New study narrows the gap between climate models and reality

From the University of York:

michaels-102-ipcc-models-vs-reality

A new study led by a University of York scientist addresses an important question in climate science: how accurate are climate model projections?

Climate models are used to estimate future global warming, and their accuracy can be checked against the actual global warming observed so far. Most comparisons suggest that the world is warming a little more slowly than the model projections indicate. Scientists have wondered whether this difference is meaningful, or just a chance fluctuation.

Dr Kevin Cowtan, of the Department of Chemistry at York, led an international study into this question and its findings are published in Geophysical Research Letters. The research team found that the way global temperatures were calculated in the models failed to reflect real-world measurements. The climate models use air temperature for the whole globe, whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.

Dr Cowtan said: “When comparing models with observations, you need to compare apples with apples.”

The team determined the effect of this mismatch in 36 different climate models. They calculated the temperature of each model earth in the same way as in the real world. A third of the difference between the models and reality disappeared, along with all of the difference before the last decade. Any remaining differences may be explained by the recent temporary fluctuation in the rate of global warming.

Dr Cowtan added: “Recent studies suggest that the so-called ‘hiatus’ in warming is in part due to challenges in assembling the data. I think that the divergence between models and observations may turn out to be equally fragile.”

Dr Cowtan’s primary field of research is X-ray crystallography and he is based in the York Structural Biology Laboratory in the University’s Department of Chemistry. His interest in climate science has developed from an interest in science communication. This is his second major climate science paper. For this project, he led a diverse team of international researchers, including some of the world’s top climate scientists.

###

0 0 votes
Article Rating
374 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Jaye Bass
July 30, 2015 9:24 am

So help me out here if the different in data types (air temp vs some other temp) are responsible for the divergence, How can they be ok when the models and data generally agree between 75 and 95?

Jaye Bass
Reply to  Jaye Bass
July 30, 2015 9:24 am

* “difference in data types…”

Latitude
Reply to  Jaye Bass
July 30, 2015 10:36 am

Jaye…it’s like Taylor said
First they cooled the past…by making up (adjusting) temperatures cooler….to make it look like warming was going faster…accelerating
Then they fed that fake warming trend into the climate models….
…when the climate models extended that trend…..it went off the chart
They will never be able to model climate (temperatures) as long as they are using their own fake temp data

noaaprogrammer
Reply to  Jaye Bass
July 30, 2015 4:31 pm

Furthermore, they do err in trying to model chaotic phenomena with traditional, non-chaotic math.

Taylor Pohlman
Reply to  Jaye Bass
July 30, 2015 9:31 am

Because the models are ‘cooked to hind cast this period. The thing is, if the correction he’s talking about gets made to the 1975-1995 peri on, it will then likely be to low to match actual a – like the preverbial thread, this thing just keeps unraveling…

Jaye Bass
Reply to  Taylor Pohlman
July 30, 2015 10:43 am

Roger that, I used to do a fair amount of bayesian pattern recognition. We were very diligent about separating the training data from the test data. So the hindcast is all about using training data as test data?

Reply to  Taylor Pohlman
July 30, 2015 11:07 am

“Most comparisons suggest that the world is warming a little more slowly than the model projections indicate. ”
A blatant lie. Biased much? It’s far from “a little..”

Patrick B
Reply to  Taylor Pohlman
July 30, 2015 11:54 am

Which is why every time one of these charts is published, a bright red vertical line needs to be drawn showing the year in which the model was made. Otherwise, people look at these charts and think the models work fairly well for some period of time – when in fact it’s simply “cooked to hind cast”. Even Anthony fails to do insert such a line when publishing the charts.

Reply to  Taylor Pohlman
July 30, 2015 12:51 pm

aneipris…
“Most comparisons suggest that the world is warming a little more slowly than the model projections indicate. ”
A blatant lie. Biased much? It’s far from “a little..”
Yes, it sticks out like a sore thumb. They have no conscience. Once you start lying, it gets easier as time passes.

Reply to  Taylor Pohlman
July 30, 2015 3:01 pm

Patrick B, for CMIP5 your bright red line is January 2006. Now you can draw as many as you want, yourself. Essay Models all the way Down in ebook Blowing Smoke, which even posts a more complex version of the above image (actual CMIP5 model tracks, since as RGBatDuke is fond of pointing out, averaging them is statistical nonsense)— WITH the bright red line you request.

noaaprogrammer
Reply to  Taylor Pohlman
July 30, 2015 4:42 pm

I wonder if a simple neural net program, trained on (proper) historical temperatures would do better than these models? (Of course the interval of time over which it is trained would make a significant difference.)

ferd berple
Reply to  Jaye Bass
July 30, 2015 11:56 am

The climate models use air temperature for the whole globe, whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.
=============
The training was done with a combination of air and sea surface temperature readings. This means that the training was faulty, because it should have been done with air temperature for the whole globe.
So what Dr Cowtan et al have truly discovered is that the models were incorrectly trained, which would explain why their predictions have turned out to be so bad.

Bill
Reply to  ferd berple
July 30, 2015 2:33 pm

Yes, and even making the (implicit) observation “that the models were incorrectly trained” doesn’t say enough. They didn’t train or rely upon themselves.

David A
Reply to  ferd berple
July 30, 2015 5:30 pm

I understood that the climate models do disparate projections for the troposphere, stratosphere, and the surface, and, as bad as they are for the surface, they are worse in the troposphere. I saw a vertical presentations of the models vs. the observations for this once, perhaps in a Christopher Monckton post.
As far as the surface air vs. the surface water T, well were not the SSTs just modified to match.

David A
Reply to  ferd berple
July 30, 2015 6:42 pm

…modified to match closer to the models. Also, where is the evidence that the relationship between the SST and the air T 2 m above has changed? I thought we were now having record SST anyway?

TYoke
Reply to  ferd berple
July 30, 2015 7:37 pm

There are really just two possibilities.
1) The science is “settled” and they should stand by their 25 year old predictions (which have been falsified by subsequent observations).
2) They can update their models to reduce the discrepancy that exists between the old models and observations. However, in this case the science is clearly not “settled”, and they need to begin to seriously think about why they’ve been so blatantly wrong, and perhaps even listen to the skeptics occasionally.
Instead, all to often, we get these weasel treatments: changing their predictions while simultaneously arguing that they’ve been right all along.

Taylor Pohlman
July 30, 2015 9:24 am

This is a two edged sword for warmistas. If the model temperature growth is too high based on the way it’s calculated, that affects the long term estimates, and reduces that scary 1100 scenario. So to get the models fixed, CAGW is eliminated, right? Will be interesting to see how this is received.
As a side note, I hope this puts to rest their refusal to pay attention to anyone but a ‘climate scientist’ – this guy is clearly not one, but seems to be accepted anyway
Taylor

Taylor Pohlman
Reply to  Taylor Pohlman
July 30, 2015 9:25 am

Oops meant 2100 scenario

bones
Reply to  Taylor Pohlman
July 30, 2015 12:03 pm

I wager that his acceptance is a result of finding a way to raise recent temperatures.

July 30, 2015 9:24 am

I think Dr. Cowtan may be juggling his apples a bit. GISS and HADCRUT use “a combination of air and sea surface temperature readings.” However, satellite and balloon data do not. They measure as much of the troposphere as they can, which makes them very much like the model output.

Reply to  Doug Sorensen
July 30, 2015 9:34 am

If the serious divergence between data and models didn’t actually exist (as claimed by Dr. Cowtan), then there wouldn’t be any need for the on-going data manipulation by NCEI, GISS, and UKMO. For example, the Karl, er al., 2015 Science paper released with much cheering from the CAGW crowd.

ferd berple
Reply to  Doug Sorensen
July 30, 2015 11:52 am

the problem is that the climate models use land and sea temeratures for their training, so they should match the land and see temps in their predictions – if their predictions have any skill.
so in this Dr Cowtan is incorrect. The training was done with apples and the comparison is to apples, but the models themselves describe oranges.
in point of fact the training and comparison should have been done using air temps all along, because the models describe air temps. but that wasn’t done because the data isn’t available prior to 1970 or so.

David A
Reply to  ferd berple
July 30, 2015 5:33 pm

It is my understanding that SST is slightly warmer then the air above it as a global mean.

Walt The Physicist
July 30, 2015 9:25 am

So, according to Dr. Cowtan the climate modelers do not know how to compare “apples to apples”…. What way you look at it there’s the same result – incompetence!

Lance Wallace
July 30, 2015 9:25 am

Where’s the link?

looncraz
July 30, 2015 9:32 am

Dr Cowtan added: “Recent studies suggest that the so-called ‘hiatus’ in warming is in part due to challenges in assembling the data. I think that the divergence between models and observations may turn out to be equally fragile.”
Yes, and that also means that any prior agreement was even more fragile, does it not?
Every global surface temperature dataset should be using air temperatures, not ocean temperatures. However, there is no doubt while using the satellite data, which shows a much larger divergence between observational data and model output. Satellite data and model output data can be compared almost perfectly directly.

Reply to  looncraz
July 30, 2015 8:33 pm

Loo crazy makes the main point. Cowpat has ignored satellite data.

Reply to  Monckton of Brenchley
July 30, 2015 8:37 pm

iPad autocorrect has made two interferences with what I typed. Apologies to both parties wrongly named. Does anyone know how to turn the darned thing off?

Socalpa
Reply to  Monckton of Brenchley
July 31, 2015 12:13 am

And… the lower stratosphere wv .Which collapsed after 97 . Concurrently with the “hiatus” , that of course ,did not really occur.

Eos, Vol. 95, No. 27, 8 July 2014
Another Drop in Water Vapor
PAGES 245–246

See page 2 .Fig 1

David A
Reply to  Monckton of Brenchley
July 31, 2015 5:00 am

Well, auto correct leads to some interesting sentences, and the world need a bit of humor, so I say, carry on.
Yes, the obvious answer is that we have a pristine satellite record of the atmosphere, and the models are worse then ever compared to the observations, however, bypassing that for a moment, let us examine what they did, and claim.
I take it that the IPCC has a modeled SST but did not use it, but instead used a modeled 2m air surface in their projections. Now the say they are using it, the previously unused modeled SST, to compare to the claimed SST observations, instead of a modeled 2m air surface in their projections. They claim that the models assume the 2m air T above the oceans would rise faster then the SST.
1. What are the physics of this claim based on?
2, How do we know that the 2m air surface above the oceans did not change at exactly the same rate as the SST, and therefore the models of the air T are now as wacked as ever?
3.. I do not think we have any accurate 2m air surface T record above the oceans.
4. Why did they make this obvious bonehead comparison, if they had a modeled SST to use all the while?
5. Could it be that the wanted the scariest projections possible?
6. Could it be that traditional physics assumes that the oceans drive the atmosphere, are on average warmer then the surface air temperature, and there is still no evidence that this is not true, and there is still no evidence that the 2m air temperature is not as far below the models as ever?
7. How much have the SSTs been adjusted?

KaiserDerden
July 30, 2015 9:33 am

we already have enough apples to oranges problems in the temperature record … land measurements are of the AIR above the ground … sea surface measurements are of the water NOT the air above the water … its a mess and this “study” is just an a** covering exercise …
So the lead scientist in the “study” is what ? a X-ray crystallography professor … riiiiiight … he’s qualified (according to the warmists no)

AnonyMoose
July 30, 2015 9:34 am

Either there’s something odd about this new bit of research, or there’s been something odd about modeling for quite a while.
Why have models been producing results which can not be compared to observations?
Why have people been comparing observations to model results?
How did modelers know that their results were reasonable, if they could not be compared to other data?

Lance Wallace
July 30, 2015 9:35 am

Here’s the abstract. Co-Authors are familiar–Zeke H, Michael Mann, ..
Also familiar was the fast track to publication–The draft was first received June 10, revision July 20, published July 29, in plenty of time for the run-up to December in Paris. One month. I normally wait 3 months to get peer reviews finished, a month or so revising, and then wait 6-18 months before it appears in the journal.
Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures†
Authors
Kevin Cowtan,
Zeke Hausfather,
Ed Hawkins,
Peter Jacobs,
Michael E. Mann,
Sonya K. Miller,
Byron A. Steinman,
Martin B. Stolpe,
Robert G. Way
Accepted manuscript online: 29 July 2015Full publication history
DOI: 10.1002/2015GL064888View/save citation
Cited by: 0 articles Check for new citations
Article has an altmetric score of 43
†This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2015GL064888
Abstract
The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

Reply to  Lance Wallace
July 30, 2015 9:38 am

“Mann” – do they want anyone to take it seriously?

DD More
Reply to  Lance Wallace
July 30, 2015 12:59 pm

Article has an altmetric score of 43
How is the Altmetric score calculated?
While the most important part of an Altmetric report is the qualitative data, it’s also useful to put attention in context and see how some research outputs are doing relative to others. The Altmetric score for a research output provides an indicator of the amount of attention that it has received. The score is a weighted count
The score is derived from an automated algorithm, and represents a weighted count of the amount of attention we’ve picked up for a research output. Why is it weighted? To reflect the relative reach of each type of source. It’s easy to imagine that the average newspaper story is more likely to bring attention to the research output than the average tweet. This is reflected in the default weightings:

http://support.altmetric.com/knowledgebase/articles/83337-how-is-the-altmetric-score-calculated
From the table of scores if they wrote a wiki page and each of the 9 authors put it on facebook, each tweet once, got 20 friends to tweet it and 2 blogs wrote about it, that would be – 45 points.
So much for impact score.

