From THE EARTH INSTITUTE AT COLUMBIA UNIVERSITY
Tropical cyclones on track to grow more intense as temperatures rise
Aerosols have compensated for greenhouse gases, but won’t in future
Powerful tropical cyclones like the super typhoon that lashed Taiwan with 150-mile-per-hour winds last week and then flooded parts of China are expected to become even stronger as the planet warms. That trend hasn’t become evident yet, but it will, scientists say.

So far, the warming effects of greenhouse gases on tropical cyclones have been masked, in part by air pollution.
Over the past century, tiny airborne particles called aerosols, which cool the climate by absorbing and reflecting sunlight, largely cancelled out the effects of planet-warming greenhouse gas emissions when it came to tropical storm intensity, according to a new scientific review paper published this week in the journal Science. That might sound like a good thing, but many of those particles came from the burning of fossil fuels and wood, and contributed to acid rain, smog and lung damage. As vehicles and power plants added filters and scrubbers to reduce their impact on human health, levels of man-made aerosols in the atmosphere began to decline. At the same time, greenhouse gas concentrations continued to rise.
That compensating effect won’t continue if greenhouse gas warming keeps increasing, the scientists write. Using model simulations, they provide new calculations of the cancelling effects of aerosols and greenhouse gases on tropical cyclones worldwide. They also take a closer look at the still-developing understanding of how climate change will affect tropical cyclones, also known regionally as typhoons or hurricanes.
“The fact that global warming’s fingerprints don’t yet jump out at us when we look at hurricanes isn’t surprising – it’s what current science tells us we should expect,” said lead author Adam Sobel, a professor at Columbia University’s Lamont-Doherty Earth Observatory and School of Engineering. “The same science tells us that those fingerprints will show up eventually in more ultra-powerful storms.”
Increasing potential intensity
The scientists examined a wide range of published analyses of tropical cyclone data and computer modeling, looking specifically at potential intensity, which predicts the maximum intensity that tropical cyclones could reach in a given environment. Their new global calculations of the cancelling effect follow a 2015 study led by Lamont’s Mingfang Ting, with Suzana Camargo, also a coauthor on the new paper, that showed similar effects over the North Atlantic, where hurricanes that make landfall in the United States form.
Many factors contribute to a tropical cyclone’s intensity. At the most basic, the storm’s convective strength – the boiling motion of air rising from the ocean surface to the atmosphere – depends on the temperature difference between the surface ocean and the upper atmosphere. Computer models that simulate the physics of tropical cyclones suggest that this difference should increase as the climate and sea surface temperatures warm, and that tropical storm strength should increase with it.
Less well understood is how climate change should influence the number of tropical cyclones that form each year. Computer models indicate that while the total number of cyclones should decline in a warming climate, more intense, highly destructive storms like Super Typhoon Nepartak are likely to become more common.
We have seen harbingers of that change in recent years: Typhoon Haiyan, also known as Yolanda, killed more than 6,300 people as it devastated parts of the Philippines as a Category 5 storm in 2013. Last year, Hurricane Patricia became the second most-intense tropical cyclone on record when its sustained winds reached 215 mph before weakening to hit Mexico with winds still powerful at 150 mph.
The scientists’ review finds that the largest increases in tropical cyclone potential intensity are expected to be at the margins of the tropics, particularly in the Atlantic and Pacific. The amount of rain that tropical storms bring is also expected to increase as the planet warms, due to increasing water vapor; and coastal flooding from storm surges that accompany tropical storms are expected to become more of a problem as sea levels rise. The scientists also describe a shift in tropical cyclone tracks toward the margins of the tropics, noting that it is unclear if the shift is a response to warming. Simulations for the western North Pacific suggest that it is, at least in part.
Detecting the influence of climate change
Two factors make it difficult to detect greenhouse gas-related trends in tropical cyclone intensity, as the authors explain.
One is the influence of aerosols. Model calculations indicate that aerosols have about twice the effect of greenhouse gases on a tropical cyclone’s potential intensity. So while greenhouse gas levels have been greater than aerosol levels for many decades in terms of absolute magnitude – which is why the planet has warmed by about 1.5?F since the Industrial Revolution – they have only recently surpassed the cooling effect of aerosols in terms of their influence on tropical cyclone intensity.
