
Guest post by Ron House
As readers will know, I have been thinking about the hullabaloo about CO2 and global warming and I quickly concluded that CO2 is no threat, won’t do any significant warming (which would be good anyway), and is in fact 100% good for the planet. But someone said to me, if CO2 is no danger, that doesn’t mean that humans are not causing a danger in some other way. Of course I agreed with this, because there are lots of things humans are doing wrongly and thereby causing terrible damage to our world (and the CO2 storm in a teacup is distracting us all from fixing those real problems).
My friend then went on, however, to propose that the danger was still global warming and that the mechanism was, instead of CO2 greenhouse warming, the mere fact that human technology gives off heat. All the power used by all the machines and transport and so on eventually ends up as waste heat. Maybe that is in itself enough to cause us serious warming trouble? So I did some calculations.
According to the laws of thermodynamics, the process of doing useful work must necessarily lose some of the energy from the fuel in the form of waste heat; and that heat, well, heats. In other words, because of the huge extra amount of useful work we do, we create excess heat that would not have been here otherwise, and that heat has to either be dissipated somehow, or else raise the temperature.
The factors that have caused the ice ages, as we saw, are primarily small changes in insolation (heating) by the Sun. The changes can happen because the Sun’s energy output changes or because of cyclic changes in the Earth’s orbit and inclination, etc., changing the amount of heat that actually arrives on the surface. Changes in the Earth’s orbit are believed to be the triggers for the onset of ice ages, and the changes in heating caused by those changes are thought to be quite small compared to the total power output of the Sun. This might lead us to suspect that human-caused changes in the amount of heat at the surface might indeed have a significant effect on the climate.
To answer this question, we need to compare the amount of variation due to the Sun with the amount of heat emitted by industrial civilisation. if the latter is ‘in the same ballpark’ as the former, then human civilisation might be holding off the onset of a new ice age.
Although there is much dispute about the exact mechanism that causes the onset of ice ages, much of it doesn’t concern us right now because one basic fact is clear: somehow or other, the responsibility lies with changes in the amount of heat received from the Sun.
One theory is that the cause is Northern Hemisphere summer cooling. At our current stage in geological history, the North Pole is surrounded by land masses, which are snowed under every winter. If the summers became just a bit colder, then some of that winter snow would remain on the ground throughout summer, and would then turn to ice. The ice will reflect sunlight much better than green plants or dirt or even liquid water, so the cooling will accelerate and the next summer will be even colder and leave even more ice lying around. And so the planet falls into an ice age. Retained heat in the oceans slows down the changes and ‘smooths over’ short-term effects, but once the process starts, the killing ice eventually reclaims its deathly kingdom.
Dr David Archibald suggests that a key measure of this process is the amount of insolation at 65° north latitude. The power of the Sun at 65°N is about 476 Watts per square metre. That means that at midday in mid-summer at, say, Reykjavik (at 64°N, almost the only significant city anywhere close to 65°N), the Sun has about the power of five old-style incandescent light bulbs. When summer sun at this latitude is sufficient to melt the winter snowfall, all is well. Other factors in this calculation are the length of summer (because, for example, a longer, but slightly cooler summer might melt more ice than a shorter warmer one) and how high in the sky the Sun is in mid summer. And the higher it is in summer, the deeper and colder the long winter ‘night’ will be. The factors are complex and researchers disagree as to how exactly they should be combined in order to make good predictions, but some combination of these factors decides whether we bask in life-giving warmth or flee the deadly cold. We cannot hope to make predictions from the kind of short overview we are doing here, but we can get an idea of the magnitudes involved.
How much radiant energy the Sun has in the past or will in the future shine upon the Earth at this latitude can be reliably calculated from basic physical and astronomical properties of the way the Earth orbits the Sun and how that orbit changes with time. This is not an uncertain thing like the forecasts of climate models; it is not exactly easy to calculate, but it depends only upon the extremely well verified equations of Newtonian physics (or, if you prefer a few thousands of a percent more accuracy, relativity). If we didn’t know how to do these calculations, we could never have landed men on the Moon or flown discovery missions past Saturn and on to Uranus and Neptune. Yes, we do know how to make these calculations and we know it very reliably.