July 30, 2015 9:37 am

It’s easy to make a prediction fit the data if you then change the data to fit the prediction.
So the only test that matters in real science is whether the model predicted the data as it was defined when the prediction was made.
Otherwise … it would be like betting on a horse race and then changing your bet after it was run. Does anyone seriously think anyone would change their bet so that they were more likely to lose?

michael hart
Reply to  Scottish Sceptic
July 30, 2015 9:56 am

+1
If changing the data doesn’t work, they can always try changing the prediction and hope nobody notices.

PiperPaul
Reply to  michael hart
July 30, 2015 12:04 pm

Or have so many predictions that there’s bound to be at least one that is remotely suitable.

BeefArt
July 30, 2015 9:38 am

Curious why you didn’t use any of the actual graphics from Cowtan et al. They show something dramatically different from Christy’s graphic that you used. Seems a little misleading, don’t you think?

Reply to  BeefArt
July 30, 2015 3:13 pm

You can plot for yourself all the data. Go to KNMI explorer for the CMIP5 archive. Go get UAH and RSS for satellite, and so on. Cowtan et. al did NOT use the full CMIP5 archive. They cherry picked stuff that was less divergent from observation, yet another ‘cheating tell’ like yhe push formrapid publication. Their figure is by definition a misleading representation of the publicly available CMIP5 archive. Christy’s figure gives the whole truth, and nothing but the truth, cause it uses themwhole archive– except an average of model runs (an IPCC favorite, so fair to to do in this circumstance) is still statistical nonsense. A point made in a previous comment.

Menic
Reply to  ristvan
July 30, 2015 3:48 pm

Why does the UAH and RSS plot in the graph above not look anything like these:
http://woodfortrees.org/plot/uah
http://woodfortrees.org/plot/rss

Menicholas
Reply to  ristvan
July 30, 2015 3:51 pm

I somehow entered only part of my name before the comment posted.

Menicholas
Reply to  ristvan
July 30, 2015 3:52 pm

Why does the UAH and RSS plot in the graph above not look anything like these:
http://woodfortrees.org/graph/rss
http://woodfortrees.org/graph/uah

Reply to  ristvan
July 30, 2015 8:46 pm

Me cholas is inadvertently comparing oranges with segments. The famous Christmas and Soencer graph uses annual data, while the woodforcarbonsinks graph uses monthly data.

BeefArt
Reply to  ristvan
August 1, 2015 3:30 pm

ristvan, that doesn’t answer my question.
Why post the Christy graph, which tells you nothing about the Cowtan paper? Why not post the actual graphs from the Cowtan paper?

Eliza
July 30, 2015 9:45 am

Zeke, Mann… I don’t know why you bother….

JayB
Reply to  Eliza
July 30, 2015 12:25 pm

This is quite humorous. It seems that whenever they are eager to make a point in favor of AGW (in spite of it’s obvious problems) they invite Mann and the other ‘usual suspects’ – in disregard of their real reputations. Is ‘climate science’ even interested in integrity and veracity?

katherine009
July 30, 2015 9:47 am

Are they saying that observations are wrong because they don’t use the same data as the models?

Editor
Reply to  katherine009
July 30, 2015 8:23 pm

Hi katherine009. Nope.
They are saying model-data comparisons are normally biased because they usually include the modeled air temperature over the oceans, while the data include sea surface temperatures for the oceans. The bias results because the models show a higher warming rate for the marine air than the sea surface. Their results show, if you replace the marine air temperature outputs of the models with the modeled sea surface temperatures, then the model-data difference decreases. Nothing new. They just quantified it using the UKMO HADCRUT data.

Paul Coppin
July 30, 2015 9:48 am

Dr Cowtan’s primary field of research is X-ray crystallography and he is based in the York Structural Biology Laboratory in the University’s Department of Chemistry. His interest in climate science has developed from an interest in science communication.

So, in other words, he has less knowledge and understanding of climatology than a sophomore, just a lot more ego. He sounds like what he’s really doing is selling ad space in a glossy, rhetorically speaking. “let’s cobble together a thesis, stick some 50 cent names on it, get a buddy to peer it, and walla, more grant funds….”

RogueElement451
Reply to  Paul Coppin
July 31, 2015 8:43 am

The big difference between climate models and models running algorithms for the stock exchange ,is that the models working on the stock exchange sometimes come up with the right answers. Climate models predict wrongly forever with zero accountability. Hedge funds fail if their model is not fit for purpose, climastrologists just ask the suckers for more money.

Skidance
Reply to  Paul Coppin
July 31, 2015 12:26 pm

How did “voila” become walla?

ren
July 30, 2015 9:49 am

Is the models predict anomalies associated with a decrease in solar activity?
http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/gif_files/time_pres_HGT_ANOM_ALL_NH_2015.gif

July 30, 2015 9:50 am

What two satellite datasets are these? What region of the earth and what level of the atmosphere are they for? Is there an averaging among multiple years? I don’t see these curves peaking strongly at 1998 the way the UAH and RSS global TLT datasets do.

Jim Sawhill
Reply to  Donald L. Klipstein
July 30, 2015 10:07 am

yes, what data – adjusted data is working better now? for model belief? for Paris?
well, the hiatus is back in print

Matt G
Reply to  Donald L. Klipstein
July 30, 2015 12:35 pm

Can’t even get this bit right and yet can anybody trust them?
http://www.woodfortrees.org/plot/uah-land/from:1979/plot/rss-land/from:1979

Neville
Reply to  Matt G
July 30, 2015 3:22 pm

Interesting that the UAH trend is lower than RSS, although a bit steeper. I presume this is still 5.6 and not version 6?
http://www.woodfortrees.org/plot/uah-land/from:1979/plot/rss-land/from:1979/plot/uah/from:1979/trend/plot/rss/from:1979/trend

Reply to  Donald L. Klipstein
July 30, 2015 3:25 pm

Lets presume you are not a troll, just a newby deserving a response. The two sat data sets are UAH and RSS. Google is your friend. Same satellite raw MSU signals in the various channels, different processing algorithms. Temp results since 1979 for lower and upper troposphere and stratosphere. (Not surface air temps, per se. But for anomalies, no biggie.) UAH new beta v6.0 corrects a simpler algorithm ‘field of view’ issue (the Earth is curved…), and is now much closer to RSS. The problem and the solution for v6.0 can be read on Roy Spencer’s blog. The peer reviewed technical paper version on the v5.6 to v6.0 UAH is in the works, but obviously not receiving the stunningly expedited Cowtan treatment–else I would also provide that reference.

Menicholas
Reply to  Donald L. Klipstein
July 30, 2015 3:54 pm

Yes, I just posted a similar question Mr. Klipstein.
These do not look at all like RSS and UAH that I know.

Bart
Reply to  Menicholas
July 30, 2015 5:15 pm

They are 5 year running averages. Original post at Dr. Spencer’s blog.

Reply to  Menicholas
July 31, 2015 9:33 am

I don’t see an option to reply to Bart in his comment below, so I am putting my reply here. The graph at the top of this article is not showing any normal 5 year running mean of satellite datasets since the satellite curve is plotted from 1979 to 2015. The satellite datasets start with 1979.

July 30, 2015 10:02 am

Dr Cowtan said: “When comparing models with observations, you need to compare apples with apples.”
You do need to compare apples to apples which is why Dr. Cowtan knew to compare the apples to orangutans. (and please send more grant money)

ferd berple
Reply to  markstoval
July 30, 2015 12:00 pm

you need to compare apples with apples
==========
during training of the models you have to train apples to apples as well. The models represent air temps, but were trained using surface and ocean temps.
In effect you have trained a horse to act like a monkey, and wonder why it it is so bad at climbing trees.

Reply to  ferd berple
July 30, 2015 1:53 pm

🙂

William Astley
July 30, 2015 10:04 am

The satellites do not show any warming. The problem is it difficult to fiddle with the satellite data.
http://realclimatescience.com/wp-content/uploads/2015/07/ScreenHunter_10030-Jul.-30-09.22.gif
The cult of CAGW is going to keep to their agenda until there is in your face global cooling.
There an interesting race that few are aware of. What will occur first?
1) The first public announcement that the solar cycle has been interrupted or
2) The first observations of unequivocal global cooling.
http://wattsupwiththat.files.wordpress.com/2012/09/davis-and-taylor-wuwt-submission.pdf

Davis and Taylor: “Does the current global warming signal reflect a natural cycle”
…We found 342 natural warming events (NWEs) corresponding to this definition, distributed over the past 250,000 years …. …. The 342 NWEs contained in the Vostok ice core record are divided into low-rate warming events (LRWEs; < 0.74oC/century) and high rate warming events (HRWEs; ≥ 0.74oC /century) (Figure). … …. "Recent Antarctic Peninsula warming relative to Holocene climate and ice – shelf history" and authored by Robert Mulvaney and colleagues of the British Antarctic Survey ( Nature , 2012, doi:10.1038/nature11391),reports two recent natural warming cycles, one around 1500 AD and another around 400 AD, measured from isotope (deuterium) concentrations in ice cores bored adjacent to recent breaks in the ice shelf in northeast Antarctica. ….

Greenland ice temperature, last 11,000 years determined from ice core analysis, Richard Alley’s paper. William: As this graph indicates the Greenland Ice data shows that have been 9 warming and cooling periods in the last 11,000 years.
The past warming and cooling cycles correlate with solar cycle changes. i.e. The past cyclic warming and cooling periods have a physical cause which is physically capable of causing cyclic warming and cooling in both hemispheres. Big surprise cyclic changes to the sun causes cyclic changes to the earth’s climate.
Who would have thought up that wild idea?
P.S. There are periods of millions of years in the paleo record when atmospheric CO2 was high and planetary temperature was low and vice versa. There is not even correlation.
The so called without ‘feedback’ calculation of forcing for a doubling of atmospheric CO2, did not take into account the fact that CO2 increases the lap rate (another big surprise hot air rises and is replaced with falling colder air which offset greenhouse warming. Again who would come up with that wild idea?) which reduces the warming for a doubling of atmospheric CO2 without amplification from 1.5C to 0.1C to 0.3C.
The same calculation did not include the fact there is an overlap of water’s absorption spectrum and CO2’s absorption spectrum. As there is a great deal of water vapour in the lower atmosphere, particularly in the tropics (70% of the planet is covered in water) that also reduces the warming due to a doubling of atmospheric CO2 to roughly 0.1C to 0.3C.
http://www.climate4you.com/images/GISP2%20TemperatureSince10700%20BP%20with%20CO2%20from%20EPICA%20DomeC.gif

Reply to  William Astley
July 30, 2015 11:45 am

The first public announcement that the solar cycle has been interrupted
The solar cycle has not been ‘interrupted’ [whatever that means], so no such announcement will be forthcoming.

FTOP
Reply to  William Astley
July 30, 2015 12:01 pm

Exactly. Instead of whining about the mismatch, why not just use the state-of-the-art temperature record that measures precisely what the models are built predict — satellite…
Of course, the measurements that align with the models show cooling.
Do these scientists “work” to be this naive and ignorant?

takebackthegreen
Reply to  William Astley
July 31, 2015 5:15 pm

You leave out a third option, the most frustrating and terrible one, and the one most likely to occur:
Since Earth’s climate operates on a different time-scale than our own brief little moments in the sun, there will be no definitive, inarguable global cooling in our lifetime, and perhaps much longer, just as there is no definitive, inarguable global warming. It is a ridiculous show of hubris to think that our puny temperature sampling networks, and rudimentary conception of how climate functions, allow us to define and speak authoritatively about “global temperature” at all.
This is terrible because it means there will probably BE NO MOMENT when CAGW believers have to admit they’ve been wrong, and the skeptics get to finally feel that warm glow of vindication.
It will take some unforeseen speech from a famous person that sets off the light bulb in enough people’s heads (like Gore with his sanctimony at just the right moment), or the rise of a different imminent and unstoppable manmade disaster, to get the idea of CAGW to go away. Even then it will persist in the dark corners of the world, like Ebola, biding its time, waiting to leap back into the light…

John W. Garrett
July 30, 2015 10:05 am

It leaves this layman shaking his head in astonished wonderment.
You’d think that, before engaging in all the decades of study, the expenditure of billions of dollars and the claims of impending doom, the climate boffins would have agreed to a definition of terms.
These clowns have permanently damaged the credibility of “climate science.” I don’t believe a word out of them— and I’m amazed when anybody else does.

