist convection”. It is not designed to replicate the earth. It is designed to show, and it does indeed show, that N&Z’s claim that some pressure related phenomenon or other can heat the surface in the absence of greenhouse gases is a violation of the Laws of Thermodynamics.

        Period.

        w.

        • Willis,
          Even with a radiatively inert atmosphere there will still be a lapse rate slope due to decreasing density with height.
          Convective overturning cannot be prevented due to uneven surface heating.
          Something has to fuel such continuing convective overturning and if all surface heat were radiated to space the atmosphere would fall to the ground.
          It is true that once an atmosphere is in place there is no further net energy exchange from surface to atmosphere but heat energy is still required at the surface to hold it suspended off the surface and that is the mass induced greenhouse effect.
          Your ‘proof’ is fatally flawed.

          • atmosphere but heat energy is still required at the surface to hold it suspended off the surface and that is the mass induced greenhouse effect
            No, that energy comes from the sun. Turn off the sun and the atmosphere falls to the ground as it radiates away its heat.

          • So we have the best energy from the sun holding the atmosphere up and the gravity vector holding it down. There’s your squeeze play heating the atmosphere on venus, compressing it every delta t.

          • Leif
            Of course it would and the initial energy required to suspend the atmosphere off the originally came from the sun via conduction from surface to air during the formation process.

          • initial energy required to suspend the atmosphere off the originally came from the sun
            It comes from the sun at all times as we speak, no ‘initial’ or ‘original’ nonsense involved.

        • Hi Willis, it’s amazing that we get all this nonsense rearing its ugly head again, I thought we’d put it to bed last time! As I recall both Robert Brown and I got banned on another site for having the temerity to prove it wrong!
          As regarding a planet without an atmosphere illuminated by a constant sun and with a constant albedo will achieve a constant surface temperature distribution and will reflect/emit the same energy flux as it receives. Add an non-absorbing atmosphere and some heat will be transferred to the atmosphere, this of course means that the surface temperature will decrease and the emission by the surface will decrease by a corresponding amount. This will continue until the energy held in the atmosphere stabilizes (it can’t be lost to space). The surface will then have to heat up because no more heat will be lost to the atmosphere. The system will eventually stabilize at the same surface temperature as before the atmosphere was added. Over time the difference will be that the planet will have emitted less energy to space than it has received by the amount held in the atmosphere. The only effect pressure would have would be to change the amount a energy stored in the atmosphere

          • Phil
            Pressure is related to atmospheric mass plus gravitational force and you concede that pressure changes the amount of energy stored.
            My point is that the stored energy is not heat. It is potential energy which is not heat and does not radiate.
            Furthermore that potential energy is constantly being created from kinetic energy (heat) in ascending air and converted back to kinetic energy (heat) in descending air in a never ending recycling process which is independent of the throughput of solar energy in and out.
            That independent process requires its own discrete energy source at the surface so the system can never stabilise at the same surface temperature as before the atmosphere was added.

          • So according to you the planet surface in the presence of a non-radiative atmosphere will be colder than in the absence of an atmosphere.

        • [I]t is a thought experiment. I specified no greenhouse gases … so there is no “moist convection”. It is not designed to replicate the earth. It is designed to show, and it does indeed show, that N&Z’s claim that some pressure related phenomenon or other can heat the surface in the absence of greenhouse gases is a violation of the Laws of Thermodynamics.

          Total absence of GHGs does not negate conduction into the surface boundary layer and subsequent dry convection. In fact, it curtails the ability of the atmosphere to radiate LWIR to space. Nor is the well-known phenomenon of adiabatic heating (q.v.) any “violation of the Laws of Thermodynamics.” What indeed has been shown is that failure to understand all of the mechanisms of heat transfer (see, e.g. Hofmeister’s recent monograph) leads to gross physical misconceptions emblematic of the self-promoting enterprise of “climate science.”

    • The surface cannot radiate more to space than it is receiving but it can store additional energy that is then used to fuel ongoing convective overturning.
      Viewed from space the whole system will still comply with S-B but the surface will be warmer than S-B.
      A single unit of surface heat cannot be in two places at once. It will either be radiated to space or be involved in a continuing net zero exchange with the atmosphere.

    • Willis
      You said, “…the surface can only radiate the amount that it receives, not more and NOT LESS.” Is that what you really intended to say? Consider that most of the energy the Earth receives in in the visible region, with the peak at green light. That light passes through the atmosphere largely unobstructed by the gases, albeit nominally 30% gets reflected before reaching the surface. The light that reaches the surface is either reflected or absorbed. That which is absorbed increases the temperature. However, since the surface of the Earth is MUCH cooler than the sun, it radiates principally in the IR region. If the temperature of Earth was stable, it would imply that the incoming radiation absorbed was equal to the outgoing. However, if and when there is an imbalance, the Earth will cool or heat accordingly. That is, your statement is only true for an Earth that is in energy equilibrium. But, it is capable of being out of equilibrium.

    • I do not see disagreement over this statement:

      THEREFORE: the surface MUST radiate the amount that it receives, and therefore it cannot be warmed by ANY such proposed atmosphere-based process—whether said process is based on pressure or lapse rate or gravity or whatever. Over time, the surface CANNOT radiate more than it is receiving, period.

      We are not talking about radiating more than received. We are talking about the MAINTAINED temperature? — what establishes this? Isn’t the greenhouse effect just such a proposed mechanism of maintaining this temperature? Isn’t N&Z’s effect also a proposed mechanism of maintaining this temperature? Isn’t the greenhouse effect just such a proposed atmosphere-based process? — if not, then what is it? — how is it NOT an atmosphere-based process proposed to heat Earth’s surface?

    • “THEREFORE: the surface MUST radiate the amount that it receives…”

      I think this is a misconception. If there is an atmosphere, a surface can conduct energy as well.

    • “…the surface can only radiate the amount that it receives, not more and not less.”

      But that doesn’t mean that it has to radiate all of the energy it receives. If some is diminished via conduction, then it has less to radiate than it received.

      • “But that doesn’t mean that it has to radiate all of the energy it receives. If some is diminished via conduction, then it has less to radiate than it received.”
        Exactly.
        In fact the surface (the real one) cant radiate as much as it receives as it already uses part of the energy for convection, evaporation, etc.
        But in one way or the other the same amount of energy will travel upwards. The energy is still transported to higher layers of the atmosphere. Once you get high enough that its cold enough will you get to a layer where CO2 is capable of starting to emit excess energy via radiation. H20 can do this as well & better (across wider range of spectra, temperatures, pressure etc). The higher layers will get a lot of the energy, that they receive from the surface, via collisions instead of only via rsdiation.
        Simarly most energy incoming from the sun is absorbed by the atmosphere, long before the remainder (mostly in visible & infrared spectrum) arrives at the surface. Most of the absorption is not immediately emitted back to space, it triggers various processes, which trigger others (gamma ray +O2 to O3, later O3 is disassociated again and we get O2 plus free O etc). Different rays are involved with different gases at various altitudes.
        The equilibrium result is that density and temperature is higher at lower altitudes closer to the surface. But that that seems unescapable, regardless of the exact composition of the atmosphere.
        The total tally must eventually be a zero sum at equilibrium, when seen at the outer atmosphere.But I do not quite see why a trace gas, which can only radiate a small amount at certain higher altitudes, would neccessarily play some unique role.

    • If a non-GHG atmosphere of a planet is in contact with a warmed surface, then the atmosphere MUST be warmed by the surface. That atmosphere can cool by conduction with polar regions and by conduction with a nighttime surface, as well as by conduction with molecules higher up that have been cooled by conduction with polar regions and conduction with nighttime surfaces. If we say that the atmosphere can’t be warmed by the surface then we deny physics.

      There is no violation of any laws. In this thought-experiment, what physical laws are violated, except for the assumption that the surface must now be radiating more than it receives? Is the near-surface atmosphere not now part of “the surface,” and has that near-surface atmosphere not absorbed a significant amount of energy incoming from the sun through conduction/convection with the surface?

      I knew this would be fun! No offense to anyone intended.

      Don132

    • But what holds the sky up above such a planet? The SB blackbody radiation from the surface can’t be the total energy in the planet/atmosphere system. Surely we have to add on the energy required to get all the tons of atmospheric gasses off the ground in the first place? So the system as a whole will require energy in excess of the blackbody equilibrium with incoming solar in order to have an atmosphere at all. This additional energy is locked into the system because it exists as potential energy. Thus the system isn’t fully wound up until the gasses have expanded against the forces of gravity to a point of equilibrium with the solar energy expanding them and the gravity holding them back.

  49. I really hope this isn’t a repeat but if BRIR is true why

    Can I calculate the temperature of a surface point without any reference to it.

    Can I calculate the temperature distribution in the atmosphere without any reference to it

    Is temperature directly related to elevation (atmospheric pressure).

  50. Color me skeptical. The work being done on the atmosphere based on Venus is being done by gravity. Unless you can turn off the gravity, or reduce the mass of the atmosphere, it is like a continuous bicycle tire pump, continuously heating the atmosphere. Ceteris paribus. Other factors may have effects as well but gravitational compression just keeps on working.

      • The curvature of space/time in the theory of relativity gives it force in the Newtonian sense. Turn it off and watch the atmosphere decompress and fly away. The pump does not stop as in the other analogies. Just keeps on going.

        • Force is not energy, nor is it work which is energy per unit time. Gravity can exert a constant force, but it can’t “continuously heat” a system.

        • LOL that is even funnier … ready so lets sinking your little boat with GR.

          Energy has mass (E=MC2) so if you are creating energy to do this work then Venus is going into runaway becoming heavier and heavier (eventually to become a black hole). Long before that Venus will have destabilized the entire solar system and it will be changing it’s orbit and every planets.

          Hmmm want to try that again?

        • Personally I think you might want to restore the Energy Conservation or you are sinking faster than Venus is gaining mass 🙂

        • Oh and I forgot Jim if you really want to go down this classic physics crazy try working out where a fridge magnet gets it’s endless supply of energy to resist gravity and stay on that door 🙂

    • “Color me skeptical. The work being done on the atmosphere based on Venus is being done by gravity. ”

      “it is like a continuous bicycle tire pump, continuously heating the atmosphere”

      So in that case why don’t we utilise that to create perpetual energy for mankind?
      Something for nothing merely by being within the Earth’s gravitational field?

      Your logical fail comes from not realising that a “continuous bicycle tyre pump” tends to have the effect of causing a change in pressure. Upwards. Err continuously.
      Gravity does not do that.
      It stopped at 1013mb.
      It has the atmosphere under pressure and it is no longer exerting work on it (in the sense of INCREASING the pressure and hence intensifying molecular collisions within it).
      It’s over, fini, deceased, and pushing up the daisies.

      Have you not been reading this thread?
      So your bike tyre stays hot for ever?
      Or if you’re a diver, your air tank?

        • The logical fail in that is that the water needs to be replaced, it can’t flow forever unless that is so.
          The sky-dragon N & Z “theory” says it’s perpetual with nothing needed to be replaced.
          Gravity producing energy forever.

          • Force is an energy vector i.e. with a direction. You are using conservation of energy inappropriately. Take the steel tank away or the rubber tire and your compressed gas dissipates. Gravity can produce energy as long as it has something to work upon, water in the dam or hydrogen in a star. No gravity, no electricity or sunshine. Other than being 27% closer to the sun, what causes Venus’ high temperature. Pv=nrt. Certainly not co2 in any major way. At 90+ bars continuously being applied (to replace the steel tank or rubber tire) it is heating the atmosphere.

          • “Gravity can produce energy as long as it has something to work upon”

            Work is force times distance. Gravity can provide the force to compress a gas from a large volume to a small volume, but once the gas has compressed, there’s no more work being done.

          • “At 90+ bars continuously being applied (to replace the steel tank or rubber tire) it is heating the atmosphere.”

            No it’s not.
            If logic as elucidated by myself and others on this thread cannot get through….
            Again … keeping something pressurised is NOT applying work (and therefore heating).
            It is the ACT of pressurisation that is the work.
            Once it stops the gas will cool.
            When a gas is compressed the molecules are pushed together causing collisions between and raising internal energy.
            Stop the compression and further collisions stop (conceptually)
            Otherwise you get something for nothing.
            Unless, that is, the mass of the Earth slowly diminishes (of course it doesn’t).
            Try going around and checking all the worlds pneumatic tyres to see if the are hot eh?

    • No, the heat of the atmosphere is provided by the sun. Gravity works to maintain the lapse rate, ie, pressure drop with altitude.

  51. Mr. Layman here.
    What temperature changes does the Moon, Mars, Mercury experience when they don’t face the Sun?
    Pretty extreme.
    What keeps the Earth from experiencing the same? Our oceans and our atmosphere. Water heats and cools slower than “air”. “Air” heats and cools faster than water.
    There are two big factors that the effect temperature of the Earth.
    But those two are just the gas and liquid elements involved the Earth’s supposed fever.
    What about the “solid” part of the equation?
    (According to Al, the Earth’s core is millions of degrees so everything is vaporized and I wouldn’t be here to make this comment and you wouldn’t be here to read it.)
    The same volume of rock takes more time to heat up and cool down than a liquid.
    The previous objects I mentioned all have lots of rock so there must be something(s) else going on.
    The CAGWers want to claim that the only variable involved in any change in the weather is only Man’s Fossil Fuel CO2 emissions. (I think that Nut from New York has included CO2 from farming.)
    Back on point as this Layman sees it, No greenhouse gas effect from our atmosphere, no oceans to retain and release heat, no Sun to supply the heat, no Rare Earth.
    Focusing on ONLY Man’s CO2 as the cause of all of the weather patterns is politics, not science.

  52. Increasing pressure generates heat so long as the pressure continues to increase. When the pressure becomes stable, there is no more added heat. If the container or system is perfectly insulated, there is no heat loss and it maintains its temperature. Reducing pressure causes it to cool. Imperfect or non-existent insulation allows heat to radiate away until the compressed gas reaches ambient temperature.

    That part I understand. Someone please educate me further on the greenhouse effect itself. As I understand it, solar energy strikes the surface and is absorbed. Energy then radiates from the surface as long wavelength IR. Certain gases absorb certain wavelengths of IR and then re-emit it. So am I right that greenhouse gases don’t increase temperature, they just delay the radiation into space of a certain amount of energy.

    • You now need to get out of stupid classical physics and you need to learn a tiny bit of Quantum Mechanics.

      Just do a search on “optical pumping” or specifically “optical pumping of CO2”.

    • I should say the energy will be offloaded from the CO2 to Nitrogen and other gases the pump is just the first phase it is what happens with the excited states that is where all the action is.

      • That is how we produce the population inversion in CO2 laser, collisional energy transfert between N2 and CO2.

    • First, download the Raytheon Infra Red Wall Chart from http://www.pblprojects.org/EOC/docs/Raytheon_IR_rvs_wallchart.pdf and peruse it.

      First, look at the Spectral Radiant Emittance graph in the upper middle. This is the Stephan-Boltzmann curve and describes how an ideal blackbody emits electromagnetic (EM) radiation at a particular surface temperature. Note that two things happen as a blackbody gets hotter: the curve gets higher, and the peak of the curve moves towards shorter wavelengths. As an example, the Sun approximates an ideal blackbody at a temperature of 6000K. Notice particularly the differences between the curve for the Sun, at 6000K, and the “ambient temperature” (in your typical lab) of 300K (27C or 80 F).

      In the real world, objects cannot be perfectly black and every physical object has an “emissivity” between 0 (perfect reflector and emits no energy) and 1 (a perfect blackbody radiator). The lower the emissivity, the higher its temperature must be to get the same emitted radiation as a blackbody. A good ultra-black flat paint has an emissivity of about .98 or so. The emissivity of the Earth’s surface is somewhere around .6, on the average. (NASA)

      Next, look along the bottom of the chart at the Transmittance curve, which gives the atmospheric transmittance for wavelengths from UV to ultra-long-band IR. Note that there are a number of transmission windows where nearly all EM energy passes through and a number of absorption bands where nearly all energy is absorbed by (and re-emitted by) the atmosphere. (Trying to look through the air with an IR camera in an absorption band is like trying to look through glowing fog).

      In particular, there are very heavy absorption bands at 1.5, 1.9, 2.6, 4.3, and 5.5-7.5 microns (um). Compare the two charts and notice very particularly that the atmosphere passes energy very well at the peak of the Sun’s emission spectrum. It also blocks, by absorption, much of the energy at the Earth’s emission peak! These absorption bands are due to the “greenhouse gasses”: water vapor, CO2, and , to a lesser extent, methane and other gasses. (See also https://wattsupwiththat.com/2014/04/11/methane-the-irrelevant-greenhouse-gas/).

      This is a simplification, but energy from the Sun hits the top of the atmosphere. Some of it is absorbed by and heats the air on the way down, in the absorption bands. Much of it, though, especially in the visible part of the spectrum hits and warms the ground. About half of the energy absorbed by the atmosphere is re-emitted back into space, the other half is emitted towards the ground and heats it and the lower part of the atmosphere.

      The earth, however, is at a cooler temperature than the Sun and it’s peak emission is right in the middle of those absorption bands. So it re-radiates the energy that it has absorbed from the Sun back out. Most of that escapes back into space (which has an effective temperature of 4K, so is an almost ideal heat sink) through the transmission windows, but much is absorbed by and heats the air – and the “climate”, to be eventually re-radiated by the upper atmosphere.

      The stable temperature of the Earth’s surface, and of the air immediately above it, then is the temperature at which the energy received from the Sun is radiated into space, according to the Stephan-Boltzmann curve, allowing for the actual surface emissivity. However, you also have to take into account a tremendous number of other factors, including the absorption and emission characteristics of the atmosphere itself; that water can be vapor, droplet (cloud), ice, or surface liquid and change form quite quickly; and the convective dynamics of the atmosphere, which – as Willis has pointed out – can make life quite interesting.

      (I’m setting aside for the moment the energy reflected from the ground, effects of clouds, and the fact that where energy is most absorbed – near the equator, during daytime – isn’t where it’s primarily radiated out again – at the poles, at night, where there’s little water in the atmosphere.)

      The key, than, is how much escapes through the transmission windows and how much is absorbed to heat the atmosphere. Adding more “greenhouse” gasses increases the amount of Earth’s radiated energy that is absorbed again before it reaches space. (This is, of course, not the cause of the argument. Without some “greenhouse effect” we’d be like Mars. The debate is over how much overall effect each gas has and whether the bit of CO2 that we add is significant.)

      • Paul
        The GHE is sometimes exaggerated by implying that only CO2 in the atmosphere interacts with radiation, the rest of the atmosphere is inert to radiation almost as if it were dark matter. Water vapour and clouds are also often ignored in such discussions.

        Another problem is that these discussions seem to assume that a photon emitted from earth’s surface gets only one or if lucky, 2 or 3 interactions before leaving to space or being reabsorbed at the surface. The real number is much higher of course.

        By analogy, a photon emitted near the sun’s core takes something like 100,000 years of bouncing around before it escapes the sun’s surface. It would be interesting to find out the corresponding “escape time” for an IR photon emitted at earth’s surface. Minutes? Hours? Days?

  53. Willis would you agree with Dr Nic Lewis that the cumulative effect of co2 emissions ( sensitivity) would be about about half of the projection of IPCC AR5?
    IOW if all human co2 emissions ceased today what would be the impact after 1,000 years? Do you broadly agree with Dr Lewis? I think a lot of people would like to know who agrees or disagrees with AR5 cumulative sensitivity . Thanks.

    https://judithcurry.com/2018/12/11/climate-sensitivity-to-cumulative-carbon-emissions/
    Here’s his update to their Fig 2
    https://curryja.files.wordpress.com/2018/12/ECRETCRE_Fig2-Froelicher2015_Fig2aObs.png

  54. Happy New Year!

    Some folks are noticing the problem that in order for pressure to “maintain” a temperature, and if that pressure involves gravity, then gravity appears to be doing work without consuming any energy.

    Let’s not forget relativity. Gravity is a shorthand for curvature of spacetime.

    I have a feeling that Einstein anticipated string theory in the sense that reality involves architecture and morphology, not just points and numbers. And lots of dimensions.

  55. I work with blackbodies all the time, in my work with infrared cameras. The Stefan-Boltzmann curve only applies when the emmisivity of the surface is 1, which the Earth’s surface most certainly is not. In addition, it specifies the surface temperature – that is, the surface that is visible to space, not the insulated interior, which – in effect – is what the surface is.

    The other classical error that Nikolov and Zeller seem to be making is in mistaking temperature for heat. The law of thermodynamics only gives that the energy leaving the Earth must, over the long term, equal that received from the Sun plus any leaking from the core. It says nothing about the temperatures at the Earth’s (solid/liquid) surface.

    • Paul Blase December 31, 2018 at 5:02 pm

      I work with blackbodies all the time, in my work with infrared cameras. The Stefan-Boltzmann curve only applies when the emmisivity [sic] of the surface is 1, which the Earth’s surface most certainly is not.

      Sorry, Paul, but that is not true. The Stefan-Boltzmann equation is

      W = \sigma \epsilon T^4

      where W is radiation, sigma is the Stefan-Boltzmann constant (5.67E-8), T is temperature …

      … and epsilon is emissivity …

      Since we can put the emissivity into the equation, it applies at ANY emissivity.

      w.

  56. I think that the increasing pressure analogies are not applicable. Both the pure black body and a planet with an atmosphere are about systems at equilibrium. You can look at the whole atmosphere as a system that is black body-like, and average it out. Look at the atmosphere’s typical average temperature profile vs. altitude and pressure, and at the point of half the surface pressure, where you have the centre of mass, the temperature is what you would get from a blackbody equation. I’ve only looked at the results myself for Earth and Venus, but it pans out. Surprising considering the huge differences in composition and pressures between the two, that the temperatures behaved the same way.

    • JimG

      That is correct.
      At hydrostatic equilibrium no additional compression is required. It is sufficient to have an ongoing cycle of decompression and compression which is supplied by convective overturning.

  57. Eventually this ”net” b0ll0cks” will disappear up Dr Roys sphlincter.

    Back radiation emission from a sub-zero temperature atmosphere is only potential heat, there is not one empirical measurement to show it thermalises in surface and isn’t just deflected by the earths as per the 2nd law.

    You have to proof the greenhouse hypothesis to raise to theory and Dr Roy can only do that with sophistry and mathemagics.

    Joe Postma makes complete mugs out of willis Dr Roy. and their steel greenhouse junk maths

    ‘[In other words, without the inclusion of the greenhouse effect (which has downward IR emission by the atmosphere reducing the net loss of IR by the surface), ”

    • I suppose it’s possible you could be more unpleasant, but you’d have to work at it.

      In any case, such personal passionate attacks on folks who disagree with you are a clear sign that you are very unsure of your scientific position … when a man starts throwing mud, I know he’s out of real ammunition.

      Best of the New Years to you,

      w.

  58. Bit simplistic but simple is better. Heat flows from hot to cold. Avg temperature of the ocean surface which makes up 70% of the surface is 17 deg C. Avg temperature of ground at 200 ft is 1deg C higher than surface, and increases with depth.

    Avg air temperature at surface is 15 deg C and decreases with altitude. It is being warmed by the earth (ex atmosphere) and not vice versa.

    It appears to me that heat is being transferred from the earth (ex atmosphere) to the atmosphere and space, in other words, global cooling. The GHG in atmosphere are our insulation, and reduces the rate at which we are cooling, but does not warm us.

    Temperature changes in the atmosphere come from changes in ocean circulation which release more (eg el nino) or less heat to atmosphere (eg la nina) . Variations in earths (ex atmosphere) cooling rate , and variations in the suns and earths magnetic field strength -which reduce or increase GCR’s that affect cloud formation , affect the temperature of the atmosphere.

    If no atmosphere or GHG at all we are at -18 deg C, and the cooling process becomes much much quicker.

    The planets destiny before being consumed by an expanding and dying sun is as a giant iceball. GHG such as CO2 buy us more time.

    • Co2 has not got the heat capacity to absorb 15 micron photons in the first kilometre it needs to be at -80c to absorb 15 micron photons,..

      See Alan Tomaltys regular posting very proffesional, and ive not seen one person challenge his heat capacity calculations.

      Back radiation has nothing zilch to do with absortion spectra, and everything to do with emission spectre and emission temperature.

      • Hey..nice. minus 80C is where CO2 imparts heat. Thus thermalisation will never reach surface as gases emit as a sphere, hence ever more diluted from 10km up. No effect on surface temp. Convection eaten it up. No hotspot. Net zero game . Better off w walking towards equator to get warmer or downhill.

      • Absolute garbage! A CO2 molecule in its ground vibrational state which about 98% of the molecules at 25ºC are will readily absorb a photon of ~15 microns.

        • Agree.
          Temperature (energy level) of a CO2 molecule is not relevant to whether it will absorb an IR photon. Temperature is very relevant to whether it will emit IR photons and at what rate.

    • Heat flows from hot to cold.

      No. More heat flows from hot than from cold.
      See the difference?
      ‘to’ is wrong.

      • Doesn’t make sense. Thermal transfer is from high potential to low potential (like electrical current). What evidence exists that a colder object heats a warmer object? Non-sensical. More likely IMO: radiation from a hotter object prevents radiation from a colder object along that vector.

        • Interesting concept. How would a (very slightly) cooler object know that it should not radiate in the direction of a (very slightly) warmer object (through that mirror 10m = 33ns away) when there is the possibility that the warmer object releases the energy that makes it ‘warmer’ in that say, 200ns the transfer would take and it becomes in fact cooler than the source?

          Even more terrifying: When the warmer object is able to ‘see’ only a cooler one and emits some energy in the direction of it and another object did the same and 10ns before the energy packet of one of them hits the receiving object it becomes warmer than the source.

          What evidence exists that a colder object heats a warmer object?

          There are only two possible cases an energy packet can experience when hitting an object. Exactly at the time of the hit
          – the object is cooler than the sender was
          — then the packet is caught and the object becomes warmer or
          — the packet is reflected (we know that photons only are caught with a probability)
          – the object is warmer than the sender was
          — then the packet is reflected (more probably?) or
          — the packet is caught anyway

          Both of the cases yield the same result for an observer. The object that was hit ‘looks’ warmer either because it reflected the ‘unwanted’ energy and it seems to come from the object or the object a little bit later radiates the caught energy and it does it faster than in its former state.

          • Icicil, because EMF is a vector force by nature is Physics. Check it out and follow a new trail…. Brett

  59. Heres more simple.

    The atmosphere is a blanket, on the lit a blanket hanging from a tree shading you.
    And on the dark side keeping us warm.

  60. dammit.

    The atmosphere is a blanket, on the lit side of earth a blanket hanging from a tree shading us.
    And on the dark side keeping us warm.

  61. Such experts, the adiative transfer believers, who do not know that EMF is always a VECTOR force, would not admit what that means. I really hope not, for their sakes. Happy New Year to all. Brett

  62. I’d like to try and cut through the issue of a unit of matter radiating at a rate commensurate with its temperature as per the S-B equation.
    A given temperature is represented by the vibrational activity of the unit of matter concerned.
    If one measures that level of vibrational activity from a point in contact with the unit of matter then of course S-B will apply and the appropriate wavelength of IR will observed.
    If one measures it at a point distant from the initial unit of matter with no matter between the initial unit and the sensor then again the appropriate wavelength will be observed.
    However, if one then interposes matter at a different temperature between the initial unit of matter and the sensor them S-B will not apply if conduction and convection have occurred between the initial unit of matter and the sensor.
    That is what happens between a radiating surface and space beyond the atmosphere.
    The continuously convecting mass of the atmosphere prevents the full amount of surface radiation from reaching space.
    An IR sensor will still give the correct measure of temperature for the initial unit of matter because it is designed to ignore the interference from interposing matter at a different temperature.
    Therefore, there is no incompatibility between a surface temperature of say 288k beneath a convecting atmosphere and an S-B temperature observed from space of say 255K. An IR sensor placed in space might still be able to measure the surface at 288k but only if it is designed to ignore the interference of 33k from the interposing atmosphere.
    The AGW proponents say that the ‘missing’ 33k when viewing Earth from space is due to GHGs radiating that 33k back downwards but if that were the case then Earth should be radiating to space at 288k but it is not.
    Earth’s temperature could not be as stable as observed if it were either radiating to space at 288k (because that is more going out than it receives) or if the atmosphere were radiating downwards at 33k in addition to ongoing insolation at 255k ( because that is more being received than it sends out).
    The only logical solution is a discrete non radiative energy transfer loop between surface and atmosphere which requires additional surface energy to sustain it.

    • “The AGW proponents say that the ‘missing’ 33k when viewing Earth from space is due to GHGs radiating that 33k back downwards”
      No. That is not remotely what AGW proponents say.

    • Steven,
      I’m trying to understand your theory about pressure. I’m not scientifically minded so I’m struggling. But is it basically that the fact that gas at altitude has a greater ratio of potential:kinetic energy, and that potential energy does not exist as heat but persists nonetheless as energy.

      Thus while the energy radiated in and out of the total system remains the same the addition of potential energy acts as a store of energy that is not accounted for in the in/out measurements. Somewhat like a battery on charge, that is at the same time passing current to an energy sink. First the battery/atmosphere-earth system has to be charged up to its full capacity by the power source/sun, thereafter it will absorb and emit energy to the energy sink/space without gaining extra energy but the measurements of energy in/out will not register the battery’s overall stored energy since it is potential, and not kinetic energy. The capacity to store a charge of the baterry/earth-atmosphere system is the difference between a simple atmosphereless blackbody model and one with gasses held in place by gravity with the sun streaming energy into the system.

      • Martin,

        Yes, that is similar to comments I have made elsewhere at other times when I referred to a reservoir of potential energy which is drawn initially from solar input by conduction when the atmosphere first forms. Thereafter it operates much as your helpful battery analogy.

    • Stephen,

      The continuously convecting mass of the atmosphere prevents the full amount of surface radiation from reaching space.

      Congratulations. That is the clearest explanation I have ever seen of the role that the thermally semi-opaque, but turbulently convecting atmosphere has in separating the thermal emission temperature of the ground surface from that of the top of the atmosphere.
      So now it becomes clear why the S-B relationship, which can reasonably be applied to the isothermal stratosphere (or of course the Moon’s solid surface in a vacuum), however cannot be applied to explain the thermal structure of the troposphere. This is why a separate equation of state, based on the Ideal Gas Law, is required to explain the thermal properties of the weather layer, in particular the lapse rate and the role that gravity has in establishing this.

  63. Come on Bret armchair it for me will you please.
    ps happy new year.

    Electromotive force
    Electromotive force, abbreviated emf, is the electrical intensity or “pressure” developed by a source of electrical energy such as a battery or generator. A device that converts other forms of energy into electrical energy provides an emf at its output.

    Or such as the earths surface right ?.

  64. Here is another conceptual way to view why atmospheric pressure is not the cause of higher surface temperature compared to a black body.
    Pressuring a gas will cause its temperature to rise. That occurs in air within an air compressor. But that increased heat is a one-time effect produced by the energy required to compress the air. When compression stops, the added heating stops. The warmer air inside the compressor begins to lose its extra heat by conduction. IF that compressed air is quickly de-compressed, it cools. But only until it equilibrates with ambient temperature.
    IF one could suddenly increase the pressure on Earth’s atmosphere (compressing it further), it would warm. However, IR radiation, which would increase due to warmer air, would dissipate the added heat. That occurs in formation of new stars when they collapse from gravitation. They heat from increasing pressure until nuclear reactions begin and produce an outward counter pressure.

    In order for Earth’s atmosphere to posses heat above black body temperature because of atmospheric pressure would require that the atmosphere experience a continual increase in compression in the form of increasing atmospheric pressure. That does not occur. On average, Earth’s atmospheric pressure is constant. Any heating from initial atmospheric compression when the Earth formed has long been radiated away.

    • donb

      As fast as the surface tries to radiate the atmosphere’s potential energy content to space it is replaced by new energy conducted from the surface so it never gets lost to space otherwise the atmosphere would fall to the ground.

      At hydrostatic equilibrium no further compression is required. It is sufficient to have an ongoing cycle of decompression and compression which is present in convective overturning.

  65. I believe that the theory proposed by Nikolov and Zeller is wrong. Their claims are not supported by the physics.

    Put simply:
    A gaseous atmosphere in equilibrium in a spherical gravitational field does not draw its energy from the gravitational field.

    A gaseous atmosphere is just an amalgam of atoms, ions, and molecules, each of which contains
    3/2 k T of energy – where k is Boltzman’s constant and T is local average temperature.

    If an atmosphere contained zero energy all the atoms would be frozen out on the surface of the planet. The atmosphere’s average temperature would be 0 K = -273 C.

    If you add energy to the individual atoms and molecules in the atmosphere, some of that energy will manifest itself in the form of kinetic energy (KE) and some as gravitational potential energy (GPE). Indeed, the local temperature of the atmosphere at a given point above the ground will simply be determined by the average speed (or average KE) of the atoms and molecules at that location. Similarly, the GPE of the atoms and molecules will be determined by the height of the particles above the ground. [N.B. some fraction of the energy will be stored in the rotational and vibrational motion of the molecules of the atmosphere, as well.]

    The total amount of energy in the atmosphere at any one time is distributed between the atoms and molecules by:

    1) collisions between particles
    2) the absorption and emission of electromagnetic (EM) radiation by the particles

    If no energy is added to the atmosphere either from the planet below, or from space, then whatever energy is present in the atmosphere will be slowly lost to space by radiation, until the atmosphere returns to the zero energy state.

    HENCE:

    If the atoms and molecules of an atmosphere receive a constant flow of outside net energy from:

    a) the planet, in the form of geothermal energy – a small contribution at best.
    b) space, in the form of absorbed EM radiation (i.e less the albedo)
    c) re-emission of (mostly infrared) radiation from the ground
    d) mechanical sensible heating by convection (& conduction)
    e) latent heat of condensation of water vapor etc.

    they will redistribute this energy amongst all of the particles that make up the atmosphere in such a way that they establish a temperature and pressure profile (with height) that produces an energy loss from the atmosphere that balances the energy gains.

    In other words, the height (i.e. GPE) and temperature (i.e. KE) of any given particle in the atmosphere [and hence the equilibrium temperature and density profiles with height] will simply be a result of the way in which the atmosphere responds to ensure that the total energy loss perfectly balances the total energy gain.

    • Ian,
      A gaseous atmosphere in equilibrium in a spherical gravitational field draws its energy from insolation via conduction from the surface during the initial formation. Thereafter that stored (potential energy – not heat) energy is recycled constantly in a net zero energy exchange between surface and atmosphere within convective overturning.
      Gravity provides no energy. Gravity only provides the decline in density with height which permits convective overturning.
      As fast as the surface tries to radiate that energy store to space it is replaced by new energy conducted from the surface so it never gets lost to space otherwise the atmosphere would fall to the ground.

  66. Roy and Willis.

    “Basically, the proof starts with the simplified case of the average planetary temperature without an atmosphere, which can be calculated using a single equation… …The SB equation always results in a surface temperature that is too cold compared to surface temperatures when an atmosphere is present, and greenhouse theory is traditionally invoked to explain the difference.”

    OK, now let’s substitute a totally non-GHG atmosphere (maybe pure nitrogen?) to 1 bar surface pressure.

    Where is the surface from which the SB calculation is to be performed?

    Is there no thermal conduction or convection and zero lapse rate?

    Regards, just asking.

    • On a water planet there would always be sublimation and vapour wouldn’t there, like you i’m asking.

      This gasless atmosphere blackbody T is just more rancid sophistry.

  67. Why is the Grand Canyon substantially warmer at the bottom than at ground level, if it isn’t compression, or weight of atmosphere.

  68. I’m gonna offer up a simplified non-proof.

    1) If I create a static system (consistent/uniform external energy source, no night/day), and add some surrounding mass that doesn’t in any way react with the incoming or outgoing energy sources (so it’s completely static dealio over time).

    2) ((Energy-in)-(Energy-retained)=(Energy-out))

    3) By definition; (Energy-retained) = 0

    4) Therefore it is obvious that there cannot be temperature change of the original mass surface.

    5) THEREFORE the premise that, atmospheric mass/distribution is a significant input parameter into system temperature variation (for a system that has variable/non-uniform external source), is wrong.

    • So Don, increase energy in via sun or tilt,.

      And all 3 increase simultaneously in proportion.

      2) ((Energy-in)-(Energy-retained)=(Energy-out))

      And the opposite when less energy in.

      Back radiative thermalisation would be free energy and would have to show up in energy out eventually ?.

      So that is a ‘its the sun silly’ and only the sun.

  69. I formerly worked with high pressure systems which generated great quantities of heat, and, so, for N-Z to claim fourteen pounds of air pressure per square inch creates the heat profile of the earth, is to admit they are clueless about the effects thereof.

    • NZ are not claiming that. “Pressure by itself is not a source of energy! Instead, it enhances (amplifies) the energy supplied by an external source such as the Sun through density-dependent rates of molecular collision.”
      —Nikolov and Zeller