When the calculations are done, we find that at the depth of the last ice age, around 22,000 years ago, the Sun’s power (again at 65°N) was around 463Wm-2. On the other hand, at the height of our own interglacial, the Holocene, which occurred about 11,000 years ago (yes, we have been on the downward slope ever since—though you would never guess it from the hairy scary stories about warming in the media) the summer insolation at 65°N was about 527Wm-2. In other words, we have:
| What | When | Sun’s Power |
|---|---|---|
| Previous Ice Age | 22,000 years ago | 463Wm-2 |
| Holocene Peak | 11,000 years ago | 527Wm-2 |
| The Perfect Time | Now | 476Wm-2 |
From these figures, we may make the following inferences:
- The difference between peak warmth and deepest cold was around 55Wm-2;
- The current value, being only 13Wm-2 above the value at the depth of the ice age, is almost all the way back to ‘cold conditions’; it may be that only stored ocean heat is keeping us out of an ice age (for now).
Moving on, how do these power figures compare with human energy output (mainly by burning fossil fuels)?
Human energy usage in 2006 was 491 exajoules. This translates to an average power usage of 15.56 terawatts each second (divide by the number of seconds in a year). To compare this with the Sun’s power as discussed above, we need to average this over the entire planet. The Earth’s surface area is 510 million sq. km., which gives 30,500 W per sq. km, or 0.03Wm-2. One final adjustment is needed to allow us to do the comparison: the Sun’s insolation given above was as received at noon, whereas this figure is an average over the whole planet. Since the planet’s area is four times the areas of a circle of the same radius, we must multiply by four, giving about 0.12Wm-2 as our final figure for comparison.
The human energy output of about 0.12Wm-2 is clearly overpowered by even the smallest of the numbers we have looked at so far. The 13Wm-2 difference between ice age conditions and today is at least a hundred times larger than human energy output. We might delay a killer ice age slightly, but our heating of the planet is nowhere near large enough to save us.
Are we heating the Earth too much – with heat?
As readers will know, I have been thinking about the hullabaloo about CO2 and global warming and I quickly concluded that CO2 is no threat, won’t do any significant warming (which would be good anyway), and is in fact 100% good for the planet. But someone said to me, if CO2 is no danger, that doesn’t mean that humans are not causing a danger in some other way. Of course I agreed with this, because there are lots of things humans are doing wrongly and thereby causing terrible damage to our world (and the CO2 storm in a teacup is distracting us all from fixing those real problems).
My friend then went on, however, to propose that the danger was still global warming and that the mechanism was, instead of CO2 greenhouse warming, the mere fact that human technology gives off heat. All the power used by all the machines and transport and so on eventually ends up as waste heat. Maybe that is in itself enough to cause us serious warming trouble? So I did some calculations.
According to the laws of thermodynamics, the process of doing useful work must necessarily lose some of the energy from the fuel in the form of waste heat; and that heat, well, heats. In other words, because of the huge extra amount of useful work we do, we create excess heat that would not have been here otherwise, and that heat has to either be dissipated somehow, or else raise the temperature.
The factors that have caused the ice ages, as we saw, are primarily small changes in insolation (heating) by the Sun. The changes can happen because the Sun’s energy output changes or because of cyclic changes in the Earth’s orbit and inclination, etc., changing the amount of heat that actually arrives on the surface. Changes in the Earth’s orbit are believed to be the triggers for the onset of ice ages, and the changes in heating caused by those changes are thought to be quite small compared to the total power output of the Sun. This might lead us to suspect that human-caused changes in the amount of heat at the surface might indeed have a significant effect on the climate.
To answer this question, we need to compare the amount of variation due to the Sun with the amount of heat emitted by industrial civilisation. if the latter is ‘in the same ballpark’ as the former, then human civilisation might be holding off the onset of a new ice age.
Although there is much dispute about the exact mechanism that causes the onset of ice ages, much of it doesn’t concern us right now because one basic fact is clear: somehow or other, the responsibility lies with changes in the amount of heat received from the Sun.
One theory is that the cause is Northern Hemisphere summer cooling. At our current stage in geological history, the North Pole is surrounded by land masses, which are snowed under every winter. If the summers became just a bit colder, then some of that winter snow would remain on the ground throughout summer, and would then turn to ice. The ice will reflect sunlight much better than green plants or dirt or even liquid water, so the cooling will accelerate and the next summer will be even colder and leave even more ice lying around. And so the planet falls into an ice age. Retained heat in the oceans slows down the changes and ‘smooths over’ short-term effects, but once the process starts, the killing ice eventually reclaims its deathly kingdom.
Dr David Archibald suggests that a key measure of this process is the amount of insolation at 65° north latitude. The power of the Sun at 65°N is about 476 Watts per square metre. That means that at midday in mid-summer at, say, Reykjavik (at 64°N, almost the only significant city anywhere close to 65°N), the Sun has about the power of five old-style incandescent light bulbs. When summer sun at this latitude is sufficient to melt the winter snowfall, all is well. Other factors in this calculation are the length of summer (because, for example, a longer, but slightly cooler summer might melt more ice than a shorter warmer one) and how high in the sky the Sun is in mid summer. And the higher it is in summer, the deeper and colder the long winter ‘night’ will be. The factors are complex and researchers disagree as to how exactly they should be combined in order to make good predictions, but some combination of these factors decides whether we bask in life-giving warmth or flee the deadly cold. We cannot hope to make predictions from the kind of short overview we are doing here, but we can get an idea of the magnitudes involved.
How much radiant energy the Sun has in the past or will in the future shine upon the Earth at this latitude can be reliably calculated from basic physical and astronomical properties of the way the Earth orbits the Sun and how that orbit changes with time. This is not an uncertain thing like the forecasts of climate models; it is not exactly easy to calculate, but it depends only upon the extremely well verified equations of Newtonian physics (or, if you prefer a few thousands of a percent more accuracy, relativity). If we didn’t know how to do these calculations, we could never have landed men on the Moon or flown discovery missions past Saturn and on to Uranus and Neptune. Yes, we do know how to make these calculations and we know it very reliably.
When the calculations are done, we find that at the depth of the last ice age, around 22,000 years ago, the Sun’s power (again at 65°N) was around 463Wm-2. On the other hand, at the height of our own interglacial, the Holocene, which occurred about 11,000 years ago (yes, we have been on the downward slope ever since—though you would never guess it from the hairy scary stories about warming in the media) the summer insolation at 65°N was about 527Wm-2. In other words, we have:
| What | When | Sun’s Power |
|---|---|---|
| Previous Ice Age | 22,000 years ago | 463Wm-2 |
| Holocene Peak | 11,000 years ago | 527Wm-2 |
| The Perfect Time | Now | 476Wm-2 |
From these figures, we may make the following inferences:
-
- The difference between peak warmth and deepest cold was around 55Wm-2;
- The current value, being only 13Wm-2 above the value at the depth of the ice age, is almost all the way back to ‘cold conditions’; it may be that only stored ocean heat is keeping us out of an ice age (for now).
Moving on, how do these power figures compare with human energy output (mainly by burning fossil fuels)?
Human energy usage in 2006 was 491 exajoules. This translates to an average power usage of 15.56 terawatts each second (divide by the number of seconds in a year). To compare this with the Sun’s power as discussed above, we need to average this over the entire planet. The Earth’s surface area is 510 million sq. km., which gives 30,500 W per sq. km, or 0.03Wm-2. One final adjustment is needed to allow us to do the comparison: the Sun’s insolation given above was as received at noon, whereas this figure is an average over the whole planet. Since the planet’s area is four times the areas of a circle of the same radius, we must multiply by four, giving about 0.12Wm-2 as our final figure for comparison.
The human energy output of about 0.12Wm-2 is clearly overpowered by even the smallest of the numbers we have looked at so far. The 13Wm-2 difference between ice age conditions and today is at least a hundred times larger than human energy output. We might delay a killer ice age slightly, but our heating of the planet is nowhere near large enough to save us.
Are we heating the Earth too much – with heat?
Ron House June 3, 2010As readers will know, I have been thinking about the hullabaloo about CO2 and global warming and I quickly concluded that CO2 is no threat, won’t do any significant warming (which would be good anyway), and is in fact 100% good for the planet. But someone said to me, if CO2 is no danger, that doesn’t mean that humans are not causing a danger in some other way. Of course I agreed with this, because there are lots of things humans are doing wrongly and thereby causing terrible damage to our world (and the CO2 storm in a teacup is distracting us all from fixing those real problems).
My friend then went on, however, to propose that the danger was still global warming and that the mechanism was, instead of CO2 greenhouse warming, the mere fact that human technology gives off heat. All the power used by all the machines and transport and so on eventually ends up as waste heat. Maybe that is in itself enough to cause us serious warming trouble? So I did some calculations.
According to the laws of thermodynamics, the process of doing useful work must necessarily lose some of the energy from the fuel in the form of waste heat; and that heat, well, heats. In other words, because of the huge extra amount of useful work we do, we create excess heat that would not have been here otherwise, and that heat has to either be dissipated somehow, or else raise the temperature.
The factors that have caused the ice ages, as we saw, are primarily small changes in insolation (heating) by the Sun. The changes can happen because the Sun’s energy output changes or because of cyclic changes in the Earth’s orbit and inclination, etc., changing the amount of heat that actually arrives on the surface. Changes in the Earth’s orbit are believed to be the triggers for the onset of ice ages, and the changes in heating caused by those changes are thought to be quite small compared to the total power output of the Sun. This might lead us to suspect that human-caused changes in the amount of heat at the surface might indeed have a significant effect on the climate.
To answer this question, we need to compare the amount of variation due to the Sun with the amount of heat emitted by industrial civilisation. if the latter is ‘in the same ballpark’ as the former, then human civilisation might be holding off the onset of a new ice age.
Although there is much dispute about the exact mechanism that causes the onset of ice ages, much of it doesn’t concern us right now because one basic fact is clear: somehow or other, the responsibility lies with changes in the amount of heat received from the Sun.
One theory is that the cause is Northern Hemisphere summer cooling. At our current stage in geological history, the North Pole is surrounded by land masses, which are snowed under every winter. If the summers became just a bit colder, then some of that winter snow would remain on the ground throughout summer, and would then turn to ice. The ice will reflect sunlight much better than green plants or dirt or even liquid water, so the cooling will accelerate and the next summer will be even colder and leave even more ice lying around. And so the planet falls into an ice age. Retained heat in the oceans slows down the changes and ‘smooths over’ short-term effects, but once the process starts, the killing ice eventually reclaims its deathly kingdom.
Dr David Archibald suggests that a key measure of this process is the amount of insolation at 65° north latitude. The power of the Sun at 65°N is about 476 Watts per square metre. That means that at midday in mid-summer at, say, Reykjavik (at 64°N, almost the only significant city anywhere close to 65°N), the Sun has about the power of five old-style incandescent light bulbs. When summer sun at this latitude is sufficient to melt the winter snowfall, all is well. Other factors in this calculation are the length of summer (because, for example, a longer, but slightly cooler summer might melt more ice than a shorter warmer one) and how high in the sky the Sun is in mid summer. And the higher it is in summer, the deeper and colder the long winter ‘night’ will be. The factors are complex and researchers disagree as to how exactly they should be combined in order to make good predictions, but some combination of these factors decides whether we bask in life-giving warmth or flee the deadly cold. We cannot hope to make predictions from the kind of short overview we are doing here, but we can get an idea of the magnitudes involved.
How much radiant energy the Sun has in the past or will in the future shine upon the Earth at this latitude can be reliably calculated from basic physical and astronomical properties of the way the Earth orbits the Sun and how that orbit changes with time. This is not an uncertain thing like the forecasts of climate models; it is not exactly easy to calculate, but it depends only upon the extremely well verified equations of Newtonian physics (or, if you prefer a few thousands of a percent more accuracy, relativity). If we didn’t know how to do these calculations, we could never have landed men on the Moon or flown discovery missions past Saturn and on to Uranus and Neptune. Yes, we do know how to make these calculations and we know it very reliably.
When the calculations are done, we find that at the depth of the last ice age, around 22,000 years ago, the Sun’s power (again at 65°N) was around 463Wm-2. On the other hand, at the height of our own interglacial, the Holocene, which occurred about 11,000 years ago (yes, we have been on the downward slope ever since—though you would never guess it from the hairy scary stories about warming in the media) the summer insolation at 65°N was about 527Wm-2. In other words, we have:
| What | When | Sun’s Power |
|---|---|---|
| Previous Ice Age | 22,000 years ago | 463Wm-2 |
| Holocene Peak | 11,000 years ago | 527Wm-2 |
| The Perfect Time | Now | 476Wm-2 |
From these figures, we may make the following inferences:
-
- The difference between peak warmth and deepest cold was around 55Wm-2;
- The current value, being only 13Wm-2 above the value at the depth of the ice age, is almost all the way back to ‘cold conditions’; it may be that only stored ocean heat is keeping us out of an ice age (for now).
Moving on, how do these power figures compare with human energy output (mainly by burning fossil fuels)?
Human energy usage in 2006 was 491 exajoules. This translates to an average power usage of 15.56 terawatts each second (divide by the number of seconds in a year). To compare this with the Sun’s power as discussed above, we need to average this over the entire planet. The Earth’s surface area is 510 million sq. km., which gives 30,500 W per sq. km, or 0.03Wm-2. One final adjustment is needed to allow us to do the comparison: the Sun’s insolation given above was as received at noon, whereas this figure is an average over the whole planet. Since the planet’s area is four times the areas of a circle of the same radius, we must multiply by four, giving about 0.12Wm-2 as our final figure for comparison.
The human energy output of about 0.12Wm-2 is clearly overpowered by even the smallest of the numbers we have looked at so far. The 13Wm-2 difference between ice age conditions and today is at least a hundred times larger than human energy output. We might delay a killer ice age slightly, but our heating of the planet is nowhere near large enough to save us.
Henry@Ron&Jbar
I don’t know how we got onto CO2 again, but here is something that I wrote some time ago, which might interest you guys.
here is the famous paper that confirms to me that CO2 is (also) cooling the atmosphere by re-radiating sunshine:
http://www.iop.org/EJ/article/0004-637X/644/1/551/64090.web.pdf?request-id=76e1a830-4451-4c80-aa58-4728c1d646ec
they measured this radiation as it bounced back to earth from the moon. Follow the green line in fig. 6, bottom. Note that it already starts at 1.2 um, then one peak at 1.4 um, then various peaks at 1.6 um and 3 big peaks at 2 um.
This paper here shows that there is absorption of CO2 at between 0.21 and 0.19 um (close to 202 nm):
http://www.nat.vu.nl/en/sec/atom/Publications/pdf/DUV-CO2.pdf
There are other papers that I can look for again that will show that there are also absorptions of CO2 at between 0.18 and 0.135 um and between 0.125 and 0.12 um.
We already know from the normal IR spectra that CO2 has big absorption between 4 and 5 um.
So, to sum it up, we know that CO2 has absorption in the 14-15 um range causing some warming (by re-radiating earthshine) but as shown and proved above it also has a number of absorptions in the 0-5 um range causing cooling (by re-radiating sunshine). This cooling happens at all levels where the sunshine hits on the carbon dioxide same as the earthshine. The way from the bottom to the top is the same as from top to the bottom. So, my question is: how much cooling and how much warming is caused by the CO2? How was the experiment done to determine this and where are the test results? (I am afraid that simple heat retention testing might not work here, we have to use real sunshine and real earthshine to determine the effect in W/m3 [0.03%- 0.06%]CO2/m2/24hours). I am also doubtful of the analysis of the spectral data, as some of the UV absorptions of CO2 have only been discovered recently. Also, I think the actual heat caused by the sun’s IR at 4-5 maybe underestimated, e.g. the radiation of the sun between 4 and 5 maybe only 1% but how many watts/m2 does it cause? Here in Africa you can not stand in the sun for longer that 10 minutes, just because of the heat of the sun on your skin.
Anyway, with so much at stake, surely, you actually have to come up with some empirical testing? You cannot rely on calculations only.What the IPCC did is weighting (comparing global warming & concentrations of CO2 and other gases with that of 1750 =pre-industrial). Personnally, I could find no proper results from actual experiments!
If this research has not been done, why don’t we just sue the oil companies to do this?? It is their product afterall.
I am going to state it here quite categorically again that if no one has got these results, then how do we know for sure that CO2 is a greenhouse gas? Maybe the cooling properties are (more or less) equal to the warming properties.
We know that Svante Arrhenius’ formula has long been proven wrong. If it had been right earth should have been a lot warmer. So I am asking: what is the correct formula? If you people are convinced that CO2 causes warming, then surely you must ask yourself the same question as I have been asking??
I think it also very important that the experiments must be conducted in the relevant concentration range, i.e. 0.03% – 0.06%. You cannot use 100% CO2 in a test, and present that to me as a test result. Any good chemist knows that different concentration ranges in solutions may give different results in properties. In any case, those people who presented those 100% CO2 tests and results to their pupils used a simple globe lamp (representing the sun) and totally forgot about the cooling properties of CO2 (like I am claiming above here)
It seems to me that the weather guys, with their weather computer models, have much of what we are discussing built into their models. Obviously, convection carries a great deal of heat from near the surface to the rest of the atmosphere. Also obvious, the sun provides way over 99% of our current energy input, with geothermal (natural nuclear) and tidal (moon and sun) being next in importance. The most important moderators of solar are solar output (marked by sunspots) and cloud albedo, and in ice ages snow albedo is also important.
After that, changes in absorption by volcanoes, vegetation putting sulfur compounds in the air, and ocean currents. That would make human activity about eleventh in importance, with paving causing a decrease in evaporation probably the most important, and changes in evaporation by tilling the soil next. Finally, thirteenth and fourteenth are human CO2 and human heating via fossil fuels and nuclear.
Most of these we can quantify via the weather computers.
1. Solar (and solar fluctuations)
2. Water vapor albedo
3. Ocean currents
4. Evaporation
5. Snow albedo
6. Atmospheric absorption
7. Air convection
8. Tidal energy
9. Other geothermal (radioactivity, gravity)
10. Volcanoes
11. Non-human related biological activity (methane, sulfur, CO2)
12. Paving
13. Tilling
14. Other human activity (heating, transportation, CO2)
Note that this also changes the focus from “Global Warming” to Northern Hemisphere Polar winter warming, Southern Hemisphere winter nighttime warming, equatorial lower troposphere daytime spring warming, etc. But, of course, that doesn’t have the ego involvement that “Anthropogenic Global Warming” seems to have.
Of course, I may have the order wrong. If so, I’m sure that someone here will notice.
Of course, there have also been some continuously burning gas/oilfields for the last 40 odd years..some longer! Check out these monster flaming holes!!
Russia –
“Darvaz: The Door to Hell”
http://englishrussia.com/index.php/2008/03/25/darvaz-the-door-to-hell/
USA -Pennsylvania
http://atlasobscura.com/place/centralia
Germany – (sorry about the WIKI reference)
http://en.wikipedia.org/wiki/Brennender_Berg
This one has been burning since before 1700.
Then there was the burning oilfields from the Gulf wars ..
I wonder what extra heat has been added to the budget from that?
I’d love to see the UHI-style heat bubble around these areas on some charts..
Ron House,
said “From simple geometric considerations, if this happens at distance X for concentration C, then it must occur at distance X/2 for concentration 2C, ”
I don’t like to rely on simple geometric considerations, so I actually did the math for a reality check (it was easier than I thought with formula in hand), and the math proves you are right. Doubling the concentration reduces by half the depth it takes to absorb a particular amount of radiation. (Incidentally, here’s a handy basic physics reference site: http://hyperphysics.phy-astr.gsu.edu/hbase/ligcon.html#c1 and their summary on absorption: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/absorb.html#c1 )
I also agree completely as I said before with your original point that waste heat generated by energy production causes only an insignificant rise in planetary temperature.
As I said before, I am not yet completely convinced by the estimate of 0.12 given for human influence. What if there is a cumulative effect? In other words, you must also count the energy released by all the bombs and atomic bombs exploded during wars and tests, & all the satelites put into orbit, etc. etc. for the past century. You just cannot go by fuel usage for one year only. Also, what about the heat from veldfires (bush fires)? What about all the people here (in Africa) burning wood (4 barbecues) ? What about cooling plants? (used for cooling processes). What about cooling at Nuclear plants? etc. etc. etc. There is no also widespread collection of heat from the sun, which must also be taken into account.
No, I don’t think you have even come near to making an accurate estimate of man made heat, surely.