Joe Crawford
Reply to  John W. Garrett
July 30, 2015 11:30 am

Worst than that… They have permanently damaged the credibility of science in general. They keep harping about how certain scientists (and skeptics) are nothing but shills for the oil companies when in actuality, the vast majority of scientists today are funded by the government. And many (take for example the current crop of “Climate Scientists”) have become shills for the current executive branch, regardless of which party. President Eisenhower warned about this is his farewell address:

The prospect of domination of the nation’s scholars by Federal employment, project allocations, and the power of money is ever present – and is gravely to be regarded.

ferd berple
Reply to  John W. Garrett
July 30, 2015 12:13 pm

the climate boffins would have agreed to a definition of terms
====================
Climate Science hasn’t even defined “climate change”.
1. climate change – refers only to human caused.
2. climate change – refers to both human caused and naturally caused.

Gary H
Reply to  ferd berple
July 30, 2015 3:07 pm

3. Climate change should only refer to naturally occurring change – which includes naturally occurring global warming (or cooling) . If one wishes to refer to some perceived (goodness knows there is no empirical evidence of any of this) additional climate change being potentially caused by additional warming, or AGW, then that would be referred to as ACC.

richard verney
Reply to  ferd berple
July 30, 2015 8:13 pm

Climate is a range of parameters, not just temperature, each of which is highly variable.
Materially, climate change is not climate change until the change is outside the bounds of natural variation when viewed and measured over at least a multi-centennial scale, if not a millennial scale.
Given what we know of the past, the idea that climate should be viewed as something to be assessed over a 30 year period is farcical in the extreme.
Presently, we have yet to observe any real climate change

July 30, 2015 10:07 am

The models are way off and it will become worse going forward.

Latitude
July 30, 2015 10:07 am

my suggestion….stop making up, adjusting, fudging, and lying about surface temps
You’ll never get it as long as you are using fake data.
BTW…here’s the paper
http://onlinelibrary.wiley.com/doi/10.1002/2015GL064888/abstract

NLA
Reply to  Latitude
July 30, 2015 11:12 am

I find it interesting that, as shown in Figure 2, the adjustments required to “correct” for the difference between air and air+water temperature measurements followed a accelerating downward trend. How would a “correction” to a temperature measurement result in a smooth trend over time with the largest deviations occurring today? Did the air and water measurements agree more closely in 1900, or was there simply more land? /sarc on Perhaps this plot is an indication of the rapidly rising sea levels with the fraction of land decreasing rapidly with time.

Latitude
Reply to  NLA
July 30, 2015 11:49 am

exactly….they give it away
“Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.”
HadCRUT faked the past….cooled it…to show a faster trend
…when they feed those fake numbers in it….they got a fake trend

Reply to  Latitude
July 30, 2015 11:43 am

“You’ll never get it as long as you are using fake data.”
That’s wrong.
The only way they can get it is using fake data.
Otherwise, with real data, they’re done.

JP
July 30, 2015 10:10 am

” The research team found that the way global temperatures were calculated in the models failed to reflect real-world measurements. The climate models use air temperature for the whole globe, whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.”
Dr Cowtan must be kidding, right? Is he saying that these scientists do not know how to correctly verify their own projections? If I would have pulled this in my Freshman Physics lab, the instructor would have failed me on the spot.

knr
July 30, 2015 10:10 am

Dr Cowtan’s
interest in climate science has developed from , the fact there is ton of grant cash and some fame in climate ‘science’ while it crystallography there is no cash and no one wants to know what our doing , but let us call it ‘an interest in science communication.’ instead

Brian
July 30, 2015 10:14 am

It seems to me that water acts as a buffer for air temperature, and since water is approximately 2/3 of the earth’s surface, it would naturally close the gap between the hypothetical models and the real world observations. A no-brainer paper.

johann wundersamer
Reply to  Brian
July 30, 2015 5:06 pm

Brian – they’ve found an easy way out.
Thanks for clearing sights – Hans

July 30, 2015 10:15 am

There is a logical contradiction there: the models don’t even agree between themselves, so how can they possibly all agree with reality?

Latitude
Reply to  kalya22
July 30, 2015 10:22 am

bingo

Reply to  kalya22
July 30, 2015 11:11 am

+1

Jake
July 30, 2015 10:30 am

Which 36 modeling projections did he choose to evaluate, and WHY those 36.

Global cooling
Reply to  Jake
July 30, 2015 11:28 am

The ones where projected CO2 matches the observed CO2. Then you could evaluate whether calculated temperatures, humidity, cloudiness, rain and so on for each grid cell match the corresponding observations.

Zeke Hausfather
Reply to  Jake
July 30, 2015 11:45 am

Hi Jake,
The 36 models used were all CMIP5 models that included the requisite fields for the analysis (e.g. “the surface air temperature (‘tas’ in CMIP5 nomenclature), sea surface temperature (‘tos’), sea ice concentration (‘sic’), and the proportion of ocean in each grid cell (‘sftotf’)”)
This is a remarkably straightforward paper. Instead of comparing simulated 2-meter surface air temperature from models to observations (which combine air temperature over land and sea surface temperatures over oceans), compare the blended air temperatures over land and sea surface temperatures over oceans from the models to the observations. Otherwise you end up with a bias because models have air temperature over oceans warming a bit faster than sea surface temperature.

Pat Frank
Reply to  Zeke Hausfather
July 30, 2015 12:07 pm

You haven’t solved the problems of off-setting model parameter errors and of non-unique solutions. You’re not modeling climate, you’re just mimicking a climate observable; an observable (air temperature) that in any case is very poorly constrained. Studies such as yours can never be anything more than tendentious.

Reply to  Zeke Hausfather
July 30, 2015 12:14 pm

Pat Frank writes: “Falsifiable because if the prediction is wrong, the physical theory is refuted.”

(refrence: http://wattsupwiththat.com/2015/05/20/do-climate-projections-have-any-physical-meaning/ )

Impressive!!!

Weather forecasting models are based on the physical theory that hot air rises. So according to Mr. Frank, when the weather prediction fails (which happens whenever you plan a picnic) , it proves that hot air doesn’t rise.

ferd berple
Reply to  Zeke Hausfather
July 30, 2015 12:24 pm

Otherwise you end up with a bias because models have air temperature over oceans warming a bit faster than sea surface temperature.
==============
which would make the models run hot. which they are. however, the problem is worse than this. you are only addressing how well the predictions match reality.
You cannot properly train the models by comparing 2 meter surface temps to combination of surface and ocean temps. faulty training leads to faulty results.
This is the elephant in the room. The training was faulty in exactly the same way the scoring of the results was faulty, because they both use the same methodology.
However, faulty training is much more serious than faulty marking, because it means the models are inherently wrong.

Pat Frank
Reply to  Zeke Hausfather
July 30, 2015 12:42 pm

Not only wrong as usual, Joel, but you’ve managed an especially fatuous comment. Well done (for you).
In any case, weather modeling mentioned nowhere in my analysis.
You’re right to focus on hot air, though. It rises vigorously whenever you operate a keyboard.

Reply to  Zeke Hausfather
July 30, 2015 12:47 pm

I apologize to you Mr Frank, it seems whenever someone uses direct quotes from the things you write, it exposes how incoherent your writings are.
..
PS, I quoted you from your article on “climate models”

Keep posting, the appropriate saying is , “like shooting ducks in a barrel”

talldave2
Reply to  Zeke Hausfather
July 30, 2015 1:52 pm

It’s remarkable how nearly all the biases discovered by climate scientists make observed temperature trends warmer. Perhaps there is some secret, fossil-fuel-funded effort to systematically interfere with all climate-related data gathering and analysis, which climate scientists must heroically struggle against.
I can’t think of any other reasonable explanation.

John Bills
Reply to  Zeke Hausfather
July 30, 2015 2:05 pm
Pat Frank
Reply to  Zeke Hausfather
July 30, 2015 3:32 pm

It’s not the quote, Joel, it’s your inevitably irrelevant mindlessness. You never lose an opportunity to be simultaneously outspoken and vacuous.

Menicholas
Reply to  Zeke Hausfather
July 30, 2015 4:04 pm

Well, a new day, and I am back to wondering if Joel Jackson and I inhabit the same planet.

David A
Reply to  Zeke Hausfather
July 30, 2015 7:44 pm

Zeke says……compare the blended air temperatures over land and sea surface temperatures over oceans from the models to the observations…’
————————————————————————————————————————
So really, they never used the modeled SST, they had them, but instead ran modeled 2m air T and compared them to SSTs?
“Otherwise you end up with a bias because models have air temperature over oceans warming a bit faster than sea surface temperature”
==========================================
Are they suppose to? If not is this physics issue the models got wrong? Why would the relationship between SST and 2 m air T above the sea surface change?

taz1999
July 30, 2015 10:32 am

Maybe I read too much into this; but maybe Lord Monckton’s push of difference between model and data is getting some traction and this is an attempt to deflect that line of questioning.

schitzree
July 30, 2015 10:36 am

Maybe I’ve just been exposed to a little to much ‘Climate Science’ over the years, but something about this paper makes me think it’s just another excuse to ‘adjust’ the temperature data again.

Cowtan, Way, Mann

Oh ya, that would be it. ^¿^

John Bills
July 30, 2015 10:38 am


the pause is

Bryan A
July 30, 2015 10:46 am

GW theory says that the Polar region will warm faster than the rest of the world due to amplifications in the region, in fact this map from NOAA http://polar.ncep.noaa.gov/sst/ophi/color_anomaly_NPS_ophi0.png seems to indicate that the polar region is about 5C above the average but the temperature graph from DMI shows the situation to be Business as usual with the High following the Bell Curve http://ocean.dmi.dk/arctic/plots/meanTarchive/meanT_2015.png
The PAWS BUOY system http://psc.apl.washington.edu/northpole/index.html, a series of 6 small Buoys collecting local meteorological data in the Polar Ice indicate something different. 5 of 6 have temp readings of 0.7, 2.2, 4.9, 4.4, 0.52 for an average of about 2.5C which agrees with the DMI temp graph. One buoy however, Buoy 553800 indicates a temperature of 17.4C or 63F and site about 1/2 way between Greenland and the Pole. Adding this measurement into the mix skews the average to 5C and matches the NOAA map. Could all the red on the NOAA map be a product of a broken thermometer?

schitzree
Reply to  Bryan A
July 30, 2015 11:51 am

Oh it’s not broken, it’s telling them exactly what they want it to.

Matt G
Reply to  Bryan A
July 30, 2015 12:10 pm

The polar regions should warm more due to less water% in the air and therefore more CO2 gases in theory have a greater influence.comment image
We know the CO2 theory is contradicted with atmospheric behavior above deserts. They should show any influence CO2 has, but very little warming in the tropics (high humidity) and sub tropic zones where all the world deserts are based.
The NOAA map has anomaly on average nowhere near 5 c and more like 2-3 c, but has a biased continually cooled past of which the exaggerated anomalies arrive. There is no indication in the chart that the bad buoy has been used.
This below is the best data source on the planet we have for polar temperatures by far. DMI data is good for unbiased source covering regions the satellite below doesn’t.
http://climate4you.com/images/MSU%20UAH%20ArcticAndAntarctic%20MonthlyTempSince1979%20With37monthRunningAverage.gif
Only goes to 85 N and 85 S , but that is only 0.48% of the planets surface from both poles missing.

ChrisDinBristol
Reply to  Bryan A
July 31, 2015 4:03 am

No, its the 5 thermometers that show lower readings that are faulty, obviously.

Bruce Cobb
July 30, 2015 10:50 am

First we had Heidi the Decline, then Heidi the Heat, Heidi the Pause and now, Heidi the Gap.

Reply to  Bruce Cobb
July 30, 2015 4:29 pm

Soon to be followed by Heidi the Oceans and shortly thereafter by Heidi the Satellites.

July 30, 2015 11:07 am

Did you mean “robust assumptions and maybe – possiblies”?

Neo
July 30, 2015 11:12 am

Any remaining differences may be explained by the recent temporary fluctuation in the rate of global warming.
I believe this is called “natural variability.”
Here lies the “Catch 22” of climate science. Their mistakes are “natural variability.”

Menicholas
Reply to  Neo
July 30, 2015 4:13 pm

How and why can it be assumed that anything is “temporary”?
This betrays a bias that is hard to deny.

ozspeaksup
Reply to  Neo
July 31, 2015 4:40 am

ta, that was the bit that narks me..temporary? 18+yrs?
when one yr or less of someplace being a tad warm is a global tragedy?
sheesh

DHR
July 30, 2015 11:13 am

Do not the UAH and RSS satellite datasets record global air temperature? Cowtan says the models compute air temperature, thus so long as one is comparing satellite temps with modeled temps, is it not apples and apples? And is there not a divergence?
I’m not getting something here.

Reply to  DHR
July 30, 2015 12:53 pm

Satellites do not measure air temperature. They measure microwave brightness. The “data” you are looking at when referencing UAH or RSS is not “temperatures” but model output.

Editor
Reply to  Joel D. Jackson
July 30, 2015 1:15 pm

Satellites do not measure air temperature? Then mercury (or any other) thermometers do not measure temperature, speedometers do not measure speed, scales do not measure weight, etc, etc. But that doesn’t mean they are unreliable.

Matt G
Reply to  Joel D. Jackson
July 30, 2015 1:37 pm

The UAH and RSS are converted to temperatures and this data is shown, so they are temperatures. Like saying the surface data is not how much the expansion/contraction of liquid was so it’s not temperature.

Reply to  Joel D. Jackson
July 30, 2015 2:31 pm

Satellites measure brightness AT THE SENSOR.
Then a physics model is applied. The physics model is a radiative transfer model. radiative transfer physics is the SAME PHYSICS that tells you C02 will warm the planet
in other words.
IF you accept UAH temperature, THEN you have to accept the physics model that gets you
from BRIGHTNESS to TEMPERATURE.
BUT, that same physics, radiative transfer, is the physics that tells you C02 will warm the planet
When skeptics discover this, they mumble.

Reply to  Joel D. Jackson
July 30, 2015 3:39 pm

True. But irrelevant. Because those modeled temperature outputs were VALIDATED (explicitly in the UAH case) by many radiosonde temperature measurements at many latitudes, for example along the entire North American West Coast from southern Mexico to northern Alaska. Do try to keep up with model validation stuff. Cowtan in an effort to minimize the pause exposes a basic consensus climate science goof. Christy uses massive amounts of weather balloon data to make sure his translation ( really not a model) of MSU channel signals into temperatures is correct.
The difference is stark.

Pat Frank
Reply to  Joel D. Jackson
July 30, 2015 3:40 pm

The skeptics may mumble, Steve, because they’re embarrassed to tell you the obvious — that a satellite sensor is not a physical analogy of the terrestrial climate. You ought to listen to them.

Reply to  Joel D. Jackson
July 30, 2015 3:49 pm

Wow, Frank, your response to Steve was outspoken and vacuous.

Ever hear about “glass houses?”

Jtom
Reply to  Joel D. Jackson
July 30, 2015 4:04 pm

So, Mr. Mosher, those rejecting UAH and RSS data are REJECTING the physics that tells you CO2 will warm the planet. It’s a two-way street. If you accept the science, you must accept both the satellite data and CO2 warming, but you can do the latter and arrive at only about 2 degree maximum warming. To that warming, one must add the effect of natural variation. Since no one has demonstrated the ability to predict the natural variation, the final result is, we have no idea if the future will be cooler, warmer, or the same, but it seems likely that, because of Man, it will be two degrees warmer than it would be otherwise.
You can’t make policy decisions based on that.

Mike the Morlock
Reply to  Joel D. Jackson
July 30, 2015 4:09 pm

Steven Mosher; I most disagree. The Satellites are a man made artifact manufacture for the purpose of measurement of temperature. Yes it does this through first measuring radiance. The conversion to temperature is not unlike that of metric to English standard.Or the Specific gravity of water and choc milk when calculating weight to volume. No model just math.
Now CO2 it of course is an object to be measured and recorded. Model are used to project its effect on the atmosphere-climate, this is not the case with the Satellite date.
michael

Menicholas
Reply to  Joel D. Jackson
July 30, 2015 4:29 pm

Thermometers do not measure temperature either, then.
Liquid in glass ones measure the expansion and contraction of a fluid, and bimetal ones measure the relative expansion coefficients of different metals.
And those modern gizmos measure some modern gizmo dealio stuff *sorry about the technical jargon here 🙂 *
All then use some method of converting this into a meaningful form: A NUMBER! Which our brains then interpret as being related to how hot or cold it is.
Sophistry:
noun
-The use of clever but false arguments, especially with the intention of deceiving.
“The Seven Basic Types of Temperature Sensors
Thu, 2000-12-28 09:17
Temperature is defined as the energy level of matter which can be evidenced by some change in that matter. Temperature sensors come in a wide variety and have one thing in common: they all measure temperature by sensing some change in a physical characteristic.
The seven basic types of temperature sensors to be discussed here are thermocouples, resistive temperature devices (RTDs, thermistors), infrared radiators, bimetallic devices, liquid expansion devices, molecular change-of-state and silicon diodes.
Thermocouples
Thermocouples are voltage devices that indicate temperature by measuring a change in voltage. As temperature goes up, the output voltage of the thermocouple rises – not necessarily linearly.
Often the thermocouple is located inside a metal or ceramic shield that protects it from exposure to a variety of environments. Metal-sheathed thermocouples also are available with many types of outer coatings, such as Teflon, for trouble-free use in acids and strong caustic solutions.
Resistive Temperature Devices
Resistive temperature devices also are electrical. Rather than using a voltage as the thermocouple does, they take advantage of another characteristic of matter which changes with temperature – its resistance. The two types of resistive devices we deal with at OMEGA Engineering, Inc., in Stamford, Conn., are metallic, resistive temperature devices (RTDs) and thermistors.
In general, RTDs are more linear than are thermocouples. They increase in a positive direction, with resistance going up as temperature rises. On the other hand, the thermistor has an entirely different type of construction. It is an extremely nonlinear semiconductive device that will decrease in resistance as temperature rises.
Infrared Sensors
Infrared sensors are noncontacting sensors. As an example, if you hold up a typical infrared sensor to the front of your desk without contact, the sensor will tell you the temperature of the desk by virtue of its radiation – probably 68°F at normal room temperature.
In a noncontacting measurement of ice water, it will measure slightly under 0°C because of evaporation, which slightly lowers the expected temperature reading.
Bimetallic Devices
Bimetallic devices take advantage of the expansion of metals when they are heated. In these devices, two metals are bonded together and mechanically linked to a pointer. When heated, one side of the bimetallic strip will expand more than the other. And when geared properly to a pointer, the temperature is indicated.
Advantages of bimetallic devices are portability and independence from a power supply. However, they are not usually quite as accurate as are electrical devices, and you cannot easily record the temperature value as with electrical devices like thermocouples or RTDs; but portability is a definite advantage for the right application.
Thermometers
Thermometers are well-known liquid expansion devices. Generally speaking, they come in two main classifications: the mercury type and the organic, usually red, liquid type. The distinction between the two is notable, because mercury devices have certain limitations when it comes to how they can be safely transported or shipped.
For example, mercury is considered an environmental contaminant, so breakage can be hazardous. Be sure to check the current restrictions for air transportation of mercury products before shipping.
Change-of-state Sensors
Change-of-state temperature sensors measure just that – a change in the state of a material brought about by a change in temperature, as in a change from ice to water and then to steam. Commercially available devices of this type are in the form of labels, pellets, crayons, or lacquers.
For example, labels may be used on steam traps. When the trap needs adjustment, it becomes hot; then, the white dot on the label will indicate the temperature rise by turning black. The dot remains black, even if the temperature returns to normal.
Change-of-state labels indicate temperature in °F and °C. With these types of devices, the white dot turns black when exceeding the temperature shown; and it is a nonreversible sensor which remains black once it changes color. Temperature labels are useful when you need confirmation that temperature did not exceed a certain level, perhaps for engineering or legal reasons during shipment. Because change-of-state devices are nonelectrical like the bimetallic strip, they have an advantage in certain applications. Some forms of this family of sensors (lacquer, crayons) do not change color; the marks made by them simply disappear. The pellet version becomes visually deformed or melts away completely.
Limitations include a relatively slow response time. Therefore, if you have a temperature spike going up and then down very quickly, there may be no visible response. Accuracy also is not as high as with most of the other devices more commonly used in industry. However, within their realm of application where you need a nonreversing indication that does not require electrical power, they are very practical.
Other labels which are reversible operate on quite a different principle using a liquid crystal display. The display changes from black color to a tint of brown or blue or green, depending on the temperature achieved.
For example, a typical label is all black when below the temperatures that are sensed. As the temperature rises, a color will appear at, say, the 33°F spot – first as blue, then green, and finally brown as it passes through the designated temperature. In any particular liquid crystal device, you usually will see two color spots adjacent to each other – the blue one slightly below the temperature indicator, and the brown one slightly above. This lets you estimate the temperature as being, say, between 85° and 90°F.
Although it is not perfectly precise, it does have the advantages of being a small, rugged, nonelectrical indicator that continuously updates temperature.
Silicon Diode
The silicon diode sensor is a device that has been developed specifically for the cryogenic temperature range. Essentially, they are linear devices where the conductivity of the diode increases linearly in the low cryogenic regions.
Whatever sensor you select, it will not likely be operating by itself. Since most sensor choices overlap in temperature range and accuracy, selection of the sensor will depend on how it will be integrated into a system.”
http://www.wwdmag.com/water/seven-basic-types-temperature-sensors

TimTheToolMan
Reply to  Joel D. Jackson
July 30, 2015 8:07 pm

Mosher writes “BUT, that same physics, radiative transfer, is the physics that tells you C02 will warm the planet”
Ouch Mosher. You sound as if you understand the instantaneous radiative transfer solution has anything to do with atmospheric physics leading to warming. Radiative transfer is merely one part of a very complex whole.
“Everything Should Be Made as Simple as Possible, But Not Simpler” – einstein.
So your basis for believing CO2 forced warming is a fail, Steve.

richard verney
Reply to  Joel D. Jackson
July 30, 2015 8:20 pm

But Mosh conveniently fails to mention that the satellite data is tested and tuned against weather balloon temperature data which use more conventional forms of meteorological thermometers, so the imaged brightness which is measured by the satellite sensor is properly control calibrated by tuning it with real and measured radiosonde data..

Doonman
Reply to  Joel D. Jackson
July 31, 2015 1:32 pm

Calibrated against independent PRT and radiosonde data, which you always neglect to include in your posts.

john robertson
July 30, 2015 11:15 am

It is the Cowtan Way.
Or in real world, the way to kowtow.
This sure has that smell of desperation, so the models are right, once we adjust the created data to suit?
Maybe civilization is completely collapsed and I just have not noticed yet.

Louis Hunt
July 30, 2015 11:43 am

Do climate scientists actually believe modelers know enough about the climate and its feedbacks to model it accurately? That is pure arrogance. They have already admitted they don’t know how to model “clouds,” and they can’t possibly know much about other feedbacks either. So, if the models were to get it right, it would be random chance. It would be like a broken clock getting the time right twice a day. They have to know that. But apparently, the “cause” is more important than the truth to these people.

Pat Frank
Reply to  Louis Hunt
July 30, 2015 3:49 pm

Modelers proceed, Louis Hunt, as though the models were perfect representations of the physics of the climate. The only errors then are caused by the parameter unknowns.
This assumption of perfect models is directly implicit in the way modelers represent physical error. It’s always the variation in projections produced by “perturbed physics.” In these studies, the parameters are varied through their uncertainty range. The only way these studies fully represent error is if the model itself is physically complete.
In practice, climate modelers don’t know anything about physical error analysis, and as a consequence have no idea how to evaluate the reliability of their own models.

Reply to  Pat Frank
July 30, 2015 3:55 pm

“Modelers proceed, Louis Hunt, as though the models were perfect representations of the physics of the climate.”

No, most modeler follow what Gavin Schmidt says… http://www.columbia.edu/cu/alliance/EDF-2012-documents/Reading_Schmidt_2.pdf

Pat Frank
Reply to  Pat Frank
July 30, 2015 5:42 pm

Gavin’s article does not mention model accuracy, reliability, error, or uncertainty. It’s irrelevant to my point.

David A
Reply to  Pat Frank
July 30, 2015 5:49 pm

The RSS / UAH sensors, match the weather balloons, so model – meets observation, meets verification. The climate models predict about three times the warming of what is observed in the troposphere, so J.J. meet failed model.
Steven M, pay attention also. We do not in general object to models for study. We object to models that fail to meet the observations, being used for public policy, We object that the molded mean of many models, all running wrong in one direction, to warm, are being used for CAGW harm projections.
Mosher, STOP making straw man arguments. Stop lumping all skeptics into one basket.

Louis Hunt
Reply to  Louis Hunt
July 30, 2015 6:03 pm

Thanks for the link, Joel. In that article, titled “Wrong but useful,” Gavin Schmidt explains that climate scientists like him don’t actually believe that models can model the climate accurately at this time. That’s good to know. I’m glad they’re not as arrogant as I thought. His reasons are similar to mine: “interactions among the various components – like low-level ozone, aerosols (airborne particles) and clouds – can get hideously complicated.” Obviously, something that is “hideously complicated” cannot be well understood. And something that is not well understood cannot be accurately modeled. Schmidt admits that when he says, “All climate models are wrong, but some of them are useful…” But what exactly can “wrong” climate models be useful for? They “might,” he explains, “have a vitally important part to play in breaking through some of the log jams now hampering policymakers.” In other words, they might be useful politically to help persuade policymakers to get on board with the program. Climate models that are “wrong” obviously cannot be used to establish scientific truth or provide factual information. But they can be useful as propaganda.
Schmidt wrote the article back in 2009. It appears that using “wrong” climate models to break through the “log jams” hampering policymakers hasn’t worked as well as he had hoped. So now they’re busy working feverishly to adjust temperature observations to more closely match model forecasts and thereby give them more weight. There’s another meeting of the policymakers coming soon, and so it doesn’t matter that the models are wrong, or that they are corrupting temperature data with their adjustments. It only matters that they persuade policymakers to break the “log jams” and support the cause.

David Cage
Reply to  Louis Hunt
July 30, 2015 11:30 pm

Actually real computer modellers do know enough to know that before you make any assumption about CO2 you have to model the entire natural CO2 system, prove that it matched the data before the industrial era. You have to then show that the projected characteristics no longer match after the CO2 of industrialisation.
A proper QA department then queries the assumption that the change is due to the industrial CO2 and checks that the CO2 distribution is consistent with man made CO2 production and not a coincidental natural global increase or worse still a local phenomenon. They also check that all the stations were properly annually certified accurate and no adjustments made to the data.
This is the case for the computer modelling of products for the low end of the commercial market.For life critical the demands are far more stringent.
Please do not dismiss all computer modelling because of the behaviour of the dregs.

Mark from the Midwest
July 30, 2015 11:48 am

The average guy on the street is not buying this stuff, there are so many great scientists of the past that used phrases like” “if you can’t explain it to a …. 6 year old …. your mother …. some guy at a bar ….” then you really don’t know what your talking about. At some point it does begin to sound like a mish-mosh of doubletalk. The only people that are buying into this crap are the pseudo intellectuals like John Kerry and George Clooney, and the hundreds of severely compromised folks that graduate from Oberlin each year.

David Cage
Reply to  Mark from the Midwest
July 30, 2015 11:33 pm

And you forgot to mention celebrities whose wealth and fame are the result of their ability to make the entirely fictitious appear real.

July 30, 2015 11:53 am

“Challenges in assembling the data”… Does anyone else find this disturbing? Sounds like a euphemism for “we haven’t yet mastered the art of manipulating the data to suit our agenda”.

Reg Nelson
July 30, 2015 11:55 am

” . . . whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.”
He neglected to mention that the real-world data used by scientists has been heavily adjusted, homogenized and in-filled, all done to fit a political narrative.
The other paper mentioned in this article is the one Cowtan and Way published to try and bring back the warming. They did this by infilling the polar regions, where there is little actual data, with what they felt the data should be.

Reply to  Reg Nelson
July 30, 2015 2:27 pm

wrong. Cowtan and Way treated the artic in just the same way that Skeptics Odonnel, jeff id and Steve Mcintyre treated antartica when they debunked Steigs paper.
There reconstruction of the artic passed all validation tests, out of sample tests, and tests against independent data from arctic bouys, and reanalysis AND data from the new AIRS satellite

Reply to  Steven Mosher
July 30, 2015 3:59 pm

SM, they krigged. Krigging was invented as statistical method to extrapolate mineral ore bodies from limited drill core information. A fact you do or should know. There are ‘uniformity’ assumptions behind the method, which you also do or should know. (Uniformity means, in layman speak, no abrupt discontinuities within the ore body, although are expected at its edges.) Those underlying assumptions are met in Arctic winter and early speing, when everything is snow covered aomething. They are not in late spring, summer, and fall, when the mix of open water, sea ice, and tundra is anything but ‘uniform’. Cowtan’s methodolgy is suspect to anyone with deep knowledge of statistical methods, or the ability to look them up as needed. Essay Unsettling Science explained this ‘little detail’. You might learn something by reading it.
Oh, and that essay also finishes with a figure you yourself provided to CE that overlays Berkeley Earth on the other datasets including CW. The pause exists! Well, until Karl further fudged the data.

Menicholas
Reply to  Steven Mosher
July 30, 2015 5:44 pm

I thought krigging was invented so my girlfriend could strengthen the muscles in her…oh, never mind.

Reply to  Steven Mosher
August 1, 2015 6:21 am

Kegel menicolas… Kegel!

Just Steve
July 30, 2015 11:57 am

A little off topic…but….that wing they’ve found that is suspected to be from that Malaysian plane that disappeared, washed up on shore in an area 4100 miles from where the COMPUTER MODELS forecast it to have been.
Ahhhh, the wonderful world of modeling.

ferd berple
Reply to  Just Steve
July 30, 2015 12:28 pm

after tonight’s adjustments the models will correctly predict the debris to be found on Reunion.

Reply to  ferd berple
July 30, 2015 12:48 pm

+1

Jon Lonergan
Reply to  ferd berple
July 30, 2015 2:10 pm

No doubt all the carbon in the plane caused it to crash!

John W. Garrett
Reply to  Just Steve
July 30, 2015 12:50 pm

Be careful with this. Oceanic currents make it very likely that an object would drift from the west coast of Australia across the Indian Ocean towards Reunion in this time frame.
The phenomenon has nothing to do with modeling. It’s a simple matter of the prevailing ocean currents which have been well-known to mariners for centuries.

Reg Nelson
Reply to  John W. Garrett
July 30, 2015 12:58 pm

Of course that never happens to the Argo floats.

Jon Lonergan
Reply to  John W. Garrett
July 30, 2015 2:13 pm

So the models did not incorporate currents which have been known for centuries? Still sounds like faulty modelling.

Menicholas
Reply to  Just Steve
July 30, 2015 4:47 pm

Wing of jet found is a “little” off topic?
And CAGW is a “little” fib, told for no particular reason.

Old'un
July 30, 2015 12:02 pm

What can we expect from a bunch of activist scientists, objectivity?

Dawtgtomis
July 30, 2015 12:08 pm

If they can just figure out why all this warming hasn’t been detectable, they will have their cake well-frosted.
Ironic that we agree that the past global temps have been misrepresented. This looks like an attempt to muddy the waters some more and nullify the sceptic perspective on it.

Resourceguy
July 30, 2015 12:14 pm

Primary field of X-ray Crystallography eh, I suppose that is better than psychology for climate science but it still heavily discounts the phrase “I think….”

Ralph Kramden
July 30, 2015 12:27 pm

real-world data used by scientists are a combination of air and sea surface temperature readings
The satellite data is the lower troposphere air temperature regardless of whether it’s over land or sea.

July 30, 2015 12:58 pm

“The research team found that the way global temperatures were calculated in the models failed to reflect real-world measurements. ”
And yet they had a 95% Confidence level in AR5. Will an Adjustment to AR5 be forthcoming?

talldave2
July 30, 2015 1:18 pm

“The climate models use air temperature for the whole globe, whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.”
This is ridiculous. First of all, satellite temperatures are air temperatures, and they show even less warming.
Secondly, the “real-world” data is not even data — GISS is a model of the data with adjustments and fabricated, er, infilled readings.
Third, the adjustment to surface temperatures are generally to the land stations, so this study is basically saying the climate models match the “data” temperature models. Of course they do! That tells us a lot about the state of climate science but not much about the science of climate.

Dawtgtomis
July 30, 2015 1:33 pm

I can’t help but wonder what the chances of getting a huge grant for X-ray crystallography research are compared to a huge grant for climate change research. Maybe wildlife isn’t the only thing that migrates due to climate change.

Reply to  Dawtgtomis
July 31, 2015 3:55 am

According to the University of York, the Cowtan, et al. (2015) study was unfunded. Of course, all of the time donated by the authors, along with equipment and office space, etc., might effectively be “double-dipping” into extraneous grants.
Or maybe they all did this on their summer vacation.

David S
July 30, 2015 1:44 pm

If you can’t predict the past how can we rely on you to predict the future. Time to stop this scam

Reply to  David S
July 30, 2015 5:36 pm

A genuine expert can always foretell a thing that is 500 years away easier than he can a thing that’s only 500 seconds off.
– A Connecticut Yankee in King Arthur’s Court

Admad
July 30, 2015 1:47 pm

“Dr Cowtan’s primary field of research is X-ray crystallography…” Going by the usual shrieks of AGW-ers doesn’t that disqualify him from pronouncing on climate matters as he “isn’t a climate expert”.

Reply to  Admad
July 30, 2015 2:23 pm

he is publsihed in climate science as are his co authors.

Menicholas
Reply to  Steven Mosher
July 30, 2015 4:50 pm

Being published is the standard for qualification to opine, Mr. Mosher?
Maybe some day, being correct will be the standard for what makes someone an expert.

knr
Reply to  Admad
July 30, 2015 3:25 pm

Actual railway engineers, and people who can not keep their hands of others or the failed politicians are amongst the many people with zero qualifications in the area , or in science at all, whose unquestioning support for ‘the cause ‘ has earned them the right to be consider ‘experts’ in climate ‘science’
Although to be fair given the standard of science seen in climate ‘science’ is not far away from the standard seen from a dead raccoon, then this may actual make sense, after all if all what matters its your ability to produce BS than it is true ‘anyone’ can be a expert .

July 30, 2015 2:22 pm

This is really basic.
When you compare the models output with observations you have to compare the same thing.
Note I have lodged this complaint many times against people on both sides who do model/observation
comparisons.
Lets start with observations:
Observations consist of SAT ( surface air temperature taken over land ) and SST ( ocean temperatures taken just beneath the surface)
Note; this is WHY we call global “averages” indexes. because SAT and SST have been mashed together.
Now you want to compare the model output to this. What the vast majority of people do is they go to the model output and they select t2m or the temperature at 2 meters OF THE AIR!
But this is NOT what the observations are. The observations are the air temp over land and SST ( not MAT)
over ocean.
So fundamentally Cowtan is doing it the right way. using modelled SST and Modelled SAT and comparing that to OBSERVED SST and OBSERVED SAT

Reply to  Steven Mosher
July 30, 2015 4:59 pm

Which demonstrates- One. More. Time. -that the models are running hot and the only culprit is the CO2 fudge factor. I predict they eventually have to reduce the fudge factor to the point that it will be another few 1000’s of years before the models rise above the natural noise.

Reply to  Steven Mosher
July 30, 2015 5:39 pm

Steven Mosher July 30, 2015 at 2:22 pm
This is really basic.
When you compare the models output with observations you have to compare the same thing.
==============
agreed. the exact same rules apply when training. both the training and evaluation of the prediction were flawed, since they did not compare the same thing.
but of the two flaws, the training flaw is the more serious, because it means the models must be inherently wrong. not simply that they were evaluated incorrectly, but that their fundamental training was wrong.

David A
Reply to  Steven Mosher
July 30, 2015 5:57 pm

Where is the global data set for surface 2m air T above the oceans?

David A
Reply to  David A
July 30, 2015 6:56 pm

Steve M, the post says, “The climate models use air temperature for the whole globe, whereas the real-world data used by scientists are a combination of air and sea surface temperature readings.”
So are you saying they reran the models using modeled SST?

David A
Reply to  David A
July 30, 2015 6:59 pm
Chris Hanley
July 30, 2015 2:38 pm

http://c3headlines.typepad.com/.a/6a010536b58035970c017ee88df70e970d-pi
The model projections describe the takeoff flight path of a 747 packed with climateers, AR5 was the last chance to abort, red lights are flashing on the control panel alarms are sounding and the captain is reassuring the passengers that everything is under control.

D.I.
Reply to  Chris Hanley
July 30, 2015 3:45 pm

Just love those ‘Anomally’ graphs where no one states the value of zero.
Can anyone tell us what it is.

Menicholas
Reply to  D.I.
July 30, 2015 4:53 pm

The value of zero is define as how much this article is worth.
Apologies all around to the authors who are present, but I gots to calls ’em like I sees ’em.

July 30, 2015 3:05 pm

Why don’t we want nicer weather and more abundant crops again?

Menicholas
Reply to  Tab Numlock
July 30, 2015 5:50 pm

Again?
This is very confusing, because crop yields have been on a steady march upwards for a very long time now.
Both as an absolute number, and in terms of Calories per person on Earth, yields per unit area, and about any other metric one may care to choose.
And hey, the weather is fine!
Are you sore because you moved to a desert or something, and are disappointed to find out there are long droughts in deserts?
Oh, I know…maybe you are a snowman, and anxiously await the return of full on ice age conditions?
Please, do tell.
Cryptic comments make me so dang curious!

July 30, 2015 3:28 pm

The models diverge because the physics that underpins them is wrong. Until scientists acknowledge that we have an atmospheric effect and not a Greenhouse Effect, there is no hope for any of them!

Reply to  wickedwenchfan
July 30, 2015 5:41 pm

correct. greenhouses warm by limiting convection. CO2 theory says the surface will warm due to increased radiation, which has nothing to do with greenhouses.

July 30, 2015 3:42 pm

+1 on the “Dog ate my model” list.

Matt G
July 30, 2015 3:54 pm

Neville July 30, 2015 at 3:22 pm
The versions are 5.6.

johann wundersamer
July 30, 2015 4:17 pm

Dr Cowtan added:
“Recent studies suggest that the so-called ‘hiatus’ in warming is in part due to challenges in assembling the data. I think that the divergence between models and observations may turn out to be equally fragile.”
____
the challenges in assembling data for DrCowtans team could lessen with experience in spread sheets.
but
‘the so-called divergence between models and observations may turn out to be equally fragile’ –
as long as real world resists to equal models.
– watch DrCowtans teams next paper ‘work on ‘observations”.
Hans

AndyG55
Reply to  johann wundersamer
July 30, 2015 10:18 pm

““Recent studies suggest that the so-called ‘hiatus’ in warming is in part due to challenges in assembling the data.”
Gavin and Tom are doing all they can to address that challenge. 😉

July 30, 2015 4:21 pm

The entire AGW argument is based on assumption, and when we assume…
https://youtu.be/KEP1acj29-Y

Magma
July 30, 2015 4:23 pm

[Fake email address. ~mod.]

Matt G
July 30, 2015 4:25 pm

Steven Mosher July 30, 2015 at 2:31 pm
Nothing new, surface measure liquid expansion or contraction, just the conversion is more complex with brightness and needs a model to do it. The point earlier is once the conversion has occurred it is not data from brightness or liquid expansion, it is data that corresponds to temperatures. (therefore it is now temperature data) The satellite has been measured to be more accurate than the thermometer, matches with balloon data and covers far more coverage of the planet then surface temperatures ever will even if they were 50 x more.

AndyG55
July 30, 2015 4:27 pm

Its going to be HILARIOUS watching the antics of the climate bletheren and salesmen when the current drop in solar activity starts to kick in.
Even a small downward trend in REAL temperatures will cause massive panic amongst them. (Even more than now)
Popcorn time , for sure 🙂

July 30, 2015 4:28 pm

Robert Way left a stinker of a comment on my blog about the fact that other’s model vs temp comparisons aren’t done right and if it is models do agree with observations.
I suppose if you crank models down a third, crank sea temps up a third and then have a 1/3 difference in your CI, models are magically in agreement!
Eureka! Good science finally!

Menicholas
July 30, 2015 4:40 pm

Well, after reading this article and all the comments, I am saddened that this new paper has not ended all disagreement and settled the entire matter of global warming, like it was intended and supposed to do.
I am going to hold out the hope that the NEXT paper which attempts to explain and reconcile everything will finally do the job.
It seems we are ever so close to having everyone converge on the same point of view and reading of the “facts”.
*rolls the eyes*
So close!
So close, and yet…
*

Greg
July 30, 2015 4:40 pm

“Any remaining differences may be explained by the recent temporary fluctuation in the rate of global warming.”
In other words, any remaining differences between the models and actual observations, may be explained by the actual observations being different than the models?

Louis Hunt
Reply to  Greg
July 30, 2015 7:14 pm

Which remaining differences are only temporary because the models say so.

johann wundersamer
July 30, 2015 5:29 pm

Zeke,
‘compare
from the models to the observations. Otherwise you end up with a bias because models have air temperature over oceans warming a bit faster than sea surface temperature.’
____
compare, what for?
You’re already biased showing models leading reality, CO2 ahead of temperature.
____
compare FROM MODELS
TO OBSERVATIONS ?
____
from Hollywood Matrix
to pay the rent in LA ?

MarkW
July 30, 2015 5:45 pm

We can make the models look better by adding even more bad sea temperature data to the real world record.

July 30, 2015 5:46 pm

If, over the past 10-15 years, we have not known “how to assemble the data” of the past 10-15 years, how can we have been correctly “assembling the data” of the past 100-150 years?

July 30, 2015 5:50 pm

Cowtan et al have made an astounding admission. That the wrong data set has been used to evaluate the models.
This is important because it established that the wrong data set was used to train the models. As since the models were trained incorrectly, the cannot be expected to perform correctly.
The models report atmospheric temperatures. As Dr Cowtan says:”you need to compare apples with apples”. This applies to model training as well as model evaluation.
As such, if Cowtan et al are correct, then the model training must also be faulty. And with faulty training, no model can hope to deliver the correct answer, except by accident.
This then explains the divergence. FAULTY TRAINING. This is a HUGE ISSUE.

Menicholas
Reply to  ferdberple
July 30, 2015 5:57 pm

Yes, I think you may be right Mr. Berple.
Either that or this whole thing is a bunch of made up gobbledygook and means nothing, and the models are just wrong because they fail to model the atmosphere accurately, have way to grainy of a resolution, use faulty reasoning in their conception, overestimate some feedbacks, fail to account for others, leave clouds and solar variability out, and all the other stuff that has been discussed up to now.
Or what you said…
Either way.

Reply to  Menicholas
July 30, 2015 6:10 pm

Even if the models are 100% correct on all the other possible issues. You cannot train a dog to be a duck and expect it to fly.

AndyG55
Reply to  Menicholas
July 30, 2015 7:43 pm

July 30, 2015 6:20 pm

Dear colleagues:
Predictions are products of the scientific method of investigation. Projections are products of a pseudoscientific method of investigation. Thus, “prediction” and “projection” should not be used as synonyms.

AndyG55
Reply to  Terry Oldberg
July 30, 2015 7:44 pm

The only thing that they can project in the pseudo-chaotic climate system is their own egos. !

Lew Skannen
July 30, 2015 8:27 pm

“Dr Cowtan’s primary field of research is X-ray crystallography …”
But he felt he needed to get a piece of the climate band wagon and after all, it is not as if any relevant qualifications are necessary.

Claude Harvey
Reply to  Lew Skannen
July 30, 2015 9:41 pm

I’m guessing Dr. Cowtan has figured out that a scientist, and especially an “X-ray crystallographer”, can’t a research grant to study squirrels in the park (or their crystals) unless that scientist somehow ties it to AGW. Man’s gotta’ EAT!

sabretruthtiger
July 30, 2015 10:07 pm

Wow, what a crock of cow dung. The alarmists models predict too far over the observed temperatures to be some chance fluctuation. The models are simply wrong because they’re wrong about the CO2/water vapour positive feedback relationship, the lack of a mid tropospheric hotspot proves that.
The bottom line is there’s no need to panic according to the evidence and that is not the reality the globalists looking to use CO2 as a means of economic world governance want to promote.

Reply to  sabretruthtiger
July 30, 2015 10:14 pm

sabretruthtiger:
That’s incorrect. The alarmist’s models project. They don’t predict.

richardscourtney
Reply to  Terry Oldberg
July 30, 2015 11:46 pm

Terry Oldberg:
That’s incorrect. The alarmist’s models predict.
Richard

Reply to  richardscourtney
July 31, 2015 7:59 am

Debate over usage of “predict” and “project” dates back to a post to the blog of “Nature” by Kevin Trenberth circa 2008. In the post, Trenberth insisted that the general circulation models did not make predictions. Instead, he asserted, they made projections.
Green and Armstrong reacted by polling professional climatologists on their use of the two terms. As I recall from reading Green and Armstrong’s subsequent journal article, most climatologists used “prediction” in reference to the outputs from the models.
Green and Armstrong concluded from this evidence that the models made “predictions.” Thereupon they compared the values of features of the models to those of “scientific” models. They found that the match was poor. Thus, they concluded that the models were not “scientific.” Later, I reached the same conclusion but by a different argument.
In separate articles, Vincent Gray and I demonstrated that climatologists were repeatedly guilty of applications of the equivocation fallacy. According to Gray this practice had been so successful in deceiving people as to have led to the “triumph of doublespeak.” “Doublespeak” is a synonym for “equivocation.”
Applications of the equivocation fallacy are prevented when a monosemic language is used in making arguments. In a paper ( http://wmbriggs.com/post/7923/ ) I present a list of terms which, if used, would halt applications of this fallacy. The suggested terminology follows Trenberth’s suggestion of distinguishing between “predict” and “project.” Any set of terms that distinguishes between models having underlying statistical populations and models lacking underlying statistical populations would have the same effect. The models of the alarmists are of the latter type. They are unscientific and otherwise unsuited to the task of regulating Earth’s climate but are being applied to this task as a result of the phenomenon that Vincent Gray calls the “triumph of doublespeak.”

Reply to  Terry Oldberg
July 31, 2015 8:09 am

Terry, do you, or do you not utilize the projections made by weather forecasting models when planning outdoor activities such as picnics, travel, etc.?

Reply to  Joel D. Jackson
July 31, 2015 9:02 am

What’s the relevancy?

Reply to  Terry Oldberg
July 31, 2015 9:05 am

[Comment deleted. commenter using fake identity, deleted per WUWT policy –mod]

richardscourtney
Reply to  Terry Oldberg
August 1, 2015 9:26 am

Terry Oldberg:
I repeat, the alarmist’s models predict.
Equivocation about the matter is silly. But I have met it before.
Long ago, in 2000, I gave a presentation on climate model performance at the US Congress, Washington, DC.
There were questions after my presentation and one of the questioners asserted that the IPCC doesn’t provide predictions. The assertion is only true if one accepts that the IPCC reporting climate model predictions is not a provision of predictions.
So, I replied saying,
“Sir, there is much you say that I agree, but not all.
For example, you say the IPCC doesn’t provide predictions.
The IPCC says it is going to warm.
I call that a prediction.”
The questioner was not sufficiently stupid for him to dispute the fact that climate models predict warming.
Richard

Reply to  richardscourtney
August 1, 2015 10:00 am

richardscourtney:
The argument that you have repeated remains an application of the fallacy of argument by assertion.

kim
Reply to  Terry Oldberg
August 1, 2015 10:12 am

Predictions, projections, shoot ’em all; let Gaia assert ’em out.
===================

Reply to  kim
August 1, 2015 10:26 am

What say?

richardscourtney
Reply to  Terry Oldberg
August 1, 2015 3:04 pm

Terry Oldberg:
The climate models predict warming: they all do.
That is NOT “argument by assertion”: it is a statement of empirical observation.
You took the trouble to repeat your silly and untrue assertion that climate models don’t predict but you forgot to provide the long-awaited explanation of what you mean by an “event”.
Please correct your oversight.
Richard

Reply to  richardscourtney
August 1, 2015 4:46 pm

richardscourtney:
Let’s try this. An argument with a true conclusion aka syllogism has three lines. The form is:
Major premise
Minor premise
Conclusion
The argument that “climate models predict” lacks a major premise and a minor premise. As this argument is not of the form of a syllogism there is not a logical reason for belief in the truth of the conclusion of this argument, namely that “climate models predict.”

richardscourtney
Reply to  Terry Oldberg
August 1, 2015 11:03 pm

Terry Oldberg:
No your “try” did not work because it was meaningless gobbledygook.
Try this.
You need to accept the reality that – as every body knows and can see – the models predict and their predictions have proven to be wrong to date.
Also, you have still failed to provide the long-awaited explanation of what you mean by an “event”.
Richard

Reply to  richardscourtney
August 2, 2015 8:42 am

richardscourtney:
In the English vernacular, “predict” has a number of different meanings. For use in scientific research one needs a single, precise meaning that is drawn from the field of probability theory and statistics.
A model that “predicts” under this scientific use of the term leaves telltale signs that include: a sample space, frequencies, relative frequencies, relative frequency values, probabilities, probability values, sampling units, unit events and validation or invalidation of the model in a test of it. In AR4 the report of Working Group I exhibits none of these signs. The signs that it exhibits are possessed by the entities that Dr. Trenberth calls “projections.” Projections can neither be validated nor invalidated. However they can be “evaluated.” AR4 exhibits “evaluation” but not “validation” of its general circulation models. It is validation of a model that makes of it a scientific theory. Thus none of the general circulation models are scientific.
In its early assessment reports, the IPCC claimed its general circulation models to be “validated.” In the paper entitled “Spinning the Climate” Dr. Vincent Gray reports informing IPCC management that: a) the models were not validated and b) were insusceptible to being validated. The management responded by replacing the word “validate” with the similar-sounding word “evaluate.” People with weak to nonexistent grasps of probability theory and statistics such as yourself failed to note the difference. Some, including yourself, persistently exhibited their ignorance by insisting upon calling a projection a “prediction.”
To call a projection a prediction has the downside of creating arguments of the type that is called an “equivocation.” It is an argument that looks to a person as ignorant as yourself to be a syllogism. However, while the conclusion of a syllogism is true, the conclusion of an equivocation is false or unproved.

Reply to  Terry Oldberg
August 2, 2015 8:56 am

A model that “predicts” under this scientific use of the term leaves telltale signs that include: a sample space, frequencies, relative frequencies, relative frequency values, probabilities, probability values, sampling units, unit events and validation or invalidation of the model in a test of it.
Not at all. A prediction made by application of known [or assumed] physical laws [most scientific predictions] does not need any of those ‘signs’. Some typical examples:
The prediction of the return of Halley’s comet
The prediction of the position of the the planet Neptune
The prediction of the deflection of light by mass in General Relativity
The prediction of the size of Solar cycle 24
The prediction of the total solar eclipse in 2017
The notion of an ‘event’ does not enter in those scientific predictions; there is no ‘sample space’, etc.
You seem to have no idea about what scientific predictions are.

Reply to  lsvalgaard
August 2, 2015 10:05 am

lsvalgaard:
Thank you for giving me the opportunity to clarify.
As you use the word “prediction” it may or may not be the product of a conditional prediction aka “predictive inference.” A predictive inference has the properties of being falsifiable and conveying information to the user of the associated model. Absent a predictive inference, there is an absence of falsifiability and information.
The entities that Dr. Trenberth calls “projections” are not the product of a predictive inference. Thus the associated model lacks falsifiability and conveys no information. To call them “predictions” is to make of “prediction” a word with dual meanings. In one of these a “prediction” is the product of a model that is non-falsifiable and conveys no information. In the other it is the product of a model that is falsifiable and conveys information. When this dual meaning “prediction” is used in making an argument, this argument is an example of an equivocation. One cannot draw a logically draw a conclusion from an equivocation. To draw one is the “equivocation fallacy.” Applications of this fallacy are common in making climatological arguments ( http://wmbriggs.com/post/7923/ ).
Applications of the equivocation fallacy can be avoided through maintenance of the distinction made by Trenberth between a “prediction” and a “projection.” Maintenance of it has no downside unless one’s purpose is deception.

Reply to  Terry Oldberg
August 2, 2015 10:14 am

As you use the word “prediction” it may or may not be the product of a conditional prediction aka “predictive inference.” A predictive inference has the properties of being falsifiable
All my examples [and almost all scientific predictions] are eminently falsifiable [otherwise they would not be scientific].
Again: you have no idea what you are talking about. I know you think you have, but you are as wrong as one can be. What Trenberth may have said or meant is irrelevant. The climate models are supposed [and claimed] to be based on the physics of the situation, not on statistics. This is not a word-game, but hard-nosed physical science. And it is not about ‘my use of the word “prediction”‘, it is about the generally accepted use of that word in science.

Reply to  lsvalgaard
August 2, 2015 4:21 pm

lsvalgaard:
In my message to you I asserted that your use of “prediction” makes no distinction between whether this “prediction” is or is not the product of a “conditional prediction” aka “predictive inference.” Thus this usage sets up an application of the equivocation fallacy. Though this was at the heart of my argument you ignored it thus reaching the false conclusion that “you have no idea what you are talking about.”
Perhaps you have read the late Ed Jaynes’s book “Probability theory: the logic of science.” I stand with Jaynes. To eliminate probability theory and statistics from science is to divorce it from logic. If you disagree with me and with Jaynes this could be a fruitful topic for discussion.

Reply to  Terry Oldberg
August 2, 2015 4:57 pm

To eliminate probability theory and statistics from science is to divorce it from logic
Most scientific predictions based on physical models are not about probability [although the may predict a probability] and certainly not about statistics, and even less [if possible] about logic. The examples I gave illustrate that abundantly. From experiment we derive physical laws [with very few exceptions] or relationships expressible as mathematical equations. From some initial conditions we predict events [future or past]. If the prediction fails, the laws or the relationship or the assumed initial conditions are falsified. If the prediction is successful, we gain confidence in what went into it. As simple as that. No verbal or philosophical gymnastics needed. And we never, ever do ‘projections’. There is little need to discuss any of this with non-scientists who have never made a scientific prediction.

Reply to  lsvalgaard
August 3, 2015 11:46 am

You appear to overlook the fact that circumstances arise in practice in which the values of probabilities are limited to 0 and 1. This produces the classical logic. If the equations that you reference express logical relationships then they conform to the classical logic or the more general probabilistic logic. Mathematical relations conform to the classical logic.
The classical logic applies to situations for which information needed for a deductive conclusion from an argument is not missing. In the environment in which a scientific researcher usually works, information is missing. Thus, the classical logic is inapplicable.
Global warming climatology is one of the many fields of research for which information is missing. Thus, mathematical reasoning is of limited usefulness for it.
Global warming climatologists proceed as though information were not missing. This is expressed by their expectation of success from an approach in which solution of coupled differential equations produces a set of projections. This has led them into the costly blunder of creating models that convey no information to a policy maker and using scare tactics to induce politicians to use these models in policy making.

Reply to  Terry Oldberg
August 1, 2015 11:27 pm

The only way to respond to such a question is “I do” or “I don’t”
What about “F*ck off you crap strawman builder?”
That’s now four ways and counting

Reply to  philincalifornia
August 2, 2015 8:48 am

philincalifornia:
Its better if we avoid swearing at each other.

richardscourtney
Reply to  Terry Oldberg
August 2, 2015 9:15 am

Terry Oldberg:
In contrast to the meaningless twaddle you spout, the word ‘prediction’ has a clear and unequivocal meaning. Clearly, you do not know the meaning of ‘prediction’ and it is obvious that use of a dictionary is beyond you so I will help.
All dictionaries agree on the meaning of ‘prediction’ and this is the definition in the OED:

prediction
See definition in Oxford Advanced Learner’s Dictionary
Line breaks: pre|dic¦tion
Pronunciation: /prɪˈdɪkʃ(ə)n/
Definition of prediction in English:
noun
1A thing predicted; a forecast:
‘a prediction that economic growth would resume’
1.1 [mass noun] The action of predicting something:
‘the prediction of future behaviour’
Origin
Mid 16th century: from Latin i praedictio(n-) , from praedicere ‘make known beforehand’ (see predict).

Climate models PREDICT (i.e. make forecasts).
Richard

richardscourtney
Reply to  Terry Oldberg
August 2, 2015 9:17 am

Terry Oldberg:
PS You have still failed to provide the long-awaited explanation of what you mean by an “event”.
Richard

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 1:00 pm

Terry Oldberg is correct. His discussion of the meaning of prediction in science is exactly right. In particular, here, where he distinguishes between prediction and projection.
Prediction implies falsifiability. Unfalsifiable statements about the future, no matter how precise, are not predictions. The reason is that such statements convey no causal information. I.e., a guess can be arbitrarily precise, but its falsification by subsequent observation does not increase our knowledge content. Guesses are not deductions from a set of logically rigorous statements about physical causality.
Climate model projections are not physically unique and have no physical meaning, as I noted here. No physical meaning means their output is not a rigorously specific deductive inference regarding the future behavior of the terrestrial climate. No deductive inference is identical with no prediction.
While it is true that climate models include hard physics, the centrally pertinent question is whether that physics represents a complete, or even adequate, physical model of the terrestrial climate. The magnitude of cloud errors alone produced by advanced climate models clearly indicates that the physics is either wrong or incomplete. See also more CMIP5 error. Model errors are so large that their projections must quickly diverge from the future trajectory of the physically real climate. The divergence reflects physical error, not dynamical chaos. Uncertainty due to error becomes so large so quickly, that the projections lose any physical meaning and therefore have no predictive power. In that event, whatever the climate is eventually observed to do can neither verify nor falsifiy the model.
Terry Oldberg’s distinction between prediction and projection in terms of falsifiability is exactly the standard of science. So, insistent statements to the contrary notwithstanding, he appears to know exactly what he’s talking about. And from my own experience of his posts, that seems always the case.

Reply to  Pat Frank
August 2, 2015 1:09 pm

Prediction implies falsifiability. Unfalsifiable statements about the future, no matter how precise, are not predictions
Climate model predictions are eminently falsifiable [one might argue that they have already been falsified].
Terry and you, it seems, have no idea what you are talking about. Have you ever made a scientific prediction?

Reply to  lsvalgaard
August 2, 2015 4:39 pm

I’ll answer your question to Mr. Frank for myself. Over a period of 13 years I held the lead role in the design and management of a succession of scientific studies on behalf of the electric utilities of the U.S. I specialized in building falsifiable predictive models. This work resulted in some of the first applications of information theory in the construction of a model. While the IPCC general circulation models convey no information to a policy maker these models conveyed the maximum possible information to him or her.

Reply to  Terry Oldberg
August 2, 2015 5:01 pm

applications of information theory in the construction of a model
You don’t build scientific models on that basis, but on the physics and the engineering constraints of the subject matter. Otherwise you are just making curve fitting, with limited predictive capability.

Reply to  lsvalgaard
August 3, 2015 11:19 am

Actually, what we do using information theory is build models that are statistically validated and reflect all of the available information but no more. Contrary to your assumption, curve fitting is not involved. Among the well known products of this method of construction for a model are thermodynamics and the modern theory of telecommunications. When you sit down to watch your HDTV you are the beneficiary of this method of construction for a model.

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 1:19 pm

Leif, with respect to Terry Oldberg’s categories and your example of Halley’s Comet:
Sample space: the solar system
Frequency: comet periodicity
Relative frequency: periodicity with respect to long times
Relative frequency values: periodicity magnitudes over time
Probabilities: likelihood of continued observed and/or predicted periodicities
Probability values: specification of likelihood magnitudes of periodicity variation over time
Sampling units: dimensional units (time, distance, orbital ellipticity, etc.)
Unit events: specified instances of future appearance.
Your other examples can be similarly parsed.
Terry uses generalized terms that take some thought to understand in the specific context of any field of science. Anyone in a serious conversation owes it to him to make the effort to figure out what he’s saying.

Reply to  Pat Frank
August 2, 2015 2:17 pm

Your other examples can be similarly parsed.
Nonsense.

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 1:32 pm

Leif, climate models are not falsifiable in the scientific sense. I included a link to that in my previous post.
The fact that model projections do not conform to the observed trajectory of the evolving climate merely tells us that their guesses are wrong. That’s naïve falsifiability, not scientific falsifiability.
Do you understand the difference between naïve and scientific falsifiability, Lief?
If you do, then you’ll know my point stands.
If you don’t then you’ll argue on.
Arguing on will demonstrate no understanding that merely being shown wrong is not necessarily identical with scientific falsifiability.

Reply to  Pat Frank
August 2, 2015 2:25 pm

Every prediction is qualified. Often we don’t know ALL of the physics and will have to parameterize our unknowns, often the physics is only approximately right [e.g. Newtonian gravity], always we never know all of the initial conditions with enough precision, etc. None of that matters: we make predictions based on what we know, surmise, and guess. In the absurd limit you and Terry are advocating, there can be NO predictions ever. As a working scientist I have no problems with calling a spade a spade and a prediction a prediction. As I said, you guys have no idea.

Reply to  lsvalgaard
August 2, 2015 4:42 pm

You have no problem with applying the equivocation fallacy evidently.

Reply to  Terry Oldberg
August 2, 2015 5:03 pm

equivocation fallacy
Does not apply in this context. What I described is how science works, whether you understand it or not.

Reply to  lsvalgaard
August 3, 2015 11:12 am

To the contrary, the equivocation fallacy applies to any situation in which a term changes meaning in the midst of an argument. Under your version of reality, “scientific” changes meaning at the whim of a “scientist.”

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 5:01 pm

You contradict yourself, Leif. You wrote, “Every prediction is qualified.” followed by , “In the absurd limit you and Terry are advocating, there can be NO predictions ever.
My prior post included a linked analysis that was all about qualifying climate model projections in terms of their physical uncertainty.
Likewise, here’s what Terry wrote, “your use of “prediction” makes no distinction between whether this “prediction” is or is not the product of a “conditional prediction” aka “predictive inference.”
Both Terry and I are clearly talking about qualified predictions. We all know there can be no prediction in science without some qualification concerning its physical uncertainty bound. That concept is in obvious evidence in our posts.
But you’ve ignored it.
At best, you’re not doing either Terry or I the courtesy of a careful reading. At worst, you can’t brook contradiction. Whatever the source, the content of your riposte does not rise above a straw man argument.

Reply to  Pat Frank
August 2, 2015 5:14 pm

qualifying climate model projections
Projections by definition are not predictions and are not science, but a statement of belief. By limiting yourself to projections you divorce yourself from discussing scientific predictions. ‘Projections’ is the straw man. Climate models are concerned with predictions, not projections, e.g. https://www.e-education.psu.edu/earth501/content/p5_p10.html
Now, part of the model may be projections, e.g. of future CO2 emissions, but that is OK as we here can play a ‘what-if’ game. With the assumed [projected] input the model predicts a falsifiable outcome.
As I said, you guys don’t know what you are talking about.

Reply to  lsvalgaard
August 2, 2015 8:15 pm

There is a disconnect between you and the government of the United States. You say the models make predictions. The government says the models make projections ( http://www.epa.gov/climatechange/science/future.html ). Who is right and why?

Reply to  Terry Oldberg
August 2, 2015 8:40 pm

The models make predictions based on projections of future emissions. Try to understand the difference. Future emission is a free parameter and cannot be predicted and the models do not concern themselves with that, but take the future emissions as input. As simple as that.

Reply to  lsvalgaard
August 2, 2015 9:10 pm

lsvalgaard:
Your argument has a shortcoming that is independent of the magnitudes of future CO2 emissions. It is that your “predictions” are not the product of a predictive inference. “Predictions” matching this description lack falsifiability and convey no information to a policy maker about the outcomes from his/her policy decisions. If you are skeptical about my allegations I’d be pleased to provide a detailed argument for your review.

Reply to  Terry Oldberg
August 2, 2015 9:22 pm

It is that your “predictions” are not the product of a predictive inference.
They are the product of solving the equations of motions of the atmosphere for given scenarios. That is good enough for me [and ought to be good enough for you too]. No ‘inference’ involved, just plain old physics.

Reply to  lsvalgaard
August 3, 2015 8:49 am

lsvalgaard:
I disagree. A model is a procedure for making inferences. The builder of a model is repeatedly faced with selection of the inferences that will be made from among the many candidates. Builders of global warming models make this selection ineptly with the result that their models are non-falsifiable and convey no information to the users of them. They are unscientific and worthless for the intended purpose.

Reply to  Pat Frank
August 2, 2015 5:26 pm

The dictionary definition of ‘projection’ is
“an estimate or forecast of a future situation or trend based on a study of present ones”
This is predicated on the belief that the present one and its trend are good predictors of the future [that is certainly often the case: I live in California and based on the present situation I can with confidence project that it will not rain tomorrow], but it is not a scientific prediction as it does not follow from solution of the equations with appropriate input that govern the evolution of the weather.

Reply to  lsvalgaard
August 2, 2015 8:18 pm

To the contrary, you cannot project with confidence that it will not rain tomorrow because “confidence” is a statistical concept but “project” is not.

Reply to  Terry Oldberg
August 2, 2015 8:30 pm

Confidence can be measured by how much one would wager on the outcome. I would wager quite a lot based on experience. No statistics needed (the future is not part of the sample space).

Reply to  lsvalgaard
August 2, 2015 8:52 pm

Though that is not the “confidence” of statistics it sounds as though you are “confident” of something. Are you confident of the outcome of an event? This can’t be the case as you have dismissed the import of probability and statistics. What is it that you are confident of if this is not the outcome of an event?

Reply to  Terry Oldberg
August 2, 2015 8:56 pm

if this is not the outcome of an event?
Since you have not defined what an ‘event’ is [see your discussion with Richard] it is unclear what you mean. To perhaps clarity I would say that the event is the outcome.

Reply to  lsvalgaard
August 2, 2015 9:34 pm

lsvalgaard
Thank you for revealing your thinking. To think as you do that “the event is the outcome” is a mistake that sometimes arises among people who are confused about probability theory and statistics. Actually rather than being an event an outcome is a description of an event aka state of nature. Folks who think an event is an outcome are prone to confusing an IPCC-style “evaluation” with a statistical “validation” for though there are not the events that are required for validation it seems to these folks as though there are. Thinking that a pseudoscientific theory has been validated these folks mistake it for a scientific theory.

Reply to  Terry Oldberg
August 2, 2015 9:39 pm

outcome is a description of an event
Nonsense, the ‘outcome’ is what actually happens. If I flip a coin and get ‘heads’, the outcome of the flip is ‘heads’. The ‘event’ [if you wish to mislead] is that a flip takes place, the outcome is ‘heads’ [what actually happens].

Reply to  lsvalgaard
August 2, 2015 10:00 pm

You stated (incorrectly) that “the event is the outcome.” Do you mean to revise this statement?

Reply to  Terry Oldberg
August 2, 2015 10:06 pm

Since you have not defined ‘event’ I sought to clarify what you might have meant [as it comes across]. I have already explained what I think. I’ll repeat it here for your convenience:
the ‘outcome’ is what actually happens. If I flip a coin and get ‘heads’, the outcome of the flip is ‘heads’. The ‘event’ [if you wish to mislead] is that a flip takes place, the outcome is ‘heads’ [what actually happens].

Reply to  lsvalgaard
August 2, 2015 10:36 pm

lsvalgaard:
Actually, the definition of “event” in probability theory was defined before my birth by mathematicians thus needing no definition by me. Thus Mr. Courtney’s persistent demand for me to define the term is nonsensical and cranky.
Regarding your contention that an outcome is an event is this still your contention? Is ‘heads’ an example of an event? Is ‘tails’? Or is it the coin flip?

Reply to  Terry Oldberg
August 2, 2015 10:53 pm

For this particular case, the event is the flip, and it can have two outcomes, ‘heads’ and ‘tails’.
Remember that Science is not statistics and probability theory. Those are handy tools that can be used [and misused] as the situation calls for. In your case it seems that if you are a hammer everything looks like a nail.
But you have gotten in so deep now that you have lost sight of the issue and have stooped to irrelevancies.
You may benefit from studying this paper by Frisch:
http://citations.springer.com/item?doi=10.1007/s13194-015-0110-4
http://adsabs.harvard.edu/abs/2014AGUFMGC43G..04F
“Model tuning is unavoidable in climate models. This raises the question whether data used in tuning or calibration can also be used in evaluating a model’s performance or skill. In the philosophical literature this question is discussed as the problem of old evidence: is a model more highly confirmed by novel evidence predicted by the model or is evidence that is accommodated by the model during model construction equally as confirmatory of the model? In this paper I present several conditions under which a weak predictivism holds—conditions under which predictive success is more highly confirmatory of a model’s empirical performance than mere accommodation—and argue that these conditions are met in the case of climate modeling. In particular, I argue that predictive success can be evidence that a model has certain ‘good-making’ features that are ‘epistemically opaque’—that is, the presence of which is difficult to detect otherwise. I also propose a Bayesian formulation of the predictivist thesis.”

Reply to  lsvalgaard
August 2, 2015 11:14 pm

lsvalgaard:
Thus, an outcome is not an event though you claimed the opposite a few hours ago. Interestingly, for a statistical ignoramous to think an outcome is an event can lead him/her to thinking that an “evaluation” of a model is a “validation” of this model though validation is impossible because the underlying statistical population does not exist. Isn’t this what we have in modern global warming climatology: an error in thinking among people with a dim grasp of statistical ideas that has gotten so out of hand as to be about to cost us trillions of dollars in expenditures for replacing fossil fuels by renewables?

Reply to  Terry Oldberg
August 2, 2015 11:24 pm

an outcome is an event
I explained to you that the event was the flip, the outcome was either heads or tails. Try to grasp that.
You should study:
http://adsabs.harvard.edu/abs/2014AGUFMGC43G..04F
“Model tuning is unavoidable in climate models. This raises the question whether data used in tuning or calibration can also be used in evaluating a model’s performance or skill. In the philosophical literature this question is discussed as the problem of old evidence: is a model more highly confirmed by novel evidence predicted by the model or is evidence that is accommodated by the model during model construction equally as confirmatory of the model? In this paper I present several conditions under which a weak predictivism holds—conditions under which predictive success is more highly confirmatory of a model’s empirical performance than mere accommodation—and argue that these conditions are met in the case of climate modeling. In particular, I argue that predictive success can be evidence that a model has certain ‘good-making’ features that are ‘epistemically opaque’—that is, the presence of which is difficult to detect otherwise. I also propose a Bayesian formulation of the predictivist thesis.”

Reply to  lsvalgaard
August 3, 2015 11:51 am

In English, “an outcome is an event” implies the equivalence of an outcome to an event. Perhaps you meant to say “an event has an outcome.”

Reply to  lsvalgaard
August 3, 2015 8:33 am

lsvalgaard
I am glad to see that you have reversed your position and now agree with me that the event is the coin flip while heads and tails are the outcomes. Mr. Courtney appears to think heads and tails are the events. This is why, I believe, he harangues me to supply “my” definition of “event” and why I continue to refer him to the literature. Now that we agree on the respective roles of events and outcomes, please cease joining Mr. Courtney in his harangue.
Regarding a possible role for statistical ideas in global warming climatology, climatologists already exhibit fondness for statistical ideas when these take the form of parameterized models and Bayesian parameter estimation. This fondness has led them to create models that make non-falsifiable claims and convey no information to their users. Models with these characteristics should be described as making “projections” according to Dr. Trenberth but should be described as making “predictions” according to Mr. Courtney and yourself. This choice of language makes of “prediction” a polysemic term. When used in making a climatological argument it makes of this argument an equivocation. People, thinking it to be a syllogism, draw conclusions from this argument. However unlike a syllogism, an equivocation does not have a true conclusion. By this mechanism people draw conclusions from climatological arguments that are false or unproved thinking they are true. You can help us to avoid this phenomenon by heeding Dr. Trenberth’s advice.

Reply to  Pat Frank
August 2, 2015 5:31 pm

Perhaps your use of ‘projection’ is of the nature described here;
http://www.urbandictionary.com/define.php?term=Projection
” An unconscious self-defence mechanism characterised by a person unconsciously attributing their own issues onto someone or something else as a form of delusion and denial”
etc

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 5:30 pm

Leif, you wrote, “With the assumed [projected] input the model predicts a falsifiable outcome.” (your bold).
You’re wrong, Leif.
If you actually do think a 3±15 C climate model air temperature expectation value is falsifiable, or amounts to a physical prediction, then you, in demonstrated fact, don’t know what you’re talking about.

Reply to  Pat Frank
August 2, 2015 5:39 pm

If you actually do think a 3±15 C climate model air temperature expectation value is falsifiable
Your error estimate is junk, but apart from that, such a model is certainly falsifiable in principle, even if not in actuality, and thus qualifies as [very poor] science. Your belief, on the other hand, that it is not, just betrays your bias.

Reply to  lsvalgaard
August 2, 2015 8:29 pm

That claims made by a model are “falsifiable” implies that the associated propositions have truth-values. What are these propositions?

Reply to  Terry Oldberg
August 2, 2015 8:35 pm

What are these propositions
You are thrashing around. The result of the prediction is what it is. It will have an uncertainty, and if the observed data are too far outside the uncertainty, the model is falsified. As easy as that.

Reply to  lsvalgaard
August 2, 2015 8:55 pm

“The result of the prediction is what it is” is circular and unresponsive.

Reply to  Terry Oldberg
August 2, 2015 8:58 pm

No, it is a statement of fact. If you feel it is not responsive to your comments, perhaps you should review and revise those offending comments.

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 6:17 pm

Leif, you wrote, “Projections by definition are not predictions and are not science, but a statement of belief.
Terry’s entire point, e.g., here right at the start, and mine, e.g., here, right at the start, has been that projections are not predictions.
The fact that you finally elaborate this idea in your post just means you’ve come to agree with us without having to directly admit it.
You wrote, “I live in California and based on the present situation I can with confidence project that it will not rain tomorrow]” It’s presently raining in Alturas, CA, with a 50% chance of extending into tomorrow. Oh, well, Leif.
You link to Penn State as evidence that climate models make predictions. But that’s just an argument from authority. Perusal of the site shows that climate models, in fact, do not make predictions in the scientific sense, and in fact are incapable of making such predictions.
For example, Penn State Figures 1 and 3 show that climate models will project the same air temperature for a large number of different climate energy states, and different temperatures for the same climate energy state. The Figures they present as predictions — a diagnosis with which you agreed — instead show that climate models are incapable of producing unique solutions to the problem of the climate energy state.
When their physical error is propagated through their air temperature projections, the uncertainty limits are huge. That means climate models are not even capable of producing usefully constrained solutions to the problem of the climate energy state. I have demonstrated that fact, here; an argument you have not yet seen fit to dispute.
Figures 1 and 3 at the Penn State site also show that the writers of that essay think that model precision is a measure of accuracy. It’s not. This mistake on their part yet again demonstrates the banal truth that climate modelers are not scientists. They have no idea of the meaning of prediction in the scientific sense.
The fact that you think such pictures constitute predictions makes me wonder whether you apply critical thinking outside your own discipline.
In short, Leif, you’re wrong. Climate models don’t make predictions in the scientific sense. They are incapable of making predictions in the scientific sense. Terry Oldberg has been correct all along.

Reply to  Pat Frank
August 2, 2015 7:15 pm

Obviously I meant rain where I live.
But to the main point: climate models attempt to predict based on physics, not on curve fitting to the current trend, and are thus predictions, not projections. That they are not any good is another matter.
About your +/-15 C: that is completely unsupported, no climate model asserts that.
Scientific is what scientists [like me] say it is. That your bias makes you believe otherwise is your problem and can simply be dismissed [herewith done].

Reply to  lsvalgaard
August 2, 2015 8:37 pm

That “Scientific is what scientists [like me] say it is” is an oxymoron.

Reply to  Terry Oldberg
August 2, 2015 8:44 pm

An oxymoron is juxtaposing elements that appear to be contradictory. What are those elements here. Please be as specific as you can in order not to appear moronic.

Reply to  lsvalgaard
August 3, 2015 11:03 am

“Scientific is what scientists [like me] say it is” makes “scientific” polysemic thus being a perfect vehicle for applications of the equivocation fallacy.

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 6:20 pm

Leif, you wrote, “Your error estimate is junk,….
Your unsupported word is worthless, Leif. Let’s see you demonstrate your point.

kim
Reply to  Terry Oldberg
August 2, 2015 8:37 pm

And the Wichita Lineman is still on the line by the time you get to Phoenix rain will be just fine.
=================

Reply to  kim
August 2, 2015 8:57 pm

We’re in the midst of a serious conversation. If you would omit the doggerel for the time being I would appreciate same.

Reply to  Terry Oldberg
August 2, 2015 9:02 pm

While I agree that Kim’s comment is noisy, useless, and unnecessary chatter. I disagree that your comments are in any way serious. As I said you don’t know what you are talking about. As Mark Twain said: “it is not what you know that gets you in trouble, it is what you know that ain’t”

Pat Frank
Reply to  Terry Oldberg
August 2, 2015 9:09 pm

Leif, on the contrary, climate models are curve fit to past observables as a way to choose their parameter sets. Then they are extrapolated to future climate using the parameters derived from the fits.
This curve fitting approach is called model tuning. It’s very well known that various climate models are able to reproduce past observables, despite factor of 2-3 differences in so-called climate sensitivity, because their chosen parameter sets have off-setting errors.
So, by your definition, namely that, “climate models attempt to predict based on physics, not on curve fitting to the current trend, and are thus predictions, not projections.“, climate models produce projections not predictions.