The other challenge is natural variability. Tropical cyclones are relatively rare – the world averages around 90 per year – and that number fluctuates from year to year and decade to decade, due in large part to natural causes. It is statistically difficult to detect long-term trends within that large natural variability, Sobel said. Satellite records that can monitor tropical storms worldwide also only go back to the 1970s.
Scientists at Lamont, including Sobel, Camargo and coauthors Allison Wing and Chia-Ying Lee, are using both observations and computer models to expand understanding of how tropical cyclone behavior has changed and the physical mechanisms by which climate affects extreme weather. Among other projects, they are developing a tropical cyclone risk model that can be used in urban planning that incorporates climate factors in determining the probability of a tropical cyclone making landfall at a given location.
###
The other coauthors of the paper are Michael Tippett of Columbia’s School of Engineering, and Timothy Hall of NASA’s Goddard Institute for Space Studies. Funding for the research was provided by the National Science Foundation and the Office of Naval Research.
The paper, http://science.sciencemag.org/content/353/6296/242
Human Influence on Tropical Cyclone Intensity
Abstract
Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas–driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.
In 2012-13 I worked as a rehabilitation engineer after Typoon Bopha ( Philippines). This struck 700 km Sth of the location of Typhoon Haiyan. Destruction of some towns was 90%
The infrastructure had not evolved to withstand a typhoon as the typhoon path was considered to be further north. However, old newspaper records and local stories established that a similar typhoon had struck the same location around 100 years prior. What were wind speeds then? They were not recorded. We don’t know that the latest wind speeds are record-breaking
When will people learn that when it comes to climate one century is just a blink of the eye?
This is really good news!! Just think, not only can we turn down the world’s thermostat by switching to solar, but we just fly planes across the fronts of forming tropical cyclones and spray aerosols into the air and knock them back down to thunderstorms. I had never realized just how powerful we have become!
If it gets warmer its CO2.
If it gets colder its aerosols.
A perfect climate theory that explains everything.
Which as Karl Popper points out
Means that it explains nothing.
They forgot to include the world.
Why do these alarmists (all apparently rent-seekers) always talk about “from the industrial revolution”?
While it is true co2 level, apparently began coincidently rising during the industrial revolution, is it not the case that it would have had to rise (at 2ppmv per year) for about a century BEFORE it could have had any possible measurable impact on temperature? (That brings us to perhaps 1950, so how much of that “1.5 degrees” is valid?
Obama made the same mistake when he referred to two receding glaciers in Alaska. One of them “Exit”, started receding back in 1730, a century BEFORE co2 began rising !
.. and, besides, there were other growing glaciers, in Alaska and elsewhere…
What a great job it must be to make up stuff that panders to an ideology and get paid for it! The stupid people of the world (e.g. ‘seaice’ et al) can nod their heads in their ignorant echo chamber and feel smugly right “because a scientist said so” . I think the one of the problems now is that there is no shame in being outright stupid. If they can find a scientist to agree with it makes them feel somehow smart and educated. No, you are truly stupid people that are costing real people the opportunity to live comfortably and safely like you do. Smug, selfish, liberal morons.
Well, the issue I have with the ‘warmer oceans will make….’ meme is that there is no plausible mechanism for GHG’s to warm the oceans. If the air temperature increases, the evaporation increases and more clouds form sooner and more extensively causing massive local cooling.
These facts are not easily overridden by arm waving about tropical storms. Terrible hurricane damage is caused by large temperature gradients exacerbated by cold polar outflows late in the year. We already discussed that on WUWT in extremis. No need to repeat.
This Institute is headed by a guy who has wrecked every economy he touched, claiming to know how to transform old state driven economies into liberal private sector economies by ignoring culture and history. What do we then expect to learn from them about the climate, if culture and history are similarly ignored?
Having huge ambition and no track record of success, he then applied himself to the creation of a series of failed ‘sustainable villages’ around the world. He didn’t understand that every culture and society has a different path to the future. It is impossible to standardise the future, as he wanted and he confused economics with technology. The Institute has what, exactly, to show for all this intellectual hubris? They critique America from the outside in, and then having completed it, they then project their conclusions about a supposedly sustainable American future onto the rest of the dissimilar world.
That is the definition of hubris. It is is destructive.
Does this make the top ten of excuses of CAGW ? The heat is still hiding..?
wow I thought I knew how to churn out bovine processed hay those guys are